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Abstract

Background: To investigate transmission patterns of an infectious disease, e.g., malaria, it is desirable to use the
observed surveillance data to discover the underlying (often hidden) disease transmission networks. Previous studies
have provided methods for inferring information diffusion networks in which each node corresponds to an individual
person. However, in the case of disease transmission, to effectively propose and implement intervention strategies, it
is more realistic and reasonable for policy makers to study the diffusion patterns at a metapopulation level when the

disease transmission is affected by mobile population, that is, to consider disease transmission networks in which
nodes represent subpopulations, and links indicate their interrelationships.

Results: A network inference method called NetEpi (Network Epidemic) is developed and evaluated using both
synthetic and real-world datasets. The experimental results show that NetEpi can not only recover most of the
ground-truth disease transmission networks using only surveillance data, but also find a malaria transmission network
based on a real-world dataset. The inferred malaria network can characterize the real-world observations to a certain
extent. In addition, it also discloses some hidden phenomenon.

Conclusions: This research addresses the problem of inferring disease transmission networks at a metapopulation
level. Such networks can be useful in several ways: (i) to investigate hidden impact factors that influence epidemic
dynamics, (ii) to reveal possible sources of epidemic outbreaks, and (iii) to practically develop and/or improve
strategies for controlling the spread of infectious diseases.
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Background
Infectious diseases such as influenza and H1N1 are trans-
mitted between individuals. This process has been widely
studied by researchers in biology, statistics, epidemiology,
public health, etc. for many years. Their objectives are
to help front-line practitioners and policy makers to con-
trol disease outbreaks and to prevent severe morbidity
and mortality. Various intervention strategies have been
applied, including but not limited to vaccination, contact
deduction, etc.

Another strategy, contact tracing, is also widely used
to prevent disease outbreaks [1]. It is a network-based
approach conducted at an individual level. Susceptible
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individuals are identified and monitored to minimize
the chances of infection. The network-based approach
not only differentiates individuals in host populations [2]
but also allows for performing individual-level simula-
tions [3]. This approach is similar to the one adopted
in the research on tracing the transmission pathways of
infectious diseases, e.g., malaria, particularly the disease
transmission is affected by mobile population, except that
here disease transmission is examined at a metapopula-
tion level. Nodes and edges within the metapopulation-
based disease transmission networks do not represent
individual persons and their pairwise connections (e.g.,
social contacts [4]); instead, they represent patches of
subpopulations (e.g., provinces, cities, and townships)
and various transmission pathways among them (e.g.,
highways and air travel routes). Both individual-based
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and metapopulation-based studies of disease transmission
networks are useful in the following aspects:

Analyzing epidemic phase transition behavior [5];
Investigating the dominant factors that underlie the
spread of a disease epidemic [6];

e Providing suggestions to effectively control epidemics
by cutting off transmission pathways and/or isolating
certain local regions [7].

Many of the existing disease transmission studies that
deal with the above two types of transmission networks
share the similar limitation, that is, they assume that net-
work structures are given in advance; for example, contact
structures for influenza spreading [8,9] or airlines for
the spread of HIN1 [10] and SARS [11]. In these stud-
ies, information about which person or location will be
infected is given. However, in an actual epidemic, only the
spatiotemporal surveillance datasets containing the infec-
tion times and locations of reported infection cases are
obtained [12]. This type of data provides no knowledge of
the hidden transmission pathways that denote the routes
of disease propagation among geographical locations.
This real-world situation poses a significant and unde-
niable challenge to policy makers who are responsible
for applying intervention strategies at appropriate times
and locations. In this regard, inferring disease transmis-
sion networks becomes an important and urgent research
problem in epidemiological studies (as in [13]).

The network inference problem has been recently and
widely studied in the research domain of information
diffusion. Based on empirical time-series data that indi-
cates when people become informed or infected, the
static network inference problem with a homogeneous
edge setting (edge weights are the same for the whole
ground-truth network) can be transformed into a com-
binatorial optimization problem [14]. By formatting it
as an MAX-k-COVER problem, Gomez-Rodriguez et al.
have proven that selecting the top k edges that maxi-
mizes the likelihood of the static network structure is
NP-hard. Therefore, they introduced a greedy algorithm
based on the submodularity property [15] to approximate
an optimal solution. A similar problem with heteroge-
neous edge weights was formulated into a convex opti-
mization problem, and a maximum likelihood method
was proposed to solve it [16]. In doing so, noticing that
the structure of a social network is sparse, Myers and
Leskovec introduced penalty functions into the objective
function to improve its accuracy [16]. The same problem
was further extended from inferring static network struc-
tures to inferring dynamically changing networks, and the
effect of a time-varying external influence was integrated
into the model [17]. Recently, to infer disease transmis-
sion networks at an individual level, Teunis and Heijne
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defined a pairwise kernel likelihood function to incor-
porate infection time difference, proximity of cases, and
genetic similarity information [18].

Although information diffusion and disease transmis-
sion are to a certain extent similar, they have significant
practical differences. Information diffusion networks are
usually analyzed at an individual level, whereas disease
transmission networks are more meaningful and practi-
cal if analyzed at a metapopulation level, for the following
reasons:

e It is more appropriate to simulate disease
transmission in both temporal and spatial scales
[19,20].

e It is difficult to simulate complex individual human
behavior and collect large amounts of personal
information [6,21,22].

e Controlling disease transmission at a metapopulation
level is more practical from the view point of
front-line practitioners and policy makers [23].

However, the metapopulation approach leads to two
additional challenges:

1. Nodes within metapopulation-based disease
transmission networks connect not only with
each other, but also to themselves, indicating that
susceptible people may get infected by infectious
people within the same subpopulation.

