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We derive asymptotic formulae describing how the
properties of subwavelength devices are changed
by the introduction of errors and imperfections.
As a demonstrative example, we study a class of
cochlea-inspired rainbow sensors. These are graded
metamaterials which have been designed to mimic
the frequency separation performed by the cochlea.
The device considered here has similar dimensions
to the cochlea and has a resonant spectrum that falls
within the range of audible frequencies. We show
that the device’s properties (including its role as
a signal filtering device) are stable with respect to
small imperfections in the positions and sizes of the
resonators. Additionally, under suitable assumptions,
if the number of resonators is sufficiently large, then
the device’s properties are stable under the removal of
a resonator.

1. Introduction
The cochlea is the key organ of mammalian hearing,
which filters sounds according to frequency and then
converts this information to neural signals. Across
the biological world, including in humans, cochleae
have remarkable abilities to filter sounds at a very
high resolution, over a wide range of volumes and
frequencies. This exceptional performance has given rise
to a community of researchers seeking to design artificial
structures which mimic the function of the cochlea
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Figure 1. The receptor cells in a (a) normal and (b) damaged cochlea. The receptor cells are arranged as one row of inner hair
cells (IHCs) and three rows of outer hair cells (OHCs). In a damaged cochlea, the stereocilia are severely deformed and, in many
cases, missing completely. The images are scanning electron micrographs of rat cochleae, provided by Elizabeth M. Keithley.

[1–6]. These devices are based on the phenomenon known as rainbow trapping, whereby
frequencies are separated in graded resonant media. This has been observed in a range of settings,
including acoustics [7], optics [8] (where the term ‘rainbow trapping’ was coined), water waves
[9] and plasmonics [10], among others.

The motivation for designing cochlea-inspired sensors is twofold. Firstly, they can be used
to design artificial hearing approaches, either through the realization of physical devices [1,11]
or by informing computational algorithms [12–14]. Additionally, it is hoped that modelling
and building these devices will yield new insight into the function of the cochlea itself. The
cochlea’s size and location make experiments on living specimens difficult, meaning that many
of the characteristics which are unique to living specimens are still poorly understood. A notable
example is the nature of the cochlear amplification mechanism [15]. Artificial cochlea-inspired
devices, which can be both modelled and experimented on more easily, provide a convenient
platform for theories to be tested in real time and with comparatively minimal expense [1,2,11].

Micro-structured media with strongly dispersive behaviour, such as the cochlea-like rainbow
sensors considered here, are examples of acoustic metamaterials. Metamaterials are a diverse
collection of materials that have extraordinary and ‘unnatural’ properties, such as negative
refractive indices and the ability to support cloaking effects [16,17]. One of the challenges in
this field, however, is that errors and imperfections are inevitably introduced when devices are
manufactured, which has the potential to significantly alter their function. For this reason, a large
field has emerged studying topologically protected structures, whose properties experience greatly
enhanced robustness thanks to the topological properties of the underlying periodic media [18–
20]. While the theory of topological protection has deep implications for the design of rainbow
sensors [21], there is yet to be an link established with biological structures; we will to study the
robustness of a bio-inspired graded metamaterial in this work.

The biological cochlea has a remarkable ability to function effectively even when significantly
damaged. As depicted in figure 1, cochlear receptor cells are often significantly damaged in older
organisms. However, it has been observed that humans can lose as much as 30–50% of their
receptor cells without any perceptible loss of hearing function [22,23] (see figure 1 for an example
of receptor cell damage). This remarkable robustness is part of the motivation for this study: how
do cochlea-inspired rainbow sensors behave under similar errors and imperfections? The aim of
this work is to derive formulae which describe how the properties of a cochlea-inspired rainbow
sensor are affected by the introduction of perturbations. This will give quantitative insight into
the extent to which these devices are robust with respect to manufacturing errors and may also
yield insight into the remarkable robustness of the cochlea itself.

We will study a passive device consisting of an array of material inclusions whose properties
resemble those of air bubbles in water. These inclusions act as resonators, oscillating with the
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Figure 2. A cochlea-inspired rainbow sensor. The gradient in the sizes of the resonators means the device separates different
frequencies in space: higher frequencies will give a peak amplitude to the left of the array, while lower frequencies will give a
maximal response further to the right. This mimics the action of the cochlea in filtering soundwaves. In this work, we study the
system in a low-frequency limit, implying that the wavelength of uin is much larger than the total length of the array.

so-called breathing modes, and exhibit resonance at subwavelength scales, often known as
Minnaert resonance [24–26]. Devices have been built based on these principles by injecting bubbles
into polymer gels [27,28]. It was shown in [4] that by grading the size of the resonators, to give
the geometry depicted in figure 2, it is possible to replicate the spatial frequency separation of the
cochlea.

We will use boundary integral methods to analyse the scattering of the acoustic field by the
cochlea-inspired rainbow sensor [29]. We will define the notion of subwavelength resonance as
an asymptotic property, in terms of the material contrast, and perform an asymptotic analysis of
the structure’s resonant modes. This first-principles approach yields an approximation in terms
of the generalized capacitance matrix. We will recap this theory in §2 and refer the reader to Ammari
et al. [30] for a more thorough exposition. In §3, we study the effect of small perturbations to
the size and position of the resonators. The derived formulas show that the rainbow sensor’s
properties are stable with respect to these imperfections. Then, in §4, we examine more drastic
perturbations, namely those caused by removing resonators from the array. This is inspired by
the images in figure 1, where in many places the receptor cell stereocilia have been completely
destroyed. We will show that, provided that array is sufficiently large, the sensor’s properties are
nonetheless stable. Finally, in §5, we study the equivalent signal transformation that is induced
by the cochlea-inspired rainbow sensor and show that its properties are stable with respect to
changes in the device.

2. Mathematical preliminaries

(a) Problem setting
We will study a Helmholtz scattering problem to model the scattering of time-harmonic acoustic
waves by the resonator array. The resonators are modelled as material inclusions D1, . . . , DN

which are disjoint, bounded and have boundaries in C1,α for some 0<α < 1. We suppose that
wave propagation inside the resonators can be modelled by

(
∇ · 1

ρ
∇ + ω2

κ

)
u = 0, (2.1)

where ρ is the density of the material and κ is the bulk modulus. A similar equation is assumed to
hold in the background medium, with corresponding parameters ρ0 and κ0. Denoting the wave
speeds inside the resonators as v = √

κ/ρ and in the background medium as v0 = √
κ0/ρ0, we

introduce the wavenumbers

k = ω

v
and k0 = ω

v0
.

