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Bipolar disorder (BD) is a severe psychiatric illness characterized by abnormalities in

the immune/inflammatory function and in brain metabolism. Evidences suggest that

inflammation may affect the levels of brain metabolites as measured by single-proton

magnetic resonance spectroscopy (1H-MRS). The aim of the study was to investigate

whether a wide panel of inflammatory markers (i.e., cytokines, chemokines, and

growth factors) can predict brain metabolite concentrations of glutamate, myo-inositol,

N-acetylaspartate, and glutathione in a sample of 63 bipolar patients and 49

healthy controls. Three cytokines influenced brain metabolite concentrations: IL-9

positively predicts glutamate, IL-1β positively predicts Myo-inositol, and CCL5 positively

predicts N-acetylaspartate concentrations. Furthermore, patients showed higher

concentrations of glutamate, Myo-inositol, and glutathione and lower concentrations of

N-acetylaspartate in respect to healthy controls. Our results confirm that inflammation in

BD alters brain metabolism, through mechanisms possibly including the production of

reactive oxygen species and glia activation.

Keywords: spectroscopy, myo-inositol, glutamate, inflammation, mood disorder

INTRODUCTION

Bipolar disorder (BD) is a severe psychiatric illness characterized by abnormalities in the
immune/inflammatory function and in brain metabolism. Increased inflammatory markers have
been found in the cerebrospinal fluid (CSF) and peripheral blood of BD patients irrespective of
mood (i.e., in depression, mania, and euthymia) (1, 2). Peripheral cytokines can enter the brain
by volume diffusion or via active cytokine transporters at the blood–brain barrier (3), and high
peripheral levels of cytokines are associated with a lack of response to antidepressant treatment
(4–6), with brain abnormalities affecting both white matter (WM) and gray matter (GM) (7, 8),
and with the cognitive impairment associated with brain abnormalities (9), thus suggesting that
peripheral biomarkers can be exploited to study the low-grade inflammation that associates with
the most detrimental effects of BD on brain structure and function (10, 11).

Altered concentrations of brain metabolites have been widely reported in BD both post mortem
and in vivo using single-proton magnetic resonance spectroscopy (1H-MRS), a non-invasive
brain imaging technique that can detect alterations in brain biochemistry in the presence of
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apparently normal anatomy. Resonances in the 1H-MR spectrum
can be reliably quantified for several metabolites with brain
concentrations in the millimolar range in specific brain regions
including N-acetylaspartate (NAA), creatine (Cr), glutamine
(Gln), glutamate (Glu), Glx (i.e., Gln + Glu), glutathione
(GSH), Myo-inositol (mI), and creatine + phosphocreatine, a
measure of energy utilization that has historically been used
as an 1H-MRS internal standard. The volume of interest
(VOI) most investigated by 1H-MRS studies in BD is the
anterior cingulate cortex (ACC) (12, 13), because of its
link to mood regulation (14) and antidepressant response in
BD (15).

One of the most reported findings of brain metabolite
abnormalities in BD is an increased level of glutamate, the
principal excitatory neurotransmitter in the central nervous
system. Most studies on BD have reported increased Glu
and Glx in multiple brain voxels during both mood episodes
(mania and depression) and euthymia (12, 13, 16, 17),
in pediatric BD (18) as well as in depressed drug-free
BD [Glx; (19)]. Alterations in the glutamatergic system
have been suggested to contribute to the pathophysiology
of depression (20) as suggested by findings showing that
inhibition of glutamate release and reduction in glutamate
levels in depressed BD patients parallel the antidepressant
response (21–23).

Other brain metabolites previously investigated in BD include
mI, NAA, and GSH. Inositol is located within astrocytes and
participates in glial osmoregulatory functioning, phospholipid
metabolism, and signal transduction (24) and is usually
interpreted as a glial specific marker. Contrasting results
have been reported regarding mI alterations in BD [for a
review, see (25, 26)]. Increased mI concentrations have been
reported in euthymic and manic bipolar children, no difference
has been reported in adult bipolar patients compared with
controls (27), but reduced concentrations in patients taking
lithium (28) and irrespective of lithium treatment (29) have
been reported.