2. Unlike information diffusion or individual-based
disease transmission networks, disease transmission
at a metapopulation level does not follow Directed
Acyclic Graphs, where if certain individual does not
get informed or infected at the first time, he or she
will never get informed or infected in the following
time period. In contrast, it propagates over Directed
Cyclic Graphs. That is to say, a subpopulation
may repeatedly get infected as long as it contains
susceptible people. In such transmission network,
disease proceeds with cyclic loops rather than like a
path or branches of trees.

In such a situation, inferring metapopulation-based dis-
ease transmission networks is not only desirable but also
challenging. Currently, to the best of our knowledge, no
such studies exist. Specifically, this research makes the
following three contributions:

1. A generalized linear disease transmission model is
built, which considers all the possible transmission
pathways at a metapopulation level.

2. A machine learning method called NetEpi (Network
Epidemic) is developed to infer hidden disease
transmission networks using only the spatiotemporal
surveillance data.
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3. Unlike similar network inference studies which
are conducted over Directed Acyclic Graphs, the
proposed method addresses the problem over
Directed Cyclic Graphs when analyzing real-world
situations.

This research is also practically meaningful as it helps to
computationally predict the spread of infectious diseases
and provides policy makers with new insights with poten-
tially effective intervention strategies [20]. Partial results
of this research have been reported in [24,25].

Method

Definitions

Suppose there exists an unknown directed cyclic net-
work G over which an infectious disease transmits, the
observed surveillance data can be represented in a tuple
of < idp, ity, loc, >. p is the index of a reported/confirmed
case. idy, represents the unique identity. if, is the reported
infection time. loc, is the geographical location where the
reported/confirmed case p gets infected.

After aggregating infection cases based on locations
and infection times, a dataset D = {< v;,ic;,t; > |i =
0,1,2,...N,t € T} is collected. i is the index of a
specific node. v; corresponds to the unique identity of a
geographical location (e.g., a province, a city, a township,
or an urban area). ic; is the aggregated number of infec-
tion cases. t; indicates a time step. T is the considered
time period of disease transmission. In this research, given
only the observed data D, the underlying disease trans-
mission network G is inversely inferred. The estimated
disease transmission network is referred to as G*.

Definition 1. Disease Transmission Network: Graph
G =< V,E > is a directed cyclic network where V' =
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{vi1i=0,1,2,...,N}is the set of nodes. The node vy rep-
resents the source node of the imported cases that would
potentially cause local epidemics (the imported cases for a
disease can be defined as the laboratory-confirmed infec-
tion cases where people have traveled to disease endemic
regions or countries within days before the onset of the
disease [26]). v; (i = 1,2,...N) correspond to the rest of
nodes within the target region. £ = {e; | i = 1,2,...,N}
denotes the set of directed edges with different weights
W={w;li=12...,Nl.e=1{g|j=012,...,N}
is the set of incoming links for node i and w; = {wj; | j =
0,1,2,...,N} is the corresponding weight vector. To be
noticed, the source node vy does not have incoming links.
The physical meanings of these edges that have non-zero
weights can be understood as the generalized transmis-
sion pathways that temporally correlate subpopulations in
terms of their infection observations.

Unlike the network structures used in previous studies,
the network structures used in this research contain three
types of transmission pathways (shown in Figure 1). As
the data describes a real-world situation, the assumption
is that infected people can infect susceptible people within
the same subpopulation (shown in Figure 2). This type
of transmission pathway is defined as the internal trans-
mission component. In addition, subpopulations within
metapopulation-based disease transmission networks can
be affected not only by subpopulations located in adja-
cent geographical regions, but also by imported cases. We
define them respectively as the neighborhood transmis-
sion component and the external influence component.

Definition 2. Internal Transmission Component: Within
each node (subpopulation), previously infected people
may correlate to newly infected people without outside
disturbances. This component is disease independent.

Internal
Transmission
Dynamics

Figure 1 An illustration of three types of transmission pathways contained in our considered disease transmission networks. The internal
transmission component is labeled with red solid links connecting to the nodes themselves. The neighborhood transmission component is

labeled with black solid links between nodes within the metapopulation-based disease transmission network. The external influence component is
introduced as dashed orange links (an external node connects to all the other nodes; for the sake of presentation, we draw only a proportion of them).

Metapopulation based
Disease Transmission
Network

External
Influenc
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Figure 2 Differences between information diffusion and disease
transmission over the same directed cyclic network. (A) shows
the example of a ground-truth synthetic network. (B) shows two
independent information cascading or individual-based disease
transmission processes where no cycle exists in these processes.

(C) shows two independent disease transmission processes at a
metapopulation level.
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Air-borne diseases such as influenza, vector-borne dis-
eases such as malaria, and other infectious diseases all
have this property. It is represented as an edge linking
to itself with weight w;; for each node i in the disease
transmission network G.

Definition 3. Neighborhood Transmission Component:
Among groups of nodes (subpopulations), the tempo-
ral correlations among infected people could be caused
by physically connected highways, air travels, adjacent
borders, etc. This component signifies the interactions
happening between infected people in different subpopu-
lations. In G, it is represented as a directed link e;; from
nodes i to j with weight wy;, indicating the correlations
between infected people in both i and .

Definition 4. External Influence Component: In disease
transmission, the imported cases from foreign or distant
endemic countries and regions are another major factor
that can cause local epidemics [27]. Thus, we consider this
factor in the disease transmission network as an exter-
nal node connected to all the other nodes. In G, this is
denoted as an edge ep; from external node to node i with
Weight wo;.