Additionally, we introduce the dimensionless contrast parameter

δ = ρ

ρ0
, (2.2)
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which is the ratio of the densities of the materials inside and outside the resonators. The scattering
problem, due to the resonator array D = D1 ∪ · · · ∪ DN , is then given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�+ k2
0)u = 0 in R

3 \ D,

(�+ k2)u = 0, in D,

u+−u−=0, for ∂D,

δ
∂u
∂ν

∣∣+−∂u
∂ν

∣∣−=0, on ∂D,

us := u − uin satisfies the SRC, as |x| → ∞,

(2.3)

where SRC refers to the Sommerfeld radiation condition, which guarantees that the scattered
waves radiate energy outwards to the far field [29]. Here, the subscript + and − denote limits
from outside and inside D, respectively.

Definition 2.1 (Resonance). We define a resonant frequency to be ω ∈ C such that there exists a
non-zero solution u to (2.3) in the case that uin = 0. The solution u is the resonant mode associated
with ω.

In this work, we will characterize subwavelength resonance in terms of the limit of the contrast
parameter δ being small. In particular, we assume that

δ� 1 while v, v0, v
v0

= O(1) as δ→ 0. (2.4)

One consequence of these assumptions is that κ/κ0 = O(δ). This approach allows us to fix the size
and position of the resonators and study subwavelength resonant modes as those which exist at
asymptotically low frequencies when δ is small.

Definition 2.2 (Subwavelength resonance). We define a subwavelength resonant frequency to
be a resonant frequency ω=ω(δ) that depends continuously on δ and satisfies

ω→ 0 as δ→ 0.

This asymptotic approach has been shown to be effective at modelling devices based on the
canonical example of air bubbles in water [26,30], where the contrast parameter is approximately
δ ≈ 10−3. Furthermore, this asymptotic definition of subwavelength resonance reveals that there is
a fundamental difference between these resonant modes and those which are not subwavelength,
and leads to the following existence result:

Lemma 2.3. A system of N subwavelength resonators has N subwavelength resonant frequencies with
positive real part, counted up to multiplicity.

Proof. This follows using Gohberg–Sigal theory to perturb the solutions that exist in the limiting
case where δ = 0, ω= 0, see ([30], theorem 2.4) for details, which generalizes the original result
proved in ([26], lemma 2.2). �

The subwavelength resonant frequencies of a cochlea-inspired rainbow sensor composed of
22 subwavelength resonators are shown in figure 3. An array of spherical resonators totalling
35 mm in length and having the material parameters of air bubbles in water is simulated using
the multipole expansion method (see §2d for details). The resonators are chosen such that the ith
resonator has radius Ri = asi−1, where a = 0.1 mm and s = 1.05. The positioning of the resonators
follows a similar exponential distribution, with the distance between the centres of the ith and
i + 1st resonators being equal to 2Ri + Ri+1. The real parts of the resonant frequencies span the
range 7.4–33.8 kHz (figure 3 shows angular frequency). This range can be finetuned to match
the desired function (or to match the range of human hearing more closely) [2]. The negative
imaginary parts describe the loss of energy to the far field.
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Figure 3. The 22 subwavelength resonant frequencies of a cochlea-inspired rainbow sensor composed of 22 subwavelength
resonators, plotted in the lower-right complex plane. This structure measures 35mm long (to match the uncoiled cochlea)
and has the material properties of air bubbles in water, giving δ= 1.2 × 10−3. These simulations are performed on the full
differential problem using a multipole expansion.

(b) Boundary integral operators
In order to model the scattering of waves by the array D, we will use layer potentials to represent
solutions.

Definition 2.4 (Single layer potential). Given a bounded domain D ⊂ R
3 and a wavenumber

k ∈ C we define the Helmholtz single layer potential as

Sk
D[ϕ](x) =

∫
∂D

Gk(x − y)ϕ(y) dσ (y), ϕ ∈ L2(∂D), x ∈ R
3,

where Green’s function G is given by

Gk(x) = − eik|x|

4π |x| , x �= 0.

The value of the single layer potential is that we can use it to represent solutions to the
Helmholtz scattering problem (2.3). In particular, there exist some densities ψ ,φ ∈ L2(∂D) such
that

u(x) =
{

uin(x) + Sk0
D [ψ](x), x ∈ R

3 \ D,

Sk
D[φ](x), x ∈ D.

(2.5)

This representation means that the Helmholtz equations and the radiation condition from (2.3) are
necessarily satisfied. It remains only to find densities ψ ,φ ∈ L2(∂D) such that the two transmission
conditions across the boundary ∂D are satisfied. See [29] for more details on the use of layer
potentials in modelling scattering problems. In this work, we will make use of some elementary
properties. Since we define subwavelength resonance as an asymptotic property (definition 2.2),
we will make use of the asymptotic expansion

Sk
D = S0

D + kSD,1 + O(k2), as k → 0, (2.6)

where SD,1[ϕ] = (4π i)−1 ∫
∂D ϕ dσ and convergence holds in the L2(∂D) → L2(∂D) operator norm.

In order to derive leading-order approximations, we will make use of the fact that S0
D is invertible

([29], lemma 2.6):

Lemma 2.5. S0
D is invertible as a map from L2(∂D) to H1(∂D).

(c) The generalized capacitance matrix
Studying the subwavelength resonant properties of the high-contrast structure as an asymptotic
property in terms of δ� 1 leads to a concise characterization of the resonant states. In particular,



6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210765

..........................................................

we find that the leading-order properties of the resonant frequencies and associated eigenmodes
are given in terms of the eigenstates of the generalized capacitance matrix, as introduced in [30]. This
is a generalization of the notion of capacitance that is widely used in electrostatics to model the
distributions of potential and charge in a system of conductors [31].

