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ABSTRACT 

Medical imaging has developed into one of the most important fields within scientific imaging due to the rapid and 
continuing progress in computerised medical image visualisation and advances in analysis methods and computer-aided 
diagnosis. Several research applications are selected to illustrate the advances in image analysis algorithms and 
visualisation. Recent results, including previously unpublished data, are presented to illustrate the challenges and 
ongoing developments. © 2010 Biomedical Imaging and Intervention Journal. All rights reserved. 
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INTRODUCTION 

A multitude of diagnostic medical imaging 
modalities are used to probe the human body. 
Interpretation of the resulting images requires 
sophisticated image processing methods that enhance 
visual interpretation, and image analysis methods that 
provide automated or semi-automated tissue detection, 
measurement and characterisation. In general, multiple 
transformations will be needed in order to extract the 
data of interest from an image, and a hierarchy in the 
processing steps will be evident, e.g. enhancement will 
precede restoration, which will precede analysis, feature 
extraction and classification. Often these are performed 
sequentially, but more sophisticated tasks will require 
feedback of parameters back to preceding steps so that 
the processing includes a number of iterative loops. 

Several ongoing areas of research have been 
selected to highlight novel developments in analysis and 
display, in the hope that the methodologies may be 
transferred to other applications. 

SELECTED APPLICATIONS 

Mammography 

Mammography is the single most important 
technique in the investigation of breast cancer, the most 
common malignancy in women. It can detect disease at 
an early stage when therapy or surgery is most effective. 
However, the interpretation of screening mammograms 
is a repetitive task involving subtle signs, and suffers 
from a high rate of false negatives (10%–30% [1, 2]), 
and false positives (10–20% [3, 4]). Computer-aided 
diagnosis (CAD) aims to increase the predictive value of 
the technique by pre-reading mammograms to indicate 
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Figure 1 (a) A mammogram showing a cluster of microcalcifications and (b) computer-estimated margin around a cluster of 

microcalcifications. 

the locations of suspicious abnormalities and analyse 
their characteristics, as an aid to the radiologist.  

About 90% of breast cancers arise in the cells lining 
the milk ducts of the breast, and are known as ductal 
carcinoma in situ (DCIS). Once the tumour extends 
beyond the lining of the ducts it is termed invasive, and 
can metastasise to other sites in the body. Radiographic 
indications fall mainly into two categories, 
microcalcifications and lesions (masses) (Figure 1). 
Microcalcifications are the primary means of detecting in 
situ carcinomas (i.e. those within the milk ducts); they 
are typically in the order of several hundred microns or 
smaller in diameter, and tend to occur in clusters. Most 
lesions are ill-defined in shape, often with tissue strands 
or spiculations radiating out from them, and similar in 
radio-opacity to the surrounding normal tissue (Figure 2). 
The imaging requirements in mammography are 
stringent, both in terms of spatial and contrast resolution. 

 

 
Figure 2 (a) A mammogram showing a stellate lesion and (b) a 

magnified image of the lesion. 

CAD performance and reliability depends on a 
number of factors including the optimisation of lesion 
segmentation, feature selection, reference database size, 
computational efficiency, and the relationship between 
the clinical relevance and the visual similarity of the 
CAD results. Segmentation of the breast region serves to 
limit the search area for lesions and microcalcifications. 
It is also useful to adjust the grey values of the image to 
compensate for varying tissue thickness; one way to do 
this is to add grey values according to the Euclidian 
distance map, mapping distances to the skin line in a 
smoothed version of the mammogram [5]. Noise in the 
image can be reduced by median filtering, although this 
can disturb the shape and/or contrast of small structures. 
An improved technique [6] combines the results of 
morphological erosion and dilation using multiple 
structuring elements. 

To improve the accuracy and reliability of mass 
region segmentation, a large number of computing 
algorithms have been proposed, developed and tested, 
including multi-layer topographic region growth 
algorithms [7, 8, 9], active contour (snake) modeling [10], 
adaptive region growth [11], a radial gradient index 
(RGI)-based modeling [12], and a dynamic 
programming-based boundary tracing (DPBT) algorithm 
[13]. Due to the diversity of breast masses and overlap of 
breast tissue in the 2-D projected images as well as the 
limited testing datasets, it is very difficult to compare the 
performance and robustness of these segmentation 
methods [14].  