Linear transmission model

To characterize a disease transmission process over G,
we integrate both of the internal transmission component
and the external influence component with the neighbor-
hood transmission component. The internal transmission
component characterizes the possible transmission rela-
tionships between previously infected people and current
infected people within each subpopulation. The assump-
tion in [19], that “individuals do not change disease states
during movements” is retained. Thus the neighborhood
transmission component describes the temporal correla-
tions between infected people in different subpopulations.
The external influence component depicts the introduc-
tion of the imported cases from external sources. The
above three types of transmission pathways are defined in
mathematical forms, respectively, as follows:

itet = wy x ict™1

N,
ntet = ini x ici ™1 (1)

j
eic,'t = Wp; X l’C()til,
where itc;t, ntc;t, and eic;® refer to the number of infec-
tion cases from the internal transmission, neighborhood
transmission, and external influence components of node
i (i # 0) at time step £, respectively. N; is the number of the
neighbors of node i. w;;, wj;, and wy; are the correspond-
ing edge weights. ic; is the total number of infection cases
in node i, which can be written as a linear combination of
the above three components plus an error term ¢. ¢ is used
to capture unpredicted biases. The assumption is that
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the infection number for each node follows a zero-mean
normal distribution, ¢ ~ N(0, 8):

icit = ite;® + ntcit + eici + ¢

= w; X icitf1

N;
+ Z Wji X iCjt_l (2)
j

+ wo; X ico' ™!

+e&.

Equations 1 and 2 characterize the temporal dynamics
of the infection cases at each location. Note that in the
real world, once a reported/confirmed case is diagnosed,
the physicians or hospitals would take necessary treat-
ment and intervention measures, for example, medication
or isolation. Thus, in the above linear transmission model,
the infection cases at the current time step would be set to
be isolated in the subsequent time steps.

Network inference problem
The network inference problem to be solved here is how to
inversely infer the existence of the edges within the hidden
disease transmission network G and their corresponding
weights W = {w; | i = 0,1,2,...,N}, given an observed
surveillance dataset D = {< v;,ic;,t; > |i=0,1,2,...,
N,t € T}. Since the disease transmission process at the
metapopulation level does not follow the Directed Acyclic
Graphs pattern (Figure 2), it would be inaccurate to infer
disease transmission networks following the cascading
process in the information diffusion [14].

To recover the network structure G, it is necessary to
first write the likelihood function for a specific node i
based on Eq. 2:

T

Lw;, Blic = |

t=1

1 _ L
Qnp)aD° 0 (3)

where all the parameters are the same as those in Eq. 2,

. - N* .
except we use £* = (ch» — wy; X ch 1 —Zj Twi x icitT1—

woi X icot_l), and N} rather than N, to indicate the num-

ber of estimated neighbors of node i within the inferred
network G*. B is the variance of the normal distribution
for the error term ¢. Based on this equation, we transform
the network inference problem into an optimization prob-
lem, which is to find the optimal combination of neighbors
with accurate weights for a specific node i.

Then for the entire estimated network G*, the objective
is to maximize the likelihood function:

N
LW,BID) = [ [ Low;, Blic), (4)

i=1
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To evaluate the estimated network G*, we will use
precision-recall measures. Specifically, we will compare
both the existences of edges and their corresponding
weights in the synthetic network G and the estimated
network G*.

Partial correlation network construction

Because there could be many combinations for a node to
form its neighborhood, the solution space for the above
problem is huge. At the first step, we plan to reduce this
space in order to improve both accuracy and performance
for further tuning.

When using the Pearson correlation to analyze the cor-
relation between two selected nodes i and j, a problem
arises in the analysis of disease transmission networks.
As shown in Figure 3(A), disease transmission may fol-
low a path from node i to k, then to j. Take nodes i and
j as our analysis targets. Although they are not directly
connected, and the overall time-series surveillance data
exhibits time delay, they may still be correlated. There-
fore, in the approximate network structure G?, they may
be connected. The same problem exists in the case of
Figure 3(B), where both nodes i and j are the children of
node k in the disease transmission process. The correla-
tion between nodes i and j is still strong even though the
weights wy; and wy; are very different. To solve the biases
produced by the intermediate node and the sharing of the
same parent node, a first-order partial correlation analysis
is carried out.

The first-order partial correlation is a measurement of
the dependence between two variables X and Y, after
removing or fixing a third variable Z. In our case, to com-
pute it between nodes i and j, the effect of another node
k, where k = 0,1,2,...,N, and k # i,j is sequentially
removed or fixed. From the results, only those coeffi-
cients that indicate strong correlations with significant
p-values are chosen. It should be mentioned that a partial
correlation analysis usually does not provide edge direc-
tion information [28,29]. Therefore, to infer a directed

Figure 3 The possible transmission relationships among three
nodes [28]. The blue ones are the target nodes for which we aim to
identify their relationships. The red nodes are the intermediate nodes.
(A) shows no directed edge between nodes i and j. The disease
transmission follows a path from node i to the intermediate node k,
then to the target node j. (B) shows that node k transmits to nodes i
and j, simultaneously and independently.
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relationship, in this research, we analyze the partial corre-
lation with a time lag. The physical meaning of the time
lag is a time step during the disease transmission process
(e.g., one day, one week, or one month). Here, we use
a time lag of one unit as example, but the time lag is
not limited to one unit, other options are also allowed.
The direction is defined as from the node using the
previous-time-step time-series data to the node using the
current-time-step time-series data. Defining the partial
correlation coefficient between nodes i and j after fix-
ing the variable of node k as p;jx, it can be computed as
follows:

piik = Pij 2sz/01k -, (5)

L= pjy/1 = Py

where pj, pjr and pj are the covariances between each
pair of node i, j and k respectively.