Definition 2.6 (Capacitance matrix). Given N ∈ N disjoint inclusions D1, . . . , DN ⊂ R
3, the

associated capacitance matrix C ∈ R
N×N is defined as

Cij = −
∫
∂Di

(S0
D)−1[χ∂Dj ] dσ , i, j = 1, . . . , N,

where χ∂Di is the characteristic function of the boundary ∂Di.

In this work, we are interested in cochlea-like rainbow sensors that have resonators with
increasing size. In general, in order to use capacitance coefficients to understand the resonant
properties of an array of non-identical resonators, we need to re-scale the coefficients. The
generalized capacitance matrix that we obtain is studied at length in [30]. With this approach, we
can study arrays of resonators with different sizes, shapes and material parameters. In this work,
we are assuming the resonators all have the same interior material parameters (given by the wave
speed v and contrast parameter δ) so only need to re-scale according to the different sizes of the
resonators.

Definition 2.7 (Volume scaling matrix). Given N ∈ N disjoint inclusions D1, . . . , DN ⊂ R
3, the

volume scaling matrix V ∈ R
N×N is the diagonal matrix given by

Vii = 1√|Di|
, i = 1, . . . , N,

where |Di| is the volume of Di.

Definition 2.8 (Generalized capacitance matrix). Given N ∈ N disjoint inclusions D1, . . . , DN ⊂
R

3 with identical interior material parameters, the associated (symmetric) generalized capacitance
matrix C ∈ R

N×N is defined as

C = VCV.

In previous works, the generalized capacitance matrix is typically defined as the asymmetric
matrix V2C (see [30] and references therein). Here, we will want to use some of the many existing
results about perturbations of eigenstates of symmetric matrices so opt for the symmetric version.
Note that C = VCV is similar to V2C. The value of the generalized capacitance matrix is clear from
the following results, which were proved in ([32], theorem 2.7).

Theorem 2.9. Consider a system of N subwavelength resonators in R
3 and let {(λn, vn) : n =

1, . . . , N} be the eigenpairs of the (symmetric) generalized capacitance matrix C ∈ R
N×N. As δ→ 0, the

subwavelength resonant frequencies satisfy the asymptotic formula

ωn =
√
δv2λn − iδτn + O(δ3/2), n = 1, . . . , N,

where the second-order coefficients τn are given by

τn = v2

8πv0

1
||vn||2 v�

n VCJCVvn, n = 1, . . . , N,

with J being the N × N matrix of ones.
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Corollary 2.10. Let vn be the normalized eigenvector of C associated with the eigenvalue λn. Then the
normalized resonant mode un associated with the resonant frequency ωn is given, as δ→ 0, by

un(x) =
⎧⎨
⎩

v�
n VSk0

D (x) + O(δ1/2), x ∈ R
3 \ D,

v�
n VSk

D(x) + O(δ1/2), x ∈ D,

where Sk
D : R

3 → C
N is the vector-valued function given by

Sk
D(x) =

⎛
⎜⎜⎝
Sk

D[ψ1](x)
...

Sk
D[ψN](x)

⎞
⎟⎟⎠ , x ∈ R

3 \ ∂D,

with ψi := (S0
D)−1[χ∂Di ].

Remark 2.11. Since C is symmetric, V is diagonal and J is positive semi-definite, it holds that
τn ≥ 0 for all n = 1, . . . , N. This corresponds to the loss of energy from the system.

We will shortly want to study how the properties of the generalized capacitance matrix C
vary when changes are made to the structure D. For this reason, we will often write C = C(D) to
emphasize the dependence of the generalized capacitance matrix on the geometry of D. Similarly,
we will write λi = λi(D) and τi = τi(D) for the quantities from theorem 2.9. With this in mind, it
is important to notice that the asymptotic expansion in theorem 2.9 is uniform with respect to
geometric perturbations that keep the resonators separated (this breaks down if they touch or
overlap). This is a useful property of this result which has been used in many places, such as
in ([33], theorem 2), where the result for ε-small resonators is proved as a modification of ([32],
theorem 2.7).

(d) Numerical methods
In the subsequent analysis, we will often want to compare asymptotic results with the behaviour
of the ‘exact’ problem. These ‘exact’ results are numerical solutions to (2.3), computed using a
three-dimensional multipole expansion. This uses the fact that the spherical waves jl(kr)Ym

l (θ ,φ)

and h(1)
l (kr)Ym

l (θ ,φ) form a basis of the solution space of the radially symmetric Helmholtz
equation in the spherical polar coordinate system (r, θ ,φ). Here, for l ∈ N and m = −l, . . . , l,
Ym

l (θ ,φ) are the spherical harmonics, jl are the spherical Bessel functions of the first kind and

h(1)
l are the spherical Hankel functions of the first kind. Then, if D is a sphere with radius R, we

have that

Sk
D[Ym

l ](r, θ ,φ) =
⎧⎨
⎩

cjl(kR)h(1)
l (kr)Ym

l (θ ,φ), |r|>R,

ch(1)
l (kR)jl(kr)Ym

l (θ ,φ), |r| ≤ R,
(2.7)

where c = −ikR2. We can then use addition formulae to generalize (2.7) to the case of multiple
spheres. The resulting representation can be used to give a discrete approximation for solutions
to the differential problem (2.3). For more details, see the appendices of [20].

All the numerical experiments in this work are performed using the canonical example of air
bubbles in water. That is, ρ = 1.2 kg m−3, κ = 105 Pa, ρ0 = 103 kg m−3 and κ0 = 2 × 109 Pa. This
gives a value for the dimensionless asymptotic parameter of δ = 1.2 × 10−3.

3. Imperfections in the device
We will begin by deriving formulas to describe the effects of making small perturbations to the
positions and sizes of the resonators, as depicted in figure 4. Perturbations of this nature are
important as they will be introduced when a device is manufactured. The results in this section
give quantitative estimates on the extent to which the perturbations of the structure’s properties
are stable with respect to small imperfections.



8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210765

..........................................................

(a)

(b)

Figure 4. We study the effects of adding random perturbations to the (a) size and (b) position of the resonators in a cochlea-
inspired rainbow sensor. The original structure is shown in dashes.