Features which are useful for characterising lesions 
include their degree of spiculation, shape and texture 
[15]. Spiculation features commonly involve the 
calculation of image gradient using, for example, the 
Sobel masks [16]. The cumulative edge gradient, from 
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the Sobel magnitude-of-edges image, can be plotted as a 
histogram of the radial angle, from the Sobel phase-of-
edges image, to determine the degree of spiculation [17, 
18]. The FWHM (full width at half maximum) of the 
gradient is able to distinguish spiculated masses from 
smooth masses. Others have used multi-scale oriented 
line detectors to detect and measure spiculated masses 
[19]. The centres of mass lesions tend to be circular so 
that specific filters can be used [20]. The boundary of the 
lesion can be unwrapped, and its difference from a 
smoothed version used to characterise the degree of 
spiculation [21]. Other relevant features include 
asymmetry, which would include automatic registration 
of left and right breast images [22], and changes with 
time [23]. Wavelets and Gabor filters have been 
extensively investigated and compared [24], and Gabor 
filters have performed better and corresponded well to 
the human vision (in particular for the sensitivity of edge 
detection) [25]. Other popular texture features derived 
from the co-occurrence matrices [26] and Fourier 
transformation [27] have also been tested. Recently, 
fractal dimension has been shown to be an effective and 
efficient metric for assessing texture in the detection and 
classification of suspicious breast mass regions [28]. 
Fractal dimension can be used to distinguish between 
malignant and benign breast masses [29], and has a high 
correlation with visual similarity [30, 31]. Since fractal 
dimension is a feature computed in the frequency domain, 
it has the advantage of being invariant to the lesion 
position and to rotation and scale. Most researchers 
extract several features and use principal component 
analysis to identify the most successful combinations. 
Different methods can be evaluated by receiver operating 
characteristic (ROC) analysis (Figure 3), but cannot be 
compared with each other unless the same image 
databases were used. 

 
Figure 3 Receiver operating characteristic (ROC) curves 

illustrating the performances of a computer 
classification method and radiologists in the task of 
distinguishing between malignant and benign lesions. 
ANN indicates an artificial neural network using 
cumulative edge gradient features, and the hybrid 
system using several features. (Reprinted from [32], 
with permission from Elsevier). 

Microcalcifications can be described by the 
morphology (shape, area, brightness etc.) of individual 
calcifications, and the spatial distribution and 
heterogeneity of individual calcifications within a cluster. 
They can be enhanced by thresholding the image, and 
morphologically opening it using a structuring element to 
eliminate very small objects while preserving the size 
and shape of the calcifications [33]. Isolated 
calcifications have little clinical significance, so many 
investigators have incorporated a clustering algorithm 
into the classification system, in which only clusters that 
contain more than a selected number of 
microcalcifications within a region of chosen size are 
retained [34]. Such schemes are easily implemented 
using the k-nearest-neighbour (k-NN) algorithm. Both 
spatial distribution and heterogeneity of the features 
within a cluster can be used to qualitatively correlate 
with a radiologist’s criterion, and a classifier such as a 
neural network is used to estimate the likelihood of 
malignancy [35, 36]. Bayesian methods [37], 
discriminant analysis [38], rule-based methods [39] and 
genetic algorithms [40] have also been used in 
classification.  

Computer assisted diagnosis (CAD) systems do not 
have to be perfect since they are used with a radiologist 
and not alone. Since the cost of a missed cancer is much 
greater than the misclassification of benign findings, they 
should be developed to reduce false negatives (i.e., have 
a high sensitivity) even at the cost of some acceptable 
number of false positives (i.e., reasonable specificity). 