Back-tracking Bayesian learning

Given the partial correlation network G, an approximate
disease transmission network structure is obtained that
contains possible neighbors for each node. However, some
edges in @ still do not exist in the synthetic network G. A
possible solution is to set the weights of these false posi-
tive edges within G” as zero during the inference process.
This is similar to the procedure of removing irrelevant
basis components, which is the basis for dimension reduc-
tion [30]. In the proposed inference method, the Bayesian
learning is based on the Sparse Bayesian Learning (SBL)
framework [31]. Related work has been widely and well
reported in signal processing studies [30]. To be noticed,
if two components are similar, SBL only chooses one of
them in order to compress the relevant information. How-
ever, in our case, even two nodes are similar, we aim to
find both of them.

For a specific node i, the preprocessed surveillance
dataset D is divided into two subsets: an M x 1 vector of
y = {< vyici,t; > | t; = 2,3,..., M+ 1,M € T} and
aM x |[NP| matrix of x = {< vj,icit; > |j € NP, t; =
1,2,...,M,M € T — 1}. M is the size of output variable
y and input variable x. N represents the indices of the
possible neighbors that node i has based on G*. T — 1
is the previously considered time period of disease trans-
mission. For the sake of presentation, in the following,
we omit the index i for y, x, and other parameters. If not
specifically stated, all the parameters are formulated for
node i. Here, we use a time lag of 1 between y and x.The
relationship between y and x can be formulated based
on the generalized linear transmission model introduced
earlier as follows:

y=aw+e, (6)

where w = {w; | j € N?} is a vector indicating the weights
of all possible incoming links estimated based on GP. ¢
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is an error term. As mentioned earlier, the solution space
is huge. Thus we hope to limit w within a smooth range.
Here we follow the framework of SBL, and let both w and
¢ follow a zero-mean Gaussian distribution with variances
of @ and B, respectively [31]. They are defined as:

NP

pwle) = [TN (w0 "), 7)
j=1

pe) = N(O, ). (®)

Because there is no prior knowledge of w and ¢, it is
reasonable to set them with non-informative prior distri-
butions, such as a Gamma distribution. Here, & and S are
assumed to have the same hyperparameters for all nodes.

Given the observation data y and the prior distribution
« and B, the posterior distribution of w is:

likelihood x prior

rwly,a, B) = .
normalizefactor
_ pOlw,a, Bpwle, B) o
ple, B)
_ pOw, Ppwle)
p(yle, B)
which is a Gaussian distribution N (g, X) with
n=p"1xxTy (10)
£=(A+peTx) (1)

where A = diag(ay,o2,...,anr). “Type-II maximiza-
tion likelihood” maximization combined with a maximum
a posteriori probability (MAP) estimate [31] transforms
the whole problem into the following marginal likelihood
function:

POl B) = / 2w, B)p(wla)dw.

Writing Eq. 12 into a logarithm form L(«), we have:

(12)

L) = logp(yle, B) = IOg/p(ylw,ﬁ)p(wla)dw

= —% [Mloan +log|C]| +yTC_1y]
(13)
with
C = BI+xr"xT. (14)

The derivatives of Eq. 13 with respect to aj and f are [32]:

L) 1 - 9

FToga; ~ 2 (1% o) as

9L (o) 1M 2 T

d1og f = |:/3 - ||y—x;l,|| — trace (Ex x):|
(16)
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Setting Eqgs. 15 and 16 to zero, the estimations of «j and
B become:

1— o3
a}(tew — Mz] J] (17)
J

M=3 (1 —a)

|y~ 2n)”

IBnew —

(18)

The above iterative estimation procedure can be solved
by using the Expectation-Maximization. In each itera-
tion, the contributions to the marginal likelihood func-
tion are estimated for all the nodes in GP. The one
with the maximum contribution is selected as the
candidate neighbor. Its corresponding weight is then
computed.
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In the disease transmission network G, only positive
links indicating the existence of transmission pathways
exist. However, the prior distribution shown in Eq. 7 may
cause w to be negative. To avoid this, a constraint lim-
iting w to a positive value is introduced. To incorporate
this constraint into the framework of the above Bayesian
learning, a back-tracking technique is used. During the
EM learning procedure, the marginal likelihood function
and other parameters are updated sequentially. Conse-
quently, each time p, X, aj, and § are updated, any «; that
fail the constraint are selected out, and their correspond-
ing indices are put into a blacklist. The learning procedure
is then rolled back, including the marginal likelihood
value, to the previous step, and proceeds by selecting only
nodes that do not appear in the blacklist, while at the
same time maximizing the marginal likelihood function.
The algorithm for the Back-Tracking Bayesian Learning is
shown in Figure 4.

Input: D: Preprocessed surveillance dataset; G”: Partial correlation network;

Output: G: Inferred disease transmission network;

(=]

: forallnodei =0,1,2,..., N do

16: return G*;

Figure 4 Algorithm for the Back-Tracking Bayesian Learning.

5:  while not reaching stopping criteria do

5: Combine all neighborhood lists to form G*;

1: Divide D into two subsets with time lag of one time unit;

3:  Initialize parameters for prior distributions;

4:  Construct marginal likelihood function p;(y|c, 3) (shown in Eq. 4.9);

6: for all node j € N?, and i # j do

7: Compute contributions to p;(y|a, 5);

8: Select node with maximum contribution;

9: Re-estimate all weights of current neighbors of node i;

10: if all weights are not less than zero then

11: Update neighborhood list;

12: else

13: Remove neighbors with weights less than zero, and put them into blacklist;
14: Roll back pi(y|c, 5);
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Results

Experiments based on synthetic data

Three types of Kronecker Graphs [33] are constructed: (i)
core-periphery networks, which have a cluster of nodes
in the core of the network and other nodes with less
connections distributed in the periphery area, (ii) hierar-
chical community networks in which nodes form several
small communities that are connected to form one large
cluster, and (iii) random graphs, which have no obvi-
ous pattern. For each type of network structure, different
scale parameters are set to generate different ground-
truth networks: (i) 64 nodes with 100 edges and 150
edges, (ii) 128 nodes with 180 edges and 200 edges, (iii)
256 nodes with 350 edges and 400 edges, and (iv) 512
nodes with 720 edges and 800 edges. The external links
and self-connected edges are generated independently for
each ground-truth network. For each synthetic network,
disease transmission model (Eq. 2) is run ten times to gen-
erate independent synthetic datasets. For a single dataset,
the transmission process is made to cover all the edges
of G. In total, there are three types of network topolo-
gies x 8 different sizes x 10 independent transmission
processes = 240 datasets.