(a) Dilute approximations
In order to simplify the analysis, and to allow us to work with explicit formulae, we will make an
assumption that the resonators are small compared with the distance between them. In particular,
we will assume that each resonator Di is given by Bi + ε−1zi where Bi ⊂ R

3 is some fixed domain,
zi ∈ R

3 is some fixed vector and 0< ε� 1 is some small parameter. We will assume that each
fixed domain Bi, for i = 1, . . . , N, is positioned so that it contains the origin and that the complete
structure is given by

D =
N⋃

i=1

Di, Di = (Bi + ε−1zi). (3.1)

Under this assumption, the generalized capacitance matrix has an explicit leading-order
asymptotic expression in terms of the dilute generalized capacitance matrix:

Definition 3.1 (Dilute generalized capacitance matrix). Given 0< ε� 1 and a resonator array
that is ε-dilute in the sense of (3.1), the associated dilute generalized capacitance matrix Cε ∈ R

N×N

is defined as

Cεij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CapBi

|Bi|
, i = j,

−ε
CapBi

CapBj

4π |zi − zj|
√

|Bi||Bj|
, i �= j,

where we define the capacitance CapB of a set B ⊂ R
3 to be the strictly positive number given by

CapB := −
∫
∂B

(S0
B)−1[χ∂B] dσ .

Lemma 3.2. Consider a resonator array that is ε-dilute in the sense of (3.1). In the limit as ε→ 0, the
asymptotic behaviour of the (symmetric) generalized capacitance matrix is given by

C = Cε + O(ε2) as ε→ 0.

Proof. This was proved in ([33], lemma 1) as a modification of the original result in ([20],
lemma 4.3). �

Remark 3.3. It would also be possible to state an appropriate diluteness condition as a rescaling
of the sizes of the resonators, by taking Di = εBi + zi in (3.1). This would give analogous but
rescaled results, as used for the analysis in [20].
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(b) Changes in size
We first consider imperfections due to changes in the size of the resonators. In particular, suppose
there exist some factors α1, . . . ,αN such that the perturbed structure is given by

D(α) =
N⋃

i=1

((1 + αi)Bi + ε−1zi). (3.2)

We will assume that the perturbations α1, . . . ,αN are small in the sense that there exists some
parameter α such that αi = O(α) as α→ 0.

Lemma 3.4. Suppose that a resonator array D is deformed to give D(α), as defined in (3.2), and that
the size change parameters α1, . . . ,αN satisfy αi = O(α) as α→ 0 for all i = 1, . . . , N. Then, for fixed
0< ε� 1, the dilute generalized capacitance matrix associated with D(α) is given by

Cε(D(α)) = Cε(D) + A(α),

where A(α) is a symmetric N × N-matrix whose Frobenius norm satisfies ||A||F = O(α) as α→ 0.
Furthermore, the error bound ||Cε(D(α)) − Cε(D)||F = O(α) as α→ 0 is uniform with respect to ε ∈ [0, 1].

Proof. Making the substitution Bi �→ (1 + αi)Bi in definition 3.1 gives

Cεij(D(α)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CapBi

(1 + αi)|Bi|
, i = j,

−ε
CapBi

CapBj

4π |zi − zj|
√

(1 + αi)(1 + αj)
√

|Bi||Bj|
, i �= j.

For small α we can expand the denominators to give

Cεij(D(α)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − αi)
CapBi

|Bi|
+ O(α2), i = j,

−ε
⎡
⎣(1 − 1

2
(αi + αj))

CapBi
CapBj

4π |zi − zj|
√

|Bi||Bj|
+ O(α2)

⎤
⎦ , i �= j,

as α→ 0. From this, we can see that

Aij = Cεij(D(α)) − Cεij(D) =

⎧⎪⎨
⎪⎩

−αi
CapBi
|Bi| + O(α2), i = j,

ε

[
1
2 (αi + αj)

CapBi
CapBj

4π |zi−zj|
√|Bi||Bj| + O(α2)

]
, i �= j,

as α→ 0. To see that the convergence of Cε(D(α)) to Cε(D) is uniform in ε ∈ [0, 1], notice that the
diagonal terms of A do not depend on ε and the absolute value of the off-diagonal terms is a
monotonic function of ε. �

Theorem 3.5. Suppose that a resonator array D is ε-dilute in the sense of (3.1) and is deformed to give
D(α), as defined in (3.2), for size change parameters α1, . . . ,αN which satisfy αi = O(α) as α→ 0 for all
i = 1, . . . , N. Then, the resonant frequencies satisfy

|ωn(D) − ωn(D(α))| = O
(√

δ(α + ε2)
)

,

as α, δ, ε→ 0.

Proof. From lemma 3.4, we have that Cε(D(α)) = Cε(D) + A(α) where A is a symmetric N × N-
matrix. Then, by the Wielandt–Hoffman theorem [34], it holds that the eigenvalues of Cε(D) and
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Cε(D(α)), which we denote by λεi (D) and λεi (D(α)), respectively, satisfy

N∑
n=1

(λεn(D) − λεn(D(α)))2 ≤ ||A||2F. (3.3)

From this we can see that |λεi (D) − λεi (D(α))| = O(α) as α→ 0, since ||A||F = O(α) as α→ 0 by
lemma 3.4. Further, this convergence is uniform in ε and δ (from lemma 3.4 and since these
quantities do not depend on δ). By a similar argument, and using lemma 3.2, we have that

|λn(D) − λεn(D)| = O(ε2) and |λn(D(α)) − λεn(D(α))| = O(ε2), as ε→ 0. (3.4)

Again, we have that this convergence is uniform with respect to α and δ, since there is no
dependence on either α or δ (crucially, λn(D(α)) − λεn(D(α)) is constant as a function of α). Finally,
we use theorem 2.9 to find the resonant frequencies when δ→ 0:

|ωn(D) − ωn(D(α))| =
∣∣∣∣
√
δv2λn(D) −

√
δv2λn(D(α))

∣∣∣∣+ O(δ)

≤
√
δv2

√
|λn(D) − λn(D(α))| + O(δ).

≤
√
δv2

√
|λn(D) − λεn(D)| + |λεn(D) − λεn(D(α))| + |λεn(D(α)) − λn(D(α))| + O(δ).