GSH is the main antioxidant in the brain produced by
neurons, and microglia require astrocytic support providing the
precursor amino acids (30, 31) and play an important role
in the maintenance of oxidative balance. If the equilibrium
between reactive oxygen species (ROS) and antioxidants is
perturbed, oxidative stress may occur, resulting in toxicity and
cell damage (32). GSH is also involved in the prevention of
mitochondrial damage and in the protection against glutamate-
induced excitotoxicity (33, 34). Few studies have investigated
GSH in BD patients showing either unchanged or increased
levels as compared with controls [for a meta-analysis, see (35)]
in the ACC.

Finally, NAA is an abundant neuronal metabolite
considered as a marker of mitochondrial activity and
neuronal integrity (36). Accordingly, decreased levels of
NAA have been suggested to reflect impaired mitochondrial
energy production (36, 37). Decreased NAA levels have been
reported in several regions throughout the brain (38). Less
consistent data have been reported in the ACC, where both
reduced levels of NAA/Cr (39) in adolescents and increased

NAA levels in depressed (16) and euthymic adults (28) have
been shown.

Alterations in brain metabolism could be influenced by the
biological effects of inflammationmediating a detrimental role on
mood disorders (40, 41). Accordingly, in patients with hepatitis C
and comorbid depression, interferon (IFN)-alpha administration
was associated with significant increases in Glu/Cr in basal
ganglia and ACC (42). Similarly, in patients affected by major
depression, levels of C-reactive protein are associated with Glu
levels in the basal ganglia (43). In BD, a positive association
was observed between microglial activation and NAA + N-
acetyl-aspartyl-glutamate (NAAG) (44), whereas NAA decreases
prostaglandin E2, COX-2, intracellular calcium, and NF-jB in
stimulated human astroglial cells (45), suggesting that NAA
could play a role in the modulation of inflammation within
the central nervous system. Also, GSH is involved in the
inflammatory process. Indeed, on the one hand, GSH levels
increase following inflammation to counteract oxidative stress
(46), while on the other hand, GSH stimulates energymetabolism
in T cells (47). Finally, elevated levels of mI seem to suggest the
presence of glial activation, which is commonly associated with
neuroinflammation (48).

Despite these promising findings, to our knowledge, no study
so far investigated the association between a wide panel of
peripheral inflammatory markers and brain metabolites in BD.
The aim of this study was then to investigate whether plasma
levels of cytokines and chemokines are associated with ACC
concentrations of Glu, NAA, mI, and GSH in a sample of
BD patients.

MATERIALS AND METHODS

Participants and Data Collection
The sample was composed of 63 consecutively admitted (age
18–65) inpatients with BD (Diagnostic and Statistical Manual of
Mental Disorders, 5th edition [DSM-5] criteria) and 49 healthy
controls (HCs). Fifty-one patients were in a depressive state, four
were euthymic, and eight were in a manic phase. Thirty-two
patients were taking lithium from at least 6 months, 37 were
taking antidepressants, 11 were taking atypical antipsychotics,
and 31 were taking antiepileptic drugs. The recruitment took
place from January 2015 to December 2018. Exclusion criteria
were current diagnosis of any additional psychiatric disorders
including alcohol and/or substance dependence or abuse in the
last 6 months, intellectual disability, pregnancy, major medical
and neurological disorders, and medical conditions affecting the
immune system. All participants underwent MR scanning, while
only patients underwent blood sampling. Fasting blood samples
were taken in the morning (between 7:00 and 9:00 a.m.). After
a complete description of the study, written informed consent
was obtained. All research activities have been approved by the
Ethical Committee.

Laboratory Determinants
Plasma concentrations of the following immune analytes were
determined using the bead-based Luminex system based on
xMAP technology (Bio-Rad Laboratory, Hercules, CA, USA).
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Cytokines: interleukin (IL)-1β, IL-1rα, IL-2, IL-4, IL-5, IL-
6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, IFNγ,
tumor necrosis factor (TNF)-α. Chemokines: C-C motif ligand
(CCL)2, CCL3, CCL4, CCL5, and CCL11 and C-X-C motif
ligand (CXCL) 10. Growth factors: basic fibroblast growth
factor (bFGF), granulocyte colony-stimulating factor (G-CSF),
granulocyte-macrophage colony-stimulating factor (GM-CSF),
platelet-derived growth factor beta (PDGF-β), and vascular
endothelial growth factor (VEGF).