To our best knowledge, there has not been much prior
work on inferring network structures over Directed Cyclic
Graphs. Therefore, we utilize a probability based baseline
method. At two adjacent time steps t = nand t = n + 1,
all the nodes that have infection cases at t = n will
have directed connections to those nodes that have infec-
tion cases at # + 1 (shown in Figure 5). The edge weight
is affected by both the number of infection cases and
the number of infected nodes in the previous time step.
The top k edges with the highest weights are selected,
and the estimated disease transmission network G* is
constructed accordingly. The mathematical formula to
compute the baseline edge weight is as follows:

(19)

To evaluate the inference results, the precision-recall
curves are computed as shown in Figure 6. Similar to the
definitions in [14], the precision is defined as “what frac-
tion of edges in G* is also present in G”, and the recall
is defined as “what fraction of edges of G appears in G*”.
For two nodes i and j, if both the ground-truth edge e;
and the inferred edge e;;. exist, and the difference in their
corresponding weights |w;; — wl’.‘jl is less than a predefined
threshold, we say the inferred edge is accurate. In our
experiments, NetEpi outperforms the baseline method in
all 240 datasets.

For a specific node in the disease transmission network,
NetEpi treats all the other nodes homogeneously and
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1D: 3
{840
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Figure 5 An overview of the baseline method. Nodes (represented as
squares) have infection cases at time step t = n, and have probabilities
of infecting nodes that have infection cases at time step t =n + 1.
This is shown as the dashed lines in the figure. The ID notation
represents the unique identity number of each node. The IC notation
represents the number of infection cases at the current time step.

independently. That is to say, the connections between
two nodes i and j are only affected and estimated by
the time-series surveillance data of these two nodes. This
exactly satisfies the real-world requirements discussed
above. The underlying network topology is not taken into
account during the inference procedure. For networks that
have same sizes but different topologies, NetEpi performs
best on the core-periphery networks.

In core-periphery networks, nodes are located in the
core region. These nodes have more connections than
those distributed in the periphery region. Therefore, to
achieve an optimal solution, core-located nodes will have
higher probabilities of possessing many neighborhood
combinations. In other words, the probability of finding
a globally optimal solution for such nodes will decrease
as the number of their incoming edges increases. The
accuracy of NetEpi over networks with core-periphery
topology is consequently biased by the tradeoff between
core-located nodes and periphery-located nodes. In
comparison, networks with a hierarchical communities
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topology do not have single cores. The single core is

Here, the out-degree is used to illustrate the accuracy
divided into several sub-cores that individually form

differences between networks with different topologies. It
sub-communities. This structure increases the average is defined as follows:
number of combinations for each node and directly affects

N
the inference accuracy. As for the random graphs, no mat- > d;
ter where the nodes are located, their number of connec- dayg = i,
tions does not have a fixed pattern. Consequently, NetEpi N
achieves oscillating results, which means the precision-

recall results for random graphs are sometimes the best,
and sometimes the worst.

(20)
where d; is the out-degree for node i and d,,, is the average
out-degree for the whole network. The out-degree statis-
tics for all the 24 synthetic networks are listed in Table 1.

--Baseline |
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Table 1 Out-degrees for synthetic networks

Size Core-periphery Hierarchical Random
network community graph
network

64 nodes, 100 edges 1.4154 1.5385 1.6923
64 nodes, 150 edges 1.7385 1.8308 1.8923
128 nodes, 180 edges 1.3876 1.4496 14651
128 nodes, 200 edges 1.5504 16357 1.5969
256 nodes, 350 edges 13619 1.5175 1.5097
256 nodes, 400 edges 1.5525 1.6537 1.6615
512 nodes, 720 edges 14016 1.5107 1.5029
512 nodes, 800 edges 1.5439 1.6199 1.6686

For networks with the same topologies but a different
number of nodes, NetEpi achieves better results when
inferring smaller networks, as shown in Figure 6. At the
beginning of the inference process, no edge information
is given. Therefore, a ground-truth network is treated as
a complete network. Even given its approximate struc-
ture GP, the complexity quadratically increases as the
number of nodes increases. Meanwhile, as the edge num-
ber increases, the number of neighborhood combinations
needed for each node to achieve an optimal solution also
increases, which directly interferes the inference results,
as shown in Figure 7.

However, inferring disease transmission networks at
a metapopulation level is different from inferring
individual-based information diffusion networks from the
perspective of network size. Network size is usually small
when calculated at the administrative level (e.g., province
and township levels). For example, for a global epi-
demic disease, WHO publishes statistical reports at the
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country level (e.g., dengue and malaria [34] (two types of
neglected tropical disease that transmit between human
and mosquitoes)); for an infectious disease such as SARS,
China reports at a province level, on a daily basis. One
possible method for inferring large-size networks that
cross several levels is to perform hierarchical clustering.
NetEpi begins the analysis at the highest level, where
each node represents a cluster of lower-level nodes. Then,
within each higher-level node, NetEpi can be performed
again to infer the lower-level transmission networks. This
whole process can be repeatedly and sequentially con-
duced to get a whole picture of large-size networks.