Combining this with (3.3) and (3.4) gives the result, provided that the O(δ) remainder term is well
behaved as α, ε→ 0. Uniformity with respect to ε follows from ([33], theorem 2) and uniformity
with respect to small values of α follows similarly. The crucial property is that theorem 2.9 gives
an expansion of this form for any configuration of non-overlapping resonators. This is based on
the asymptotic expansion (2.6) of Sk

D[φ] as k → 0, in which each term has the form SD,n[φ](x), for
n = 1, 2, . . ., where

SD,n[φ](x) = − in

4πn!

∫
∂D

|x − y|n−1φ(y) dσ (y), x ∈ ∂D. (3.5)

The leading-order equation gives us that φ ∈ span{ψ1, . . . ,ψN}, where ψi = (S0
D)−1[χ∂Di ] (see [32],

lemma 2.6 for details). If we rescale one of the domains Di �→ (1 + αi)Di, then the quantities
SD,n[ψi](x) depend continuously on αi. Thus, if α is sufficiently small that the resonators do not
overlap, then taking the supremum of these continuous quantities over αi ∈ (−α,α) gives a bound
that holds uniformly over all such (sufficiently small) values of α. �

Remark 3.6. While the Wielandt–Hoffman theorem was used in (3.3), there are a range of
results that could be invoked here. For example, if λmin and λmax are the smallest and largest
eigenvalues of A, then it holds that

λεn(D) + λmin ≤ λεi (D(α)) ≤ λεn(D) + λmax,

for all n = 1, . . . , N. For a selection of results on perturbations of eigenvalues of symmetric
metrices, see [34].

Theorem 3.5 shows that if a dilute array is deformed by changing the sizes of the resonators,
then the induced change in the resonant frequencies is expected to be small. This is demonstrated
numerically in figure 5, where we simulate the full differential system and can see that the changes
in the frequencies are asymptotically small when the perturbations are small.

(c) Changes in position
Let us now consider imperfections due to changes in the positions of the resonators. In particular,
suppose there exist some vectors β1, . . . ,βN ∈ R

3 such that the perturbed structure is given by

D(β) =
N⋃

i=1

(Bi + ε−1(zi + βi)). (3.6)
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Figure 5. The effect of random errors and imperfections on the subwavelength resonant frequencies of a cochlea-inspired
rainbow sensor. (a) Random errors are added to the sizes of the resonators. (b) Random errors are added to the positions of the
resonators. In both cases the errors are Gaussian with mean zero and variance σ 2. These simulations are performed on the full
differential problem using the multipole expansion method. The deviation of the random errorσ is expressed as a percentage
of the unperturbed values.

We will assume that the perturbations β1, . . . ,βN are small in the sense that there exists some
parameter β ∈ R such that ||βi|| = O(β) as β → 0. We will proceed as in the previous section, by
considering the dilute generalized capacitance matrix Cε .

Lemma 3.7. Suppose that a resonator array D is deformed to give D(β), as defined in (3.6), and that the
translation vectors β1, . . . ,βN satisfy ||βi|| = O(β) as β → 0 for all i = 1, . . . , N. Then, for fixed 0< ε� 1,
the dilute generalized capacitance matrix associated with D(β)is given by

Cε(D(β)) = Cε(D) + B(β),

where B(β) is a symmetric N × N-matrix whose Frobenius norm satisfies ||B||F = O(β) as β → 0.
Furthermore, the error bound ||Cε(D(β)) − Cε(D)||F = O(β) as β → 0 is uniform with respect to ε ∈ [0, 1].

Proof. We will make the substitution zi �→ zi + βi in definition 3.1. The diagonal entries of Cε are
unchanged. For the off-diagonal entries, we have that

Cεij(D(β)) = −ε
CapBi

CapBj

4π |zi + βi − zj − βj|
√

|Bi||Bj|
, i �= j.

For small β we can expand the denominator to give

1
|zi + βi − zj − βj|

= 1
|zi − zj|

− (βi − βj) · zi − zj

|zi − zj|3
+ O(β2), i �= j,

as β → 0. This gives us that

Cεij(D(β)) = Cεij(D) + ε(βi − βj) ·
(zi − zj)CapBi

CapBj

4π |zi − zj|3
√

|Bi||Bj|
+ O(β2), i �= j, (3.7)

as β → 0. The uniformity follows by taking the supremum of (3.7) with respect to ε ∈ [0, 1]. �

Theorem 3.8. Suppose that a resonator array D is ε-dilute in the sense of (3.1) and is deformed to give
D(β), as defined in (3.6), for translation vectors β1, . . . ,βN which satisfy ||βi|| = O(β) as β → 0 for all
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i = 1, . . . , N. Then the resonant frequencies satisfy

|ωn(D) − ωn(D(β))| = O
(√

δ(β + ε2)
)

,

as β, δ, ε→ 0.

Proof. From lemma 3.7, we have that Cε(D(β)) = Cε(D) + B(β) where B is a symmetric N × N-
matrix so we can proceed as in theorem 3.5 to use the Wielandt–Hoffman theorem to bound
|λεn(D) − λεn(D(β))| by ||B||F for each n = 1, . . . , N. Then, approximating under the assumption that
δ and ε are small gives the result. �

Theorem 3.8 is the analogue of theorem 3.5 and bounds the changes in the resonant frequencies
when the positions of the resonators are changed. This is again demonstrated numerically in
figure 5.

(d) Higher-order results
Recall the expansion ωn =

√
δv2λn − iδτn + · · · from theorem 2.9. The formula for τn involves the

eigenvectors vn of the generalized capacitance matrix. Assuming the material parameters are real,
τn describes the leading-order imaginary part of the resonant frequency, so it is important to
understand how it is affected by imperfections in the structure.

If we consider a resonator array D that is such that the associated (symmetric) generalized
capacitance matrix C(D) has N distinct, simple eigenvalues, then we can derive an approximate
formula for the effects of perturbations on the eigenvectors of C(D). Suppose that a perturbation,
governed by the parameter γ , is made to the structure to give D(γ ) and that there is a symmetric
matrix Γ (γ ) which is such that

C(D(γ )) = C(D) + Γ (γ ), (3.8)

where ||Γ (γ )|| → 0 as γ → 0. In this setting, we can derive an approximate formula for the
perturbed eigenvector vn(D(γ )).