Assays were performed on Luminex 200 system. Samples
were analyzed according to manufacturer’s instructions. The
intra-assay coefficient of variation was 2.3–4.8%, and inter-assay
coefficient of variation was 4.9–28.2%.

Magnetic Resonance Spectroscopy
Procedure
MRS was performed at the C.E.R.M.A.C. (Centro d’Eccellenza di
RisonanzaMagnetica ad Alto Campo) in San Raffaele Hospital in
Milan on a 3.0 Tesla magnet (Ingenia, Philips) with a standard
quadrature head coil. A structural MRI study was performed
first to rule out brain lesions and to localize the VOI for
the spectroscopy study, acquiring sagittal T1 images, axial T2
fast spin-echo (FSE) images parallel to the bicomessural line,
and coronal fluid-attenuated inversion recovery (FLAIR) images
orthogonal to the axial ones.

1H-MRS data were acquired using a point resolved
spectroscopy (PRESS) sequence (repetition time [TR] 2,000ms,
echo time [TE] 42ms, 128 acquisitions) from VOI of 30 × 20
× 15-mm size positioned at the level of the ACC (Figure 1).
Unsuppressed water reference spectra were acquired from the
same VOI.

1H-MRS Quantification
1H-MR spectra were then analyzed using LCModel version
6.3.0 (49) and a basis set including alanine, aspartate, Cre,
phosphocreatine, glucose, Gln, Glu, glycerophosphocholine,
phosphocholine, mI, lactate, NAA, NAAG, scyllo, taurine,
macromolecules, and lipid signals. The LCModel method
analyzes an in vivo spectrum as a linear combination of model
in vitro spectra from individual metabolite solutions. Complete
model spectra, rather than individual resonances, are used
in order to incorporate maximum prior information into the
analysis. A nearly model-free constrained regularization method
automatically accounts for the baseline and lineshape in vivo
without imposing a restrictive parameterized form on them.
LCModel is automatic (non-interactive) with no subjective
input. Approximately maximum-likelihood estimates of the
metabolite concentrations and their uncertainties (Cramér-Rao
lower bounds) are obtained. The unsuppressed water signal
measured from the same VOI was used as an internal reference
for the quantification (assuming 80% brain water content). The
LCModel analysis calculates the best fit to the experimental
spectrum as a linear combination of model spectra (solution
spectra of brain metabolites). The final analysis is performed
in the frequency domain; however, raw data (FIDs) are used as
standard data input. Voxel position and metabolites peaks are
presented in Figure 1.

Tissue segmentation was performed in order to estimate the
proportion of GM, WM, and CSF in the voxel. Brain tissue in
the three-dimensional T1-weighted brain images was segmented
using the Gannet Co Register and Gannet Segment functions
in the Gannet 2.0 toolbox (50) in SPM12. The CSF brain tissue
fraction was calculated for each voxel [fCSF = %CSF/(%GM +

%WM + %CSF)]. Concentrations were then corrected for CSF
fraction with the following formula:

Corrected concentration = metabolite concentration ∗

(1/[1 – fCSF])
To ensure the accuracy of the measurements obtained, only

metabolite results with values of Cramér–Rao lower bound<20%
were considered.

Statistical Analyses
Cytokines having non-detected values >20% have been excluded
similarly to previous studies (51).

Univariate statistical analyses were performed using
STATISTICA (StatSoft Statistica 11, Tulsa, OK, USA). Group
differences for brain metabolites were performed through t-tests
and ANCOVAs to account for the effect of possible confounding
factors (age and gender). Pearson’s r was used to investigate the
association between brain metabolites and clinical-demographic
variables. Tests were two-tailed, and an alpha level of 0.05
indicated statistically significant results. In order to control for
multiple comparisons, p-values were corrected through false
discovery rate procedure (52).

The predictive effect of baseline peripheral measures of
inflammation on brain metabolite concentrations was tested in
three steps.

First, through a regression analysis, we investigated the effect
of two cytokines (i.e., IL-9 and TNF-α) previously associated with
BD (53) with glutamate concentrations.