Experiments show that all the predicted epidemic trends
that occur in the ground-truth networks are captured by
the inferred networks, no matter how large the networks
are. Because of the space limitation, here we show some
examples in Figure 8. This confirms that NetEpi converges
to a optimal solution, although it may not be the global
one.

Experiments based on real-world data

The real-world dataset was provided by the Chinese Cen-
ter for Disease Control and Prevention. It contains the
reported malaria infection cases in Yunnan province,
China. Two types of cases, infected by two distinct types
of malaria parasites, (Plasmodium falciparum, and Plas-
modium vivax), are mixed together. Here, the focus is
on Plasmodium vivax, which is the dominant type in the
Yunnan region. There were 2928 cases reported in 51
townships in 2005. These townships are distributed along
the border between China and Myanmar (a high malaria-
endemic country). The data are preprocessed by merging
those cases reported in the same townships and filtering
out those infected with another type of malaria parasite
that is not the focus in this research. These townships

Dataset Index

Dataset Index
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Figure 7 Differences between the edge number in the inferred networks and the ground-truth networks. For each dataset index, we take
the average of all the networks with different topologies but same size. The network size increases as the index increases. (A) - (C) show the results
of core-periphery networks, hierarchical community networks, and random graphs respectively. It is obvious that as the ground-truth network size
increases, the accuracy of NetEpi decreases. The number of false edges increases as well. This results from the increased number of possible
combinations of neighbors for each node to achieve its global optimal solution.
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for illustration: (A) shows a core-periphery network with 64 nodes and 100 edges. (B) shows a hierarchical community network with 128 nodes and

are further classified into five categories based on their
disease severities. They correspond to different numbers
of infection cases during the year and are labeled with
different colors: (200, +00) (red node), (150, 200] (purple
nodes), (100, 150] (green nodes), (50, 100] (yellow nodes),
and (0, 50] (blue nodes).

The dataset is sparse, with missing data. Moreover,
there is no complete labels indicating the imported cases
or information about the sources that introduce the
imported cases in the original surveillance dataset. Thus,
a fixed external node could not be set up during the
inference procedure. Like the periodical pattern of the
Internal Transmission Component, the External Influence
Component also presents regular pattern because of the
frequent human mobility motivated by cross-border trade
and business. We consequently merge EIC with ITC, and
represent either of them, or their combination, by self-
connected edges. This is reasonable because it has been
recorded that most of these imported cases were due to

working, trading, and/or visiting in/with Myanmar regu-
larly. Therefore, self-connected edges are able to capture
these regular patterns and identify the imported cases.
It is expected that there are many cases imported from
neighboring countries, especially Myanmar; therefore, the
inferred malaria transmission network contain many self-
connected edges. It has been widely reported that the
incubation time for Plasmodium vivax is 12 ~ 17 days
[35]. However, studies have also reported that the incu-
bation time can be longer, from several months to several
years [35,36]. Therefore, in this research, 21 days has
been selected as the time window for inferring the hidden
malaria transmission network.

In the inferred malaria transmission network, the self-
connected edges are labeled with dashed red lines, and
edges between neighboring nodes are linked with solid
black lines. The width of the edges indicates the strength
of the transmission pathways. There are basically two
classes of nodes. Some of them connect to themselves, as
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expected, whereas others form two small communities. In
the following, the two types are interpreted separately.

Small Communities: Figures 9 and 10 show that there
are two communities in the whole malaria transmission
network. The larger one (Figure 9) includes the nodes with
the most severe epidemic situations. The severest town-
ship, 6, has connections to all the other second-level sever-
ity townships (green nodes), indicating that their disease
transmission interactions may be the dominant reason for
the local malaria endemics in the region. It is obvious that
most nodes are connected by highways (e.g., $231, S233,
S317 and S318) and rivers. The highways allow infectious
patients to move among subpopulations, thus increasing
the exposure risk of susceptible populations. The river
usually plays a significant role in malaria endemics. It pro-
vides a suitable environment for the vector of malaria to
reproduce and its flow moves the larva of vector down-
stream. Therefore, it is possible that the endemics within
townships are affected by internal malaria transmission
dynamics.

It can readily be noted from Figure 9 that some inferred
edges are thicker than others, denoting higher transmis-
sion influences (larger edge weights). ej3_¢ (the dash in
the index is used for separation) is much thicker than
the others, for example, e14_¢, es—¢, and ezg_g. We inter-
pret this based on Figure 11(A)-(F) in which reported
cases are aggregated on an eight-day basis for clear pre-
sentation. As shown, although township 18 (Figure 11(E))
has fewer reported cases than other example town-
ships and contains many zero-case intervals, its tem-
poral trend does not significantly violate the trend of
township 6 (Figure 11(B)). In comparison, the “mountain-
valley-mountain” pattern of township 6 can only be
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partially matched with other townships (e.g., townships 4
(Figure 11(A)), 14 (Figure 11(D)) and 28 (Figure 11(F))).
The influence from township 6 to 4 is much less than
that from the reverse direction. This is because the sec-
ond highest peak appearing between time step 20 to 30
in the trend of township 6 cannot contribute to the valley
appeared at the same time interval in the trend of town-
ship 4. However, the reverse contribution is reasonable.
Intuitively, the pair of townships 4 and 8 (Figure 11(C)),
and the pair of townships 14 and 28 have similar trends
respectively, but NetEpi only finds edges between town-
ships 14 and 28. This is due to that, for townships 4
and 8, their trends before time step 20 seem to be simi-
lar, but those after step 20 present a time lag of around
8*8 days.

As for the small community, it contains townships 1, 41,
49 and 50. The distance between townships 1 and 49 is
much longer compared with that between townships 50
and 49. In addition, townships 49 and 50 share the same
river. However, the relationships between 49 and 50 are
much weaker than those between 1 and 49. It is speculated
that townships 1 (Figure 11(G)) and 49 (Figure 11(H)) have
the same source of imported cases.