Since C(D) is a symmetric matrix, it has an orthonormal basis of eigenvectors {vn : n = 1, . . . , N}
with associated eigenvalues σ (C(D)) = {λn : n = 1, . . . , N}, which are assumed to be distinct. Under
this assumption, we have the decomposition

(λI − C(D))−1x =
N∑

k=1

〈x, vk〉
λ− λk

vk, x ∈ C
n, λ ∈ C \ σ (C). (3.9)

From this, we can see that ||(λI − C(D))−1|| ≤ dist(λ, σ (C(D)))−1. If we add a perturbation
matrix Γ (γ ) which is such that ||Γ (γ )||< dist(λ, σ (C(D))), then λI − C(D(γ )) = λI − C(D) − Γ (γ )
is invertible. Further, in this case, we can use a Neumann series to see that

(λI − C(D(γ )))−1 = (λI − C(D) − Γ )−1 = (λI − C(D))−1
∞∑

i=0

Γ i((λI − C(D))−1)i. (3.10)

Substituting the decomposition (3.9) and taking only the first two terms from (3.10), we see that
for a fixed λ ∈ C \ σ (C) we have

(λI − C(D(γ )))−1 =
N∑

k=1

〈 · , vk〉
λ− λk

vk +
N∑

k=1

N∑
j=1

〈·, vj〉〈Γ vj, vk〉
(λ− λk)(λ− λj)

vk + · · · , (3.11)

where the remainder terms are O(||Γ (γ )||2) as γ → 0.
Suppose we have a collection of closed curves {ηn : n = 1, . . . , N} which do not intersect and are

such that the interior of each curve ηn contains exactly one eigenvalue λn. We know that we may
choose γ to be sufficiently small that the eigenvalues of C(D(γ )) remain within the interior of these
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Figure 6. The error of the approximation for vn(D(γ )) derived in (3.13) is small for small perturbations γ , which are expressed
as percentages of the unperturbed values. We repeatedly simulate randomly perturbed cochlea-inspired rainbow sensors and
compare the exact value with the approximate value from (3.13).

same curves. Thus, the operator Pn : C
N → C

N , defined by

Pn = 1
2π i

∫
ηn

(λI − C(D(γ )))−1 dλ, (3.12)

is the projection onto the eigenspace associated with the perturbed eigenvalue λn(D(γ )). Using the
expansion (3.11), we can calculate an approximation to the operator Pn, given by

Pn ≈ 〈·, vn〉vn +
N∑

k=1
k �=n

〈·, vn〉〈Γ vn, vk〉
(λn − λk)

vk,

where we are assuming the remainder term to be small in order for the approximation to hold.
This is a technical issue, which is not trivial to show precisely due to the non-uniformity of the
expansion (3.11) with respect to λ, particularly near to λ ∈ σ (C(D)). Applying this approximation
for the operator Pn to the unperturbed eigenvector vn gives the desired approximation

vn(D(γ )) ≈ vn(D) +
N∑

k=1
k �=n

〈Γ (γ )vn(D), vk(D)〉
(λn − λk)

vk(D), (3.13)

provided that γ is sufficiently small.
The formula in (3.13) is approximate in the sense that we do not have estimates for the

error and, instead, we have assumed the remainder term is uniformly small in the underlying
asymptotic expansion. However, we can verify the accuracy of this formula through simulations,
presented in figure 6, where we compare the approximate eigenvector from (3.13) and the true
eigenvector for many randomly perturbed cochlea-inspired rainbow sensors. We see that the
errors are small when the size of the perturbations γ is small.

4. Removing resonators from the device
We will now consider a different class of perturbations of the rainbow sensors: the effect of
removing a resonator from the array. This is shown in figure 7. This is inspired by observations
of the biological cochlea where in many places the receptor cells are so badly damaged that the
stereocilia have been completely destroyed, as depicted in figure 1.
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(a)

(b)

Figure 7. We study the effects of removing resonators from a cochlea-inspired rainbow sensor. (a) The rainbow sensor with a
single resonator removed, denotedD(5). (b) The rainbow sensorwithmultiple resonators removed, denotedD(2,5,8,9). The original
rainbow sensor, D= D1 ∪ · · · ∪ D11, is shown in dashes.

We introduce some notation to describe a system of resonators with one or more resonators
removed. Given a resonator array D we write D(i) to denote the same array with the ith resonator
removed. The resonators are labelled according to increasing volume (so, from left to right in
the graded cochlea-inspired rainbow sensors depicted here, as in figure 2). For the removal of
multiple resonators, we add additional subscripts. For example, in figure 7a we show D(5) = D1 ∪
· · · ∪ D4 ∪ D6 ∪ · · · ∪ D11 and in figure 7b we show D(2,5,8,9), which has the 2nd, 5th, 8th and 9th
resonators removed.

The crucial result that underpins the analysis in this section is Cauchy’s Interlacing Theorem,
which describes the relation between a Hermitian matrix’s eigenvalues and the eigenvalues of its
principal submatrices. A principle submatrix is a matrix obtained by removing rows and columns
(with the same indices) from a matrix.

Theorem 4.1 (Cauchy’s Interlacing Theorem). Let A be an N × N Hermitian matrix with
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λN. Suppose that B is an (N − 1) × (N − 1) principal submatrix of A with
eigenvaluesμ1 ≤μ2 ≤ · · · ≤μN−1. Then, the eigenvalues are ordered such that λ1 ≤μ1 ≤ λ2 ≤μ2 ≤ · · · ≤
λN−1 ≤μN−1 ≤ λN.

Proof. Various proof strategies exist, see [34] or [35], for example. �

Thanks to Cauchy’s Interlacing Theorem, we can quickly obtain a result for the eigenvalues
of the generalized capacitance matrix. In order to state a result for the resonant frequencies of a
resonator array, we will first introduce some asymptotic notation.

Definition 4.2. For non-negative real-valued functions f and g, we will write that f (δ) � g(δ) as
δ→ 0 if

lim
δ→0

f (δ)
max{f (δ), g(δ)} = 1, as δ→ 0,

where we define the ratio to be 1 in the event that 0 = f = g.