Bone strength and osteoporosis 

Osteoporosis is a prevalent bone disease 
characterised by a loss of bone strength and consequent 
fracture risk. Because it tends to be asymptomatic until 
fractures occur, relatively few people are diagnosed in 
time for effective therapy to be administered. Clinically, 
bone mineral density, BMD, is widely used to diagnose 
and assess osteoporosis. Changes in bone mass are 
commonly used as a surrogate for fracture risk. Although 
bone mineral density, BMD, is widely used clinically, it 
has been increasingly realised that internal bone 
architecture is also an important determinant of the 
mechanical strength of bone and can lead to an earlier 
and more accurate diagnosis of osteoporosis [41–44]. 
Figure 4 shows how the loss of trabeculae in 
osteoporosis results in a less well-connected, and 
therefore weaker, structure. The limited resolution of 
commercial CT scanners precludes proper resolution of 
the trabecular structure; however, CT images retain some 
of this architectural information [45, 46], albeit degraded 
by the inadequate modulation transfer function (MTF) of 
the imaging system, and this can be characterised by the 
fractal signature of the trabecular bone (viz. its fractal 
dimension as a function of spatial frequency [47, 48] and 
its lacunarity [49], a measure of the distribution of gaps 
in an image).  
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Table 1 A visual classification scheme for the assessment of the trabecular structure used for the determination of the degree of osteoporosis. 
 

Class Bone strength Spongiosa pattern Marrow size Fractal dimension of 
ROI 

1. Healthy High Homogeneously dense with 
granular structure Small, homogeneous Low, fractal 

2. Beginning 
demineralisation Normal Discrete disseminated 

intertrabecular areas 
Medium, 
inhomogeneous High, multi-fractal 

3. Osteopaenia Low 
Confluent intertrabecular areas less 
than 50% of the cross-sectional 
surface 

Large, inhomogeneous High, multi-fractal 

4. Severe 
osteoporosis Very low 

Confluent intertrabecular areas 
more than 50% of the cross-
sectional surface. 

Very large, 
homogeneous Low, multi-fractal 

Table 2 Features measured from CT scans, and ground-truth class from bone strength. 
 

Patient BMD (mg cm-3) Average fractal 
dimension Average Lacunarity Class 

A 204 2.5 1.3 1 
B 205 2.55 1.35 1 
C 186.2 2.45 1.4 1 
D 174.1 2.48 1.42 1 
E 165.6 2.69 1.4 2 
F 150.2 2.71 1.45 2 
G 135.9 2.74 1.42 2 
H 159.8 2.65 1.46 2 
I 127.9 2.65 1.54 3 
J 98.1 2.68 1.5 3 
K 138.1 2.7 1.55 3 

L 125.5 2.72 1.54 3 

M 81.7 2.58 1.36 4 

N 103.3 2.57 1.3 4 

O 101.8 2.55 1.32 4 

P 110.4 2.53 1.28 4 

Figure 4 Radiographic images of lumbar vertebrae from (a) 
normal and (b) osteoporotic patients. 

Fractal dimension describes how an object occupies 
space and is related to the complexity of its structure. 
Fractal dimension is related to the radial Fourier power 
spectrum of an image as a consequence of using 
fractional Brownian motion as a model for natural 
fractals. Estimates of the fractal signature, which are 
independent of the CT scanner used and its settings, can 
be obtained by correcting the power spectrum for image 
degradation due to noise, and for image blurring by the 
modulation transfer function (MTF) of the scanner [50]. 
However, changes in fractal dimension need to be 

interpreted with care. Global fractal dimension does not 
change monotonically with decalcification (Table 1).  

Lacunarity measures the distribution of gap sizes in 
data: the greater the heterogeneity the greater the 
lacunarity. An efficient algorithm for estimating 
lacunarity analyses deviations from translational 
invariance of an image’s brightness distribution using 
gliding-box sampling [49]. Lacunarity can be defined in 
terms of the local first and second moments, measured 
for each neighbourhood size, about every pixel in the 
image, i.e. 