Self-Connected Nodes: As mentioned previously, the
external influence component is merged with the inter-
nal transmission component. Therefore, these inferred
self-connected edges may represent either of these two
components, or their combination. Here, we take one
group of nodes as an illustrative example. For townships
42,45,46,47,48, and 51, it is obvious that the endemic dis-
ease cases are most likely to be caused by imported cases,
because they are located at the border between China
and Myanmar (Figure 12). Figure 11(J)-(L) also validate
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Figure 9 Townships that form a big community as shown in the upper-left subfigure are correlated by their locations that are distributed
either in the upstream and downstream of rivers, or close to the highways that connect each other.
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the same source of the imported cases.
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Figure 10 Townships in this figure are located relatively far from each other, except 49 and 50. Their connections may result from sharing

that their reported cases appear consecutively but are not
similar with each other.

There are 47 rather than 51 townships in the inferred
malaria transmission network. The four missing nodes
have neither self-connected edges nor neighborhood-
connected edges. The sum of their infection cases is
81, which is a very small proportion of all the infec-
tion cases. Therefore, we think their disease transmission
dynamics are primarily accidentally imported cases. It
seems that although some townships have similar tempo-
ral trends, they are not connected, for example, townships
18 (Figure 11(E)) and 50 (Figure 11(L)). The reason could
be the choices of both the time window and the time lag.
However, because this real-world dataset is very sparse,
it is often difficult to choose the right values. In addi-
tion, although some townships are located very close to
each other, and on the same rivers, they are not con-
nected within the inferred malaria transmission network;
for example, townships 34 and 39 in Figure 9 are not
connected because their transmission pathways are not
significant or their malaria endemics are mainly affected
by the imported cases that disguise the impact of the other
factors. To interpret them, currently available information
about transportation, rivers, and geographical locations
may not be adequate, as the transmission pathways are
the comprehensive results of all impact factors. Moreover,
the roads that are locally formed and managed are not
displayed in the map, and they may play significant roles
in malaria transmission. Missing reports and data spar-
sity may also affect the results. However, our method can
still detect some hidden connections that may draw the
attention of policy makers.

Discussion

There are two key control parameters that play significant
roles in the inference results of NetEpi. One is the time
window that is used in the partial correlation networks,
and the other is the number of observations needed to
accurately infer the disease transmission networks. In the
following, the influences of those two parameters are
discussed individually.

To construct a partial correlation network, it is neces-
sary to select an appropriate time window. Based on a real-
world situation, time windows of one day, one week, two
weeks, three weeks, one month, five weeks, and one and
a half months are selected. In addition, a measurement is
defined to evaluate the results:

EP|

|
( S )|52+1
Mpyy = | ——— ,
tw |E| + 1

where s is the number of edges appearing in both the
ground-truth network G and the partial correlation net-
work GP, |E| is the number of edges in G, |EP| is the
number of edges contained in G”, and tw refers to the
selected time window. It is desirable that G” contains
more edges that appear in G, and less edges that do
not appear in G, therefore we use my, to measure the
trade-off between s and |E?|. Based on the experiments
and theoretical analysis, the ranges of s and |EP| are as
follows:

{s €[0,|E(]

(21)

|EP| € [IE, IE”]. (22)

Therefore, the value of m;,, increases as s increases or
|EP| decreases. The ideal case is s = |EP| = |E|, so that
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Figure 12 Townships 42, 45, 46, 47, 48 and 51 are located adjacent to the border between China and Myanmar. Therefore, their

myy significantly approximates 1. It should be noted that
when s approximates or equals |E|, my, approximates 1
as well, and even |EP| is very large (but still much smaller
than |E|?). Here such cases are not punished, as finding
all the ground-truth edges, or the majority of them, is
more important than the constructed partial correlation
network with a larger size.

For all the 24 synthetic transmission networks, we take
the individual average values of the analyzed results of the
10 independent datasets. Based on the results shown in
Figure 13, the relationships between trade-off measure-
ment my, and time window tw are categorized into four
classes.

“N” Shape: Examples of this type of relationship are
shown in Figure 13(D). The trade-off measurement value
in such case usually achieves the maximum at a time win-
dow with less or moderate values, for example, 7 or 14
days. The partial correlation networks also contain fewer
edges under such a time window. my, decreases at the
beginning because the increasing rate of s is slow com-
pared to the fast increasing rate of |E”|. my, gradually
increases later because stronger correlations are iden-
tified under the conditions of increasing time window
values.

“S” Shape: Examples of this type of relationship are
Figure 13(A), (B), (C), (F), (H) and (I). As the length of the
time window increases, more edges in the ground-truth
networks appear in the partial correlation networks. The
correlations of these edges are consolidated as the time-
series data are smoothed. At a given point, for example,
a time window of 14 days, the majority of the strong cor-
relations have been identified, so that even as the length

of time window continues to increase, the number of
strongly correlated edges remains stable.

“V” Shape: Examples of this type of relationship are
Figure 13(E) and (G). In such cases, the trade-off measure-
ment value reaches the maximum at the very beginning
(tw = 1), then decreases dramatically to a valley, and
increases afterwards. The climax at the start is caused
by the low values of both s and |EP|. A proportion of
ground-truth edges have not been found out when the
time window is equal to one day. Moreover, the sizes of the
corresponding partial correlation networks are also small.
As in the “N” shape, m;,, decreases to a valley because the
increasing rate of s is slow compared to the fast increasing
rate of |EP|. The subsequent increase is the same as in the
“N” shape.

