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Abstract

Cardiovascular magnetic resonance (CMR) molecular imaging aims to identify and map the expression of important
biomarkers on a cellular scale utilizing contrast agents that are specifically targeted to the biochemical signatures
of disease and are capable of generating sufficient image contrast. In some cases, the contrast agents may be
designed to carry a drug payload or to be sensitive to important physiological factors, such as pH, temperature or
oxygenation. In this review, examples will be presented that utilize a number of different molecular imaging
quantification techniques, including measuring signal changes, calculating the area of contrast enhancement, map-
ping relaxation time changes or direct detection of contrast agents through multi-nuclear imaging or spectroscopy.
The clinical application of CMR molecular imaging could offer far reaching benefits to patient populations, includ-
ing early detection of therapeutic response, localizing ruptured atherosclerotic plaques, stratifying patients based
on biochemical disease markers, tissue-specific drug delivery, confirmation and quantification of end-organ drug
uptake, and noninvasive monitoring of disease recurrence. Eventually, such agents may play a leading role in redu-
cing the human burden of cardiovascular disease, by providing early diagnosis, noninvasive monitoring and effec-
tive therapy with reduced side effects.

Introduction
While cardiovascular magnetic resonance (CMR) occu-
pies a prominent role in anatomical and functional
examinations of the heart and the major vessels [1-3],
molecular imaging aims to identify and map the expres-
sion of important biomarkers on a cellular scale. Typical
CMR techniques lack sufficient resolution and sensitivity
to directly detect these molecular signatures due to their
very low concentrations in vivo. Important metabolites
and biomolecules, such as glucose, adenosine tripho-
sphate (ATP), lactate and others, can be detected
through MR spectroscopy, but in vivo mapping of these
compounds is not widely available for routine biomedi-
cal applications due to the need for specialized instru-
mentation or very high concentrations. Instead, CMR
molecular imaging relies on the development of a new
class of contrast agents, which are specifically targeted
to the biomarker of interest and are capable of amplify-
ing the signal enhancement to generate sufficient image
contrast. These contrast agents often take the form of

nanoparticle constructs, which offer a large surface area
for the incorporation of multiple binding ligands (to
improve targeting efficacy) and multiple paramagnetic
chelates (to amplify the signal enhancement). In some
cases, the nanoparticle may also serve as a drug delivery
agent, providing diagnostic and therapeutic information
via noninvasive MRI. Some CMR contrast agents are
not designed to bind to specific biomarkers, but instead
are sensitive to important physiological factors, such as
pH, temperature or oxygenation.
Quantification is an important feature of many CMR

applications, such as measuring ventricular volumes or
blood velocity. In the arena of molecular imaging, quan-
titation could allow stratification of patient risk levels,
serial monitoring of therapeutic response or noninvasive
mapping of drug concentrations at the target tissue.
Quantification of CMR data can take various forms.
CMR molecular imaging data can be quantified based
on the amount of signal change, the area of tissue dis-
playing contrast enhancement, calculations of relaxation
time changes or direct detection of contrast agents
through multi-nuclear imaging or spectroscopy.
A number of other medical imaging modalities are

capable of quantitative molecular imaging, including
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PET, SPECT and optical imaging [4-6]. Like CMR, these
modalities typically rely on specifically designed contrast
agents that bind to the molecular biomarker of interest.
For PET and SPECT imaging, the contrast agents con-
sist of a radioactive element for detection. In optical
imaging, the contrast agent will utilize fluorescence or
bioluminescence for mapping expression of cellular
receptors. CMR, however, has certain important advan-
tages over these other modalities for molecular imaging
applications. CMR offers higher spatial and temporal
resolution than PET or SPECT and provides greater tis-
sue penetration than optical imaging. This allows CMR
to combine anatomical and/or functional information
with molecular imaging, much like the multimodality
benefits of PET/CT. In addition, CMR may be better
suited for serial tracking of disease progression or thera-
peutic response than the nuclear imaging methods due
to concerns of cumulative radiation dose.

Overview of CMR Molecular Imaging
CMR molecular imaging has been applied to a wide
range of diseases and utilized a variety of imaging tech-
niques and contrast agents. Typically, molecular imaging
contrast agents are based on either paramagnetic gado-
lium chelates or superparamagnetic iron oxide particles
[7]. Gadolinium agents have been grafted onto targeting
molecules, such as antibodies or peptides, to directly
bind to important biomarkers of disease, such as fibrin.
One of the hallmarks of a ruptured atherosclerotic pla-
que is the accumulation of thrombi in the vessel lumen.
Identifying and localizing ruptured plaques would have
an enormous benefit in the clinical diagnosis and treat-
ment of myocardial infarction and stroke. Phage display
has been used to develop a novel peptide that specifi-
cally binds to fibrin. This ligand was