Lemma 4.3. Let D be a resonator array and D(i) be the same array with the ith resonator removed. Then,
if δ is sufficiently small, the resonant frequencies of the two structures interlace in the sense that

�(ωj(D)) � �(ωj(D
(i))) � �(ωj+1(D)) for all j = 1, . . . , N − 1.

Proof. Since C(D) is symmetric and real valued, we can use Cauchy’s Interlacing Theorem
(theorem 4.1) to see that

λj(D) ≤ λj(D
(i)) ≤ λj+1(D) for all j = 1, . . . , N − 1.

Then, the result follows from the asymptotic formula in theorem 2.9. �

The subwavelength resonant frequencies of resonator arrays with an increasing number of
removed resonators are shown in figure 8. We see that the frequencies interlace those of the
previous structure and remain distributed across the audible range. In general, we observe
that removing resonators at different parts of the array affects different parts of the spectrum
more strongly. If the larger resonators are removed, then the lower frequencies in the spectrum
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Figure 8. The subwavelength resonant frequencies of a cochlea-inspired rainbow sensor with resonators removed. Each
subsequent array has additional resonators removed and its set of resonant frequencies interlaces the previous, at leading order,
as predicted by lemma 4.3.

experience the strongest perturbations, while removing the smallest resonators affects the highest
frequencies more significantly. This matches the intuition gained from the resonant frequencies of
the uncoupled resonators and, crucially, all takes place within the bounds posed by the interlacing
property from lemma 4.3.

(a) Stable removal from large devices
In general, lemma 4.3 is useful for understanding the effect of removing a resonator but does not
give stability, in the sense of the perturbation being small. However, a cochlea-inspired rainbow
sensor with a large number of resonators can be designed such that the resonant frequencies
are bounded, even as their number becomes very large. In this case, many of the gaps between
the real parts will be small and, subsequently, so will the perturbations caused by removing a
resonator. There are a variety of ways to formulate this precisely, one version is given in the
following theorem.

Theorem 4.4. Suppose that a resonator array D is dilute with parameter 0< ε� 1 in the sense that

D =
N⋃

j=1

(B + ε−1zj),

where B is a fixed bounded domain and ε−1zj represents the position of each resonator. Then, there exists a
constant c ∈ R, which does not depend on N or ε, such that if ε = c/N, then all the eigenvalues {λj} of Cε
are such that

0<λj <
2|CapB|

|B| . (4.1)

Proof. In this case, the dilute generalized capacitance matrix is given by

Cεij =

⎧⎪⎪⎨
⎪⎪⎩

CapB
|B| , i = j,

− εCap2
B

4π |B||zi − zj|
, i �= j.

(4.2)

By the Gershgorin circle theorem, we know that the eigenvalues {λj : j = 1, . . . , N} must be such
that ∣∣∣∣λj − CapB

|B|
∣∣∣∣≤ εCap2

B
4π |B|

∑
i�=j

1
|zi − zj|

, j = 1, . . . , N. (4.3)
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Figure 9. Large cochlea-inspired rainbow sensors can be designed such that the subwavelength resonant frequencies are
bounded. Here, we simulate successively larger arrays using themultipole expansion to solve the full differential problem, with
the configuration of the resonators being chosen according to the dilute regime defined in theorem 4.4.

Now, we have that

εCapB
4π

∑
i�=j

1
|zi − zj|

≤ ε(N − 1)
CapB

4π
sup
i�=j

|zi − zj|−1,

which we can choose to be less than 1 by selecting c = εN appropriately. In which case, we have
that the eigenvalues {λj : j = 1, . . . , N} satisfy∣∣∣∣λj − CapB

|B|
∣∣∣∣≤ CapB

|B| , j = 1, . . . , N.

�

It is important to note that theorem 4.4 merely shows that the real parts of the resonant
frequencies will be bounded, as the number of resonators becomes large. It does not guarantee
that they are evenly spaced or that the gaps between any particular adjacent resonant frequencies
are small. For example, see figure 9, where the subwavelength resonant frequencies for
increasingly large arrays, dimensioned according to theorem 4.4, are shown. We see that the
frequencies become very dense in part of the range but remain sparser at higher frequencies.

5. Implications for signal processing
The aim of the cochlea-like rainbow sensor studied in this work is to replicate the ability of
the cochlea to filter sounds. There is also a large community of researchers developing signal
processing algorithms with the same aim: to replicate the abilities of the human auditory system.
Since we have precise analytic methods to describe how the array scatters an incoming field, we
can draw comparisons between the cochlea-inspired rainbow sensor studied here and biomimetic
signal transforms. This is explored in detail in [12]. In particular, given a formula for the field
that is scattered by the cochlea-inspired rainbow sensor, we can deduce the corresponding signal
transform. In this section, we explore how this signal transform is affected by the introduction of
errors and imperfections.

(a) A biomimetic signal transform
We briefly recall from [12] how a biomimetic signal transform can be deduced from a cochlea-
inspired rainbow sensor. In response to an incoming wave uin, the solution to the Helmholtz
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problem (2.3) is given, for x ∈ R
3 \ D, as

u(x) − uin(x) =
N∑

n=1

qnSk
D[ψn](x) − Sk0

D [S−1
D [uin]](x) + O(ω), (5.1)

as ω→ 0, where ψn = (S0
D)−1[χ∂Dn ] and the constants qn satisfy

(ω2I − v2
bδ C)

⎛
⎜⎜⎝

q1
...

qN

⎞
⎟⎟⎠= v2

bδ

⎛
⎜⎜⎝

1
|D1|

∫
∂D1

S−1
D [uin] dσ
...