Another important control parameter is the number of
observations (size of surveillance dataset), which is the
parameter M. Intuitively, the more data there are, the
better the inferred results should be. However, it is usu-
ally difficult to obtain complete and sufficient surveillance
data because of missing reports, immature surveillance
systems, etc. In addition, although a huge amount of data
can be collected, big data still poses challenges for both
data storage and data analysis. Consequently, experiments
testing the influence of the size of the surveillance dataset
on the accuracy of NetEpi are conducted.

If the size of the surveillance dataset is much smaller
than the length of the time window that NetEpi uses, the
construction of the partial correlation networks will fail.
Therefore, this research assumes that the size of surveil-
lance dataset should be at least larger than the length of
the time window. Specifically, the detailed relationships
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Figure 13 Sensitivity analysis for the choice of time window on synthetic networks with different sizes and topologies. The horizontal axis
is the selected time window with the unit of day. The vertical axis is the measurement value of my, computed from Eq. 21. (A) - (C) show
core-periphery networks with size of 64 nodes with 100 edges, 128 nodes with 180 edges, and 256 nodes with 350 edges. (D) - (F) show
hierarchical community networks with size of 64 nodes with 100 edges, 128 nodes with 180 edges, and 256 nodes with 350 edges. (G) - (1) show
random graphs with size of 64 nodes with 100 edges, 128 nodes with 180 edges, and 256 nodes with 350 edges.

between the size of surveillance data M, length of selected
time window tw, number of network nodes N and the
scale parameter ¢ should be as follows:
N
M—tw+1>— (23)
%
The left-hand side of the above equation is the size of

the time-series dataset after smoothing it under time win-
dow tw. The right-hand side is the size of the available

surveillance dataset to be tested. Obviously, this crite-
ria guarantees that no matter how long the selected time
window is, given a target scale related to the number of
network nodes, it is often possible to find a lower bound
for the surveillance data that will ensure that the partial
correlation analysis is workable. For example, given a net-
work with 128 nodes (N = 128) and a time window of 35
(tw = 35), if NetEpi is performed when the surveillance
dataset is almost half the size (¢ = 2) of the number of
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Figure 14 Sensitivity analysis for the choice of observation or surveillance data with different size. (A) - (C) show the results of networks
with different topologies but the same size of 128 nodes and 200 edges. Network in (A) is a core-periphery network. Network in (B) is a hierarchical
community network. Network in (€) is a random graph. The curve with the size of a quarter of the number of network nodes is displayed as a blue
solid line. The curve with the size of a half the number of network nodes is displayed as a green dashed line. The curve with the size of the same
number of network nodes is displayed as a red dotted line. The curve with the size of two times the number of network nodes is displayed as a black

dash-dot line.

nodes, then the size of the training surveillance dataset In all these experiments, although less surveillance data

should at least be 98. may bias the accuracy of NetEpi, the bias is not signifi-
Figures 14-and 15 show the results of experiments for six ~ cantly obvious, even in Figure 15(B), as the missing data

networks with different topologies (core-periphery net- is not considered during the generation of the synthetic

works, hierarchical community networks, and random  surveillance data. These results confirm that NetEpi can

graphs) and sizes (128 nodes with 200 edges and 256  accurately find and estimate those edges that play impor-

nodes with 350 edges). For each network, different sizes of ~ tant roles in disease transmission, even given minimal

surveillance dataset are tested independently. All of them  surveillance data.

are tested under the time window of 35. The scale param-

eter ¢ is set to equal to 4, 2, 1 and 0.5, as shown in the Conclusions

precision-recall curves with the legends 0.25, 0.5, 1 and 2  This research bridges the gap between theoretical stud-

times, respectively. ies of disease transmission networks and real-world
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with different topologies but the same size of 256 nodes and 350 edges. Network in (A) is a core-periphery network. Network in (B) is a hierarchical
community network. Network in (C) is a random graph. The curve with the size of a quarter of the number of network nodes is displayed as a blue
solid line. The curve with the size of a half the number of network nodes is displayed as a green dashed line. The curve with the size of the same
number of network nodes is displayed as a red dotted line. The curve with the size of two times the number of network nodes is displayed as a black

dash-dot line.




Yang et al. Health Information Science and Systems 2014, 2:8
http://www.hissjournal.com/content/2/1/8

infectious disease transmission, by inversely inferring hid-
den disease transmission networks using only surveillance
data. Specifically, it addresses this problem at a metapop-
ulation level, which is more meaningful and practical for
front-line practitioners and policy makers. To achieve this
goal, a network inference method called NetEpi is devel-
oped. The proposed method and the experimental results
provide policy makers with insights into discovering hid-
den transmission pathways among subpopulations and
optimizing limited resources when implementing inter-
vention strategies. In addition, this novel tool can be
implemented as a part of surveillance-response system
to actively detect and monitor low-transmission patterns
[37].

The current version of NetEpi does not consider the
detailed impact factors of a specific disease. That is to say,
the inferred disease transmission networks are compre-
hensive and abstract networks that integrate all the impact
factors. Taking the inferred malaria transmission network
as an example, the inferred edges can be interpreted as
geographical locations, convenient traffic routes, suitable
habitats for the vector, etc. Therefore, to investigate the
transmission pathways in more detail, and to find out
the exact interpretations for the inferred edges, it will be
necessary to build specific transmission models for differ-
ent diseases. Moreover, various impact factors should be
carefully integrated.

Another direction for future work is to infer dynamic
disease transmission networks. Currently, the assumption
is that the hidden disease transmission networks do not
change within a prefixed time period. However, in real-
ity, the network may change as impact factors change
over time. Therefore, inferring dynamic disease transmis-
sion networks is useful over a long-time scale, which is
also more helpful for policy makers to design long-term
intervention strategies.

Finally, the current back-tracking technique rolls back
the optimization procedure roughly rather than smoothly,
and converges to either the local optimum or the global
optimum. Therefore, future work should modify this tech-
nique to improve precision.
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