2L( ) 1 {var( ) / mean ( )}}r r= + r  (1) 

where mean(r) and var(r) are the mean and variance of 
the pixel values, respectively, for a neighbourhood size r. 
An average lacunarity value can be calculated across the 
scale range of the bone image to indicate the average gap 
(marrow) size and its degree of heterogeneity.  

In a pilot study, we measured three features which 
have been used as surrogates for bone quality (bone 
mineral density, the average fractal dimension and the 
average lacunarity) from CT scans of sixteen patients 
whose bone strength had been previously assessed [51]. 
The data is shown in Table 2.  
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Linear discriminant analysis showed that the 
patients could be correctly classified into four classes 
(identified in table 1) according to bone strength on the 
basis of canonicals which are linear combinations of 
these three features (Figure 5), but misclassification rates 
of 12.5% occurred if only BMD and one other feature 
was used. These features, when used together, are 
potentially useful in monitoring bone strength and 
predicting future fracture risk using CT or MRI images. 

 

 

Figure 5 Canonical plot of surrogates for bone strength. Ground 
truth conditions are indicated by separate symbols. The 
directions of the three features are shown in the 
canonical space by the labelled rays. The size of each 
circle corresponds to a 95% confidence limit for the 
mean (marked with a +) of that group. 

Tortuosity 

The clinical recognition of elevated tortuosity or 
integrated curvature is important in the diagnosis of 
many diseases. Increased vascular tortuosity, for 
example, affects the flow haemodynamics and can lead 
to aneurysm (rupture of the blood vessels), and the 
tortuosity of retinal blood vessels can be an early 
indicator of systemic diseases. 

Vessel tortuosity does not have a formal clinical 
definition but a tortuosity metric should be additive and 
invariant to affine transformations of a vessel (translation, 
rotation and scaling) [52–54] if it is to correlate with the 
qualitative assessment of an expert observer. One metric 
is the cumulative angle moved as an observer passed 
along the mid-line data points of the vessel, divided by 
the length of the vessel (which we shall refer to as M). 
Another metric is based on the root-mean-square 
curvature of a unit speed curve, obtained by an 
approximating polynomial spline fitting to the mid-line 
data points [55, 56]. The fitted curve is not required to 
pass through each point, but rather approach it to within 
a distance related to the radius of the local vessel, and is 
the smoothest path under these circumstances; it is not 
restricted to the discrete pixel grid so that it can more 
closely correspond to the actual vessel (Figure 6). 

Approximating polynomial spline fitting captures the 
essential tortuosity of the vessels without having to place 
undue reliance on the accuracy of each extracted mid-
line point, or employ arbitrary smoothing methods. 
Again this root-mean-square value would be divided by 
the length of the curve to give the tortuosity metric 
(which we shall refer to as K). Although these metrics 
are not strictly dimensionless, they are often referred to 
the length of the vessel in pixels and their units omitted: 
they can then be treated as numbers which rank the 
tortuosity of vessels obtained under the same imaging 
conditions. 

 

 
Figure 6 Binarised retinal image and the smoothest path through a 

selected vessel for a normal patient, (a) and (b), and a 
patient showing retinal pigmentosa, (c) and (d). (The 
axes in (b) and (d) are in relative units). 

 
These analyses are construed directly in three 

dimensions (3-D) and their clinical validity has been 
established [57] using clinical data sets from computed 
tomography angiography, CTA, and magnetic resonance 
angiography, MRA. 

These tortuosity metrics are able to distinguish 
between normal vessels and some retinal pathologies in 
retinal fundus images [58, 59], with a high positive 
predictive value, PPV (Table 3). Discriminant analysis 
shows that the two metrics can be used together for 
classifying vessels into the four classes based on their 
tortuosity (Figure 7). However, the misclassification rate 
is 21% using prior probabilities proportional to their 
occurrence. A more successful approach would be to use 
the tortuosity metrics together as a test for a single 
condition in referred patients already suspected of being 
at risk. Other features are relevant for particular 
pathologies, e.g. the number of aneurysms and extent of 
haemorrhaging and exudate in diabetic retinopathy [60, 
61]. 
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Table 3 Parameters characterising the tests for the three pathologies using the tortuosity metrics, M and K, whose values for the normals 
were 4.88 ± 1.17 and 7.74 ± 2.01, respectively. A total of 330 vessels were measured. PPV (NPV) is the positive (negative) predictive 
value. Results are calculated using prevalences in the general population, and using the probabilities of each abnormal condition in the 
sample (viz. 7/19), in parentheses. 