1
|DN |

∫
∂DN

S−1
D [uin] dσ

⎞
⎟⎟⎠+ O(δω + ω3), (5.2)

as ω, δ→ 0. Suppose that the incoming wave is a plane wave and can be written in terms of some
real-valued function s as

uin(x,ω) =
∫∞

−∞
s
(

x1

v − t

)
eiωt dt. (5.3)

Assuming that we are in an appropriate low-frequency regime, such that the remainder terms
remain small, we can apply a Fourier transform to (5.1) to see that the scattered pressure field
p(x, t) is given by

p(x, t) =
N∑

n=1

an[s](t)un(x) + · · · ,

where the remainder term is O(δ) and the coefficients are given by

an[s](t) = (s ∗ h[ωn])(t), n = 1, . . . , N, (5.4)

for kernels defined as

h[ωn](t) =
{

0, t< 0,

cne�(ωn)t sin(�(ωn)t), t ≥ 0,
n = 1, . . . , N, (5.5)

for some real-valued constants cn. Recall that �(ωn)< 0 due to energy loss, so h[ωn](t) decays as
t → ∞. See [12] for details of this derivation, which relies on computing the integrals resulting
from applying a Fourier transform to (5.1), performed by using the residue theorem to calculate
the contributions from the poles at each resonant frequency (in the lower complex plane). Thus,
the deduced signal transform is: given a signal s, compute the N time-varying outputs an[s],
defined by (5.4).

(b) Stability to errors
We wish to show that the signal transform s �→ an[s] := s ∗ h[ωn] is robust with respect to errors
and imperfections in the design of the underlying cochlea-inspired rainbow sensor.

Theorem 5.1. Given two complex numbers ωold and ωnew with negative imaginary parts, it holds that

||s ∗ h[ωold] − s ∗ h[ωnew]||L∞(R) ≤ ||h[ωold] − h[ωnew]||L∞(R))||s||L1(R),

for all s ∈ L1(R).

Proof. This is a standard argument for bounding convolutions:

||s ∗ h[ωold] − s ∗ h[ωnew]||L∞(R) ≤ sup
x∈R

∫
R

|s(x − y)|h[ωold](y) − h[ωnew](y)| dy

≤ ||hold
n − hnew

n ||L∞(R) sup
x∈R

∫
R

|s(x − y)| dy

= ||hold
n − hnew

n ||L∞(R)||s||L1(R).

�
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Remark 5.2. If s is compactly supported, then we can reframe theorem 5.1 in terms of || · ||Lp(R)
for any 1 ≤ p ≤ ∞, using Hölder’s inequality.

Corollary 5.3. Let c> 0 and suppose we have two complex numbers ωold and ωnew whose imaginary
parts satisfy �(ωold), �(ωold) ≤ −c. Then, it holds that

||s ∗ h[ωold] − s ∗ h[ωnew]||L∞(R) ≤
√

2
ce

|ωold − ωnew|||s||L1(R),

for all s ∈ L1(R).

Proof. We begin with the observation that

|h[ωold](t) − h[ωnew](t)|
= |(e�(ωold)t − e�(ωnew)t) sin(�(ωold)t) + e�(ωnew)t(sin(�(ωold)t) − sin(�(ωnew)t))|,

for t> 0. Then, we have that

|(e�(ωold)t − e�(ωnew)t) sin(�(ωold)t)| ≤ |e�(ωold)t − e�(ωnew)t| ≤ 1
ce

|�(ωold) − �(ωnew)|,

for t> 0, where we have used the fact that supt>0 supω<−c |t eωt| = 1/ce. Similarly, we have that

|e�(ωnew)t(sin(�(ωold)t) − sin(�(ωnew)t))| ≤ 1
ce

|�(ωold) − �(ωnew)|

for t> 0, where we have used the fact that supt>0 supω<−c |t eωt cos(at)| ≤ 1/ce for any a ∈ R.
Putting this together, we have that

||s ∗ h[ωold] − s ∗ h[ωnew]||L∞(R) ≤ 1
ce

(
|�(ωold) − �(ωnew)| + |�(ωold) − �(ωnew)|

)
||s||L1(R),

from which we arrive at the result, using the inequality |a| + |b| ≤
√

2(a2 + b2). �

While theorem 5.1 is the standard stability result for convolutional signal processing
algorithms, corollary 5.3 is most revealing here. It shows that the outputs of the induced
biomimetic signal transform (defined by (5.4) here) are stable with respect to changes in the
resonant frequencies of the physical device. From §§3 and 4, we know that the resonant
frequencies of the cochlea-inspired rainbow sensor are robust with respect to a variety of errors
and imperfections (particularly in large dilute resonator arrays), meaning that the biomimetic
signal transform inherits this robustness.

To test the robustness for small arrays with removed resonators, figure 10 shows the frequency
support of the filter array used in the biomimetic signal transform in the case of successively
removed resonators (the same sequence of structures was simulated in figure 8). In this small
array (of 22 resonators, initially), we see that gaps emerge when multiple resonators are removed,
corresponding to hearing loss at frequencies within these gaps. We observe that even when a
significant proportion of resonators are removed from the array, the support of the filter array
still covers a large proportion of the range of audible frequencies.

6. Conclusion
The formulae derived in this work show that a cochlea-inspired rainbow sensor is robust
with respect to small perturbations in the position and size of the constituent resonators.
The effect of removing resonators was also described; it was shown that the change in the
subwavelength resonant frequencies can always be bounded via an interlacing theorem and
that the resulting change in the spectrum can be small in the case of sufficiently large, dilute
arrays. The implications of this analysis for related biomimietic signal transforms were also
studied, and it was shown that stability properties are inherited from the underlying resonant
frequencies.
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Figure 10. The frequency supports of the filter kernels h[ωn] induced by a cochlea-inspired rainbow sensor. Each subsequent
array has additional resonators removed and for each array, we plot the Fourier transform of h[ωn], n= 1, . . . , N, normalized
in L2(R).

The analysis in this work suggests possible mechanisms through which sufficiently large
structures could be robust to (surprisingly) large perturbations. However, the extent to which
this truly replicates the remarkable robustness of the cochlea is unclear. While the mechanisms
which underpin the function of cochlea-inspired rainbow sensors (which are locally resonant
graded metamaterials) and biological cochleae (which have a graded membrane with receptor
cells on the surface) are quite different, there is scope for further insight to be traded between the
two communities. For example, there has recently been new insight into the role of topological
protection in rainbow sensors [21] and in signal processing devices [36]. Conversely, we observed
a tendency for gaps in the frequency support of the filter array to appear more commonly
at higher frequencies (see figure 10, for example). This is (qualitatively) consistent with the
observation that human hearing loss initially occurs at high frequencies in most people [23]. It
is not yet clear if either of these ideas can be transposed between the two realms of biological
hearing models and cochlea-inspired devices.
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