Second, to explore the effect of each cytokine in affecting mI,
NAA, and GSH brain concentrations, we entered all analytes
as predictors in an elastic net penalized regression (54). Before
performing the analyses, all the data were normalized (i.e.,
min–max normalization). In elastic net models, the applied
regularizations (L1 and L2) force shrinkage of the coefficients,
which can also be estimated to zero, reducing overfitting and
eliminating irrelevant or redundant variables. This not only
increases the model interpretability but also allows dealing with
multicollinearity induced by highly correlated variables (i.e.,
cytokines and chemokines). We implemented a non-parametric
bootstrap procedure (5,000 resamples with replacement) in
order to provide estimates of mean log odds ratio, related 95%
confidence intervals, and variable inclusion probability (VIP)
(54). In regularized regression, asymptotically valid p-values are
not available; VIP allows providing a measure of stability of
coefficient as an estimate of posterior probability of the predictors
included in the model (55). We applied a threshold of 75% to VIP
(55). Age, sex, onset, number of episodes, bodymass index (BMI),
and lithium plasma levels were entered as nuisance covariates.
At each bootstrap, λ values used in elastic net model were
defined through a 5-fold nested cross-validation procedure with
the better model fitting defined as minimum expected deviance,
as calculated by cross-validations. Minimizing the λ deviance is
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FIGURE 1 | (Top) T1-weighted images show placement of voxel in anterior cingulate cortex (ACC). (Bottom) Example of proton spectra from ACC and peak

intensities of brain metabolites. Glx, Glutamate+Glutamine; mI, myo-inositol; Cho, choline; Cr, creatine; GSH, glutathione; NAA, N-acetylaspartate.

equivalent to maximizing the λ log-likelihood. The algorithm
function was solved through the coordinate descent algorithm as
implemented in MATLAB (56).

Third, we then confirmed the relevance of these associations
and assessed the direction of effects by modeling the effect
of cytokines, surviving the VIP threshold on brain metabolite
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TABLE 1 | Clinical and demographic characteristics of the sample and results of

proton magnetic resonance spectroscopy in the anterior cingulate cortex divided

according to diagnosis.

BD (N = 63) HC (N = 49)

Mean ± SD Mean ± SD t/χ p q

Age 46.81 ± 11.94 33.7 ± 11.14 6.19 <0.001 <0.001

Sex M = 17 F = 46 M = 28 F = 21 10.43 0.001 <0.001

Onset (years) 29.01 ± 11.15 - -

Duration of illness (years) 17.80 ± 11.93 - -

N. depressive episodes 6.24 ± 5.64 - -

N. manic episodes 3.54 ± 4.29 - -

BMI 26.25 ± 5.34 - -

HDRS 16.86 ± 9.24 - -

Gray matter 21.06 ± 7.31 18.35 ± 9.31 1.70 0.090 NS

White matter 77.45 ± 7.95 81.02 ± 10.28 2.05 0.043 NS

Cerebrospinal fluid 1.44 ± 1.51 0.75 ± 1.06 2.67 0.008 0.005

Glutamate 8.11 ± 0.99 7.68 ± 1.04 2.21 0.029 0.029

Glx 9.90 ± 1.31 9.20 ± 1.17 2.95 0.003 0.004

NAA 6.62 ± 0.43 7.14 ± 0.54 5.67 <0.001 <0.001

GSH 1.70 ± 0.26 1.54 ± 0.16 3.77 <0.001 <0.001

Myo-inositol 5.24 ± 1.06 4.29 ± 0.86 5.13 <0.001 <0.001

Mean values presented are not values adjusted by age, gender, and gray matter brain

tissue fraction. BD, bipolar disorder; HC, healthy control; HDRS, Hamilton Depression

Rating; Glx, Gln + Glu; NAA, N-acetylaspartate; GSH, glutathione.

concentrations in a regression analysis within the context of the
generalized linear model. All nuisance covariates were entered in
the analysis.

RESULTS

Clinical and demographic characteristics of the sample
are resumed in Table 1. The HC group was younger
than the patients (t = 6.19, p < 0.001) and with a
lower number of females (χ = 10.43, p = 0.001). We
excluded from the analysis IL-10, IL-15, GM-CSF, and
VEGF showing non-detected values >20%. No differences
between depressed, manic, and euthymic patients were
observed in brain metabolite concentrations nor in
immune/inflammatory marker levels. Controlling for age
and gender, BD patients and HCs had similar GM (p = 0.11),
WM (p = 0.088), and CSF (p = 0.22) content within the
analyzed voxel.

No patient was excluded because of poorly fitting metabolites
peaks. Full width at half maximum was 0.042 ± 0.007 parts per
million (range, 0.031–0.061) for the BD group and 0.038± 0.006
parts per million (range, 0.031–0.055) for the HC group. The
signal-to-noise ratio was 19.6 ± 2.9 parts per million (range, 13–
29) for the BD group and 22.7± 2.9 parts per million (range, 15–
28) for the HC group. BD patients had higher linewidth (t = 2.5,
p = 0.013) and lower signal-to-noise ratio (t = 5.55, p < 0.001)
than had HCs.

Accounting for age and gender patients showed higher
concentrations of Glu (F = 5.85, pFDR = 0.021), Glx (F = 8.39,
pFDR = 0.010), GSH (F = 6.96, pFDR = 0.015), and mI
(F = 4.93, pFDR = 0.028) and lower concentrations of NAA
(F = 8.48, p = 0.010). No association between brain metabolite
concentration and plasma levels of lithium was observed. An
older age was associated with higher concentrations of mI
(r = 0.48, pFDR < 0.001). A higher number of manic episodes
were associated with higher concentrations of GSH (r = 0.38,
pFDR = 0.03).

At multiple regression, Glu concentrations were predicted by
levels of IL-9 (b = 0.001, SE = 0.0007, Wald = 5.03, p = 0.025),
whereas no effect of TNF-α was observed.

Results of elastic net penalized regression
(Supplementary Tables 1–3) showed that five cytokines survived
the VIP threshold of 75%: IL-1β, IL-4, and bFGF predicted mI;
TNF-α and CCL4 predicted GSH; and CCL5 predicted NAA
concentrations. A significant association between IL1-β and mI
concentrations (b = 1.94, SE = 0.77, Wald = 6.21, p = 0.013)
and between CCL5 and NAA (b = −0.000014, Wald = 4.58,
p= 0.032) was also confirmed by the regression analysis.

DISCUSSION

The main finding of the present study is the presence of an
association between peripheral inflammatory markers and brain
metabolites in BD. Here, we showed that higher IL-9, IL-
1β, and CCL5, respectively predict higher Glu, mI, and NAA
concentrations in the ACC. Also, we observed higher levels
of Glu, Glx, mI, and GSH and lower levels of NAA in BD
patients compared with HCs. Given that Glu and mI are primary
targets for the treatment of the disorder (57, 58), these findings
deepen our understanding of the relationship between low-grade
inflammation and brain metabolism in BD and are in agreement
with existing literature about brain homeostatic processes.

Immune disturbances, especially cytokine alterations (1, 59),
have been widely reported in BD and have been associated with
symptom severity (60) and mood episodes (61). Although not
previously investigated in BD, we recently showed (53) that
IL-9 is associated with the likelihood of having BD. IL-9 is a
pleiotropic cytokine produced mainly by Th2 cells, but also by
Th17, T regulatory cells, and Th9 (62). The IL-9 receptor is
expressed in several cell types including astrocytes where the
binding of T cell-derived IL-9 leads to Th17 cell migration in vitro
(63). In turn, IL-17 released by TH17 may reduce the expressions
of glutamate transporters (64), thus possibly explaining the
association we observed between higher levels of IL-9 and brain
concentrations of Glu.

Among the cytokines that have been involved in BD,
IL-1β is a proinflammatory cytokine released by activated
macrophages and microglia, which plays a key role in the
onset of inflammatory processes, activates the production of
TNF-α, and triggers astrocyte activation (65). Although in the
CNS we may not observe all the manifestations of peripheral
inflammation (i.e., no swelling), morphological changes in
microglia, together with increased expression of IL-1β, is
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frequently observed in both human and animal models of
brain diseases (66, 67). When glia is activated, its volume
increases; glial cell volumes are maintained by mI; hence,
activated glia with enlarged cell volumes may show elevated
mI levels. Inflammation might then affect brain metabolism
through a change in glia function, as also suggested by a
recent study showing that stimulation with IL-1β and TNF-α
produces a reactive astrocyte phenotype associated with both
the release of inflammatory mediators and neurosupportive
characteristics toward axonal growth and neuronal viability and
functionality (68).

In the last years, chemokines have been shown to
play a central role in BD (69). However, the effects of
chemokines in the brain are complex, as these proteins
have both neuroprotective and neurotoxic properties. Here, we
showed a positive association between CCL5, a chemokine
involved in the recruitment of T cells and NAA brain
concentrations. NAA is employed as a marker for neuronal
health, and a large number of RANTES-responsive genes
in cultured neurons have been suggested to be involved
in neuronal differentiation and survival (70). Furthermore,
CCL5 protects neurons and astrocytes from NMDA-
induced apoptosis (71), and treatment of primary cortical
neuronal cultures with CCL5 enhances neuronal survival
and reduces neuronal cell death (72). In agreement with a
neuroprotective role for this chemokine, CCL5 levels may
promote neuronal health as suggested by its positive association
with NAA concentrations.

In agreement with the literature (see Introduction), Glu,
Glx, GSH, and mI are higher in BD patients than controls,
whereas NAA is lower. Glu and GSH are linked by the system
Xc- transporter. Present in microglia and astrocytes, the Xc-
transporter mediates the absorption of cysteine, which is needed
for GSH production, extruding Glu (73, 74). During immune
activation, microglia and macrophages express the excitatory
amino acid transporters (EAATs), glutamine synthetase, and
system Xc- transporters. Indeed, the release of inflammatory
cytokines following immune activation precipitates oxidative
stress with the production of ROS (75–77). Cells exposed
to chronic inflammation would then require more GSH to
buffer rising ROS and prevent cellular damage. An accelerated
rate of GSH synthesis, in turn, would lead to a greater
release of glutamate into the synapse through the system
Xc transporter in exchange for cysteine. ROS, however, have
been suggested to inhibit glutamate uptake in astrocytes
(78), thus leading to increased glutamate levels. Furthermore,
extracellular Glu increases GSH synthesis in a dose-dependent
manner in macrophages that co-express both EAATs and Xc-
antiporter (79) possibly through a cooperative mechanism
between EAATs and Xc- system. EAATs, through the inward
transport of Glu, would directly provide intracellular Glu for
GSH synthesis.

The parallel increase of mI, Glu, Glx, and GSH levels
in patients with BD may suggest the presence of an altered
astrocytic function in response to an inflammatory process
with a consequent alteration in glutamatergic neurotransmission.
Furthermore, a decrease NAA concentration may reflect

neuronal dysfunction, injury, or loss following the release of
neurotoxic inflammatory mediators released by activated glia.

The major limitation of the study is a significant difference
in age and sex between patients and controls, which has been
taken into account, adding age and sex as nuisance covariates
in the analyses. Also, differences in linewidth and signal-to-
noise ratio between patients and controls could have influenced
the results. The lack of information regarding previous
psychopharmacological treatments received by the patients could
have partially influenced the results, as recent studies showed
that highly complex medication regimens are often required
during naturalistic outpatient treatment of BD depression (80).
However, in the present study, no association was observed
between cytokines or brain metabolites and pharmacologic
treatment. Brain metabolites may change during the depressive
or the manic episodes; however, in the present study, only
a small group of manic and euthymic patients was present;
therefore, it was not possible to investigate phase difference.
Future studies are needed to clarify this issue. Limitations
also include issues such as generalizability, possible undetected
past comorbidities, and population stratification. Finally, in the
present study, we investigated brain metabolite concentrations
in only one voxel, thus hampering the generalizability of the
results to the whole brain. Further studies are needed to
better understand whether the association between peripheral
inflammatory markers and brain metabolites that we observed
here is present also in other regions and whether differences
between brain regions exist. Overall, our findings strengthen the
impact of biomarker research into clinical practice and provide
new insights for the development of innovative therapeutic
strategies for bipolar disorder.
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