Tortuosity metric  Retinitis pigmentosa Diabetic retinopathy Vasculitis 

            M Mean ± sd 10.67 ± 1.10 6.69 ± 2.04 2.85 ± 0.50 

 sensitivity 0.807 (0.993) 0.207 (0.520) NA (0.917) 

 specificity 1.000 (0.996) 0.999 (0.930) NA (0.875) 

 PPV 0.924 (0.993) 0.805 (0.812) NA (0.811) 

 NPV 1.000 (0.996) 0.978 (0.769) NA (0.948) 

             K Mean ± sd 17.62 ± 2.72 11.91 ± 2.22 4.99 ± 0.94 

 sensitivity 0.705 (0.973) 0.263 (0.752) NA (0.858) 

 specificity 1.000 (0.990) 0.997 (0.907) NA (0.809) 

 PPV 0.924 (0.982) 0.733 (0.824) NA (0.724) 

 NPV 1.000 (0.984) 0.979 (0.862) NA (0.907) 

 

 
Figure 7 Canonical plot of data from 330 retinal vessels. Data 

from the ground truth conditions are indicated by 
separate symbols, each indicating the mean of 10 
measurements. The directions of the features, M and K, 
are shown in the canonical space by the labeled rays. 
The size of each circle corresponds to a 95% confidence 
limit for the mean (marked with +) of that group; groups 
with significantly different values of tortuosity have 
non-intersecting circles. The small arrows indicate 
misclassified data points.  

Scoliosis 

Scoliosis is a complicated condition characterised by 
a lateral curvature of the spine and accompanied by 
rotation of the vertebrae on its axis [62]. Despite the risks 
associated with repeated exposure to ionising radiation 

[63], radiography remains the most accurate method of 
assessing the scoliotic curvature. A scoliotic angle, 
determined from an erect antero-posterior (AP) 
radiograph of the full spine, is routinely used to clinically 
characterise the curvature. There are variations in the 
definition of the scoliotic angle and the methodology for 
measuring it [64]. Notwithstanding the differences, the 
methodologies identify the vertebrae at the upper and 
lower limits of the curve and, in some methods, the 
apical vertebrae (i.e. the most laterally deviated), and 
manually measure angles between defining points or 
lines within them.  

Due to the errors associated with manual Cobb angle 
measurement from plain radiographs, a number of 
authors have developed computer-assisted techniques 
using digitised radiographs [65–69]. Several of these 
studies [65–67] report lower variability with computer-
based techniques, but one [69] found no improvement in 
computer-based over manual measurement. However, all 
of these reported techniques require manual selection of 
features by the user, thus introducing inter and intra-
observer measurement error. To the author’s knowledge, 
no existing technique allows completely automated 
measurement of spinal curvature. 

The tortuosity metrics (M and K) can be used to 
characterise the curvature of the spine in patients with 
idiopathic scoliosis by iteratively fitting piece-wise 
polynomial splines to the geometric centres of the 
vertebrae as seen in 2-D A-P radiographs [70]. The 

Table 4 The correlation matrix, showing the (Pearson) correlation coefficients and their 95% confidence intervals 
 

 Cobb Ferguson M K 

Cobb 1 0.994 [0.985,0.997] 0.862 [0.679, 0.944] 0.866 [0.730, 0.954] 

Ferguson 0.994 [0.985,0.997] 1 0.850 [0.654, 0.939] 0.873 [0.702, 948] 

M 0.862 [0.679, 0.944] 0.850 [0.654, 0.939] 1 0.996 [0.990, 0.998] 

K 0.866 [0.730, 0.954] 0.873 [0.702, 948] 0.996 [0.990, 0.998] 1 
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values were strongly correlated with the Cobb and 
Ferguson scoliotic angles (Table 4). The tortuosity 
metrics use the positions of all the affected vertebrae, 
rather than just two or three select vertebrae, and produce 
a single measure of tortuosity for each patient even when 
a mixture of curvatures is present. The direct use of 
positional data removes the vagaries of defining end 
points and determining the appropriate lines to draw 
through variably-shaped endplates. 

Since spinal curvature occurs in three-dimensions, it 
would be preferable to acquire three-dimensional images 
of the spine. It has been shown that reformatted coronal 
slices produced from transverse CT slices of supine 
patients and combined into a single image by a z-
projection can be used to measure scoliotic angles [71]. 
The variability in angle measurements is similar, but the 
supine CT angles are smaller; a similar difference has 
been reported between standing and supine radiographs 
[72] because spinal geometry changes significantly 
between the two positions due to the effect of gravity. 
Supine CT curve measurements are valuable in 
biomechanical modeling of scoliosis to give a “zero 
load” configuration for the spine, which can be used as a 
starting point for numerical simulations. 

Not only can the tortuosity metrics, M and K, deliver 
three-dimensional indices of scoliotic spine deformity, 
they can be used in a fully automated computer 
measurement system without the need for manual 
selection of points by the operator.  

Osteoarthritis 

Osteoarthritis (OA) is a progressive debilitating 
disease that results from degradation of the cartilage 
matrix that provides a low friction surface covering the 
ends of bones in joints [65]. Degraded cartilage is 
difficult to distinguish from healthy tissue with current 
imaging methods until degradation is well-advanced 
(Figure 8).  

 

 
Figure 8 Images of a joint using (a) x-ray (b) arthroscopy and (c) 

MRI. 

The initial stages of OA involve changes in water 
and proteoglycan content and in the orientation of the 
collagen fibre bundles in the surface of the cartilage 
(Figure 9). Recently it has been shown that the collagen 
fibres restrict the diffusion of water, which can be 
monitored using diffusion MRI [73]. 
 

 
Figure 9 Cartilage microstructure. 

Diffusion MRI, using a pair of de-phasing and re-
phasing gradient pulses with a spin echo MRI sequence 
[74, 75], characterises these changes by using water 
diffusion properties as a probe. Diffusion MRI based on 
a tensor model of the diffusion anisotropy is known as 
diffusion tensor imaging (DTI). The diffusion tensor can 
be represented as an ellipsoid, defined by three 
eigenvectors and three eigenvalues (Figure 10). 

 
Figure 10 The diffusion ellipsoid is characterised by 3 

eigenvectors, v1, v2 and v3, and 3 eigenvalues λ1, λ2 and 
λ3. 

The principal eigenvector (viz. the principal 
direction of diffusion) can be represented by a “quiver” 
plot, where each quiver represents the projection of the 
principal diffusion eigenvector on to the image plane 
(Figure 11). The autocorrelation function (ACF) of the 
quiver directions, in the articular surface and 
perpendicular to it, enables a determination of the sizes 
of the characteristic correlation distances. 
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Figure 11 Orientation of collagen fibre bundles in normal cartilage 

in the form of ‘arcades’ shown schematically at left and 
a corresponding diffusion tensor image. The projections 
of the principal eigenvectors are shown as a quiver plot 
(at right). (After [76]). 

Alternately the orientation of the principal 
eigenvector (with respect to the normal articular surface) 
can be mapped using a colour scale (Figure 12a), as can 
the maximum (or mean) diffusivity as determined by the 
principal eigenvalues (Figure 12b). The orientation 
angles from DTI correlate well with data from polarised 
light microscopy, PLM [76]. 

 
Figure 12 (a) Average orientation of principal eigenvector and (b) 

maximum diffusion eigenvalues (after [77]). 

Experiments aimed at better understanding the 
mechanisms involved in cartilage degradation will 
continue. Early detection of these changes, when they 
may still be reversible, is key to the development of new 
approaches to treatment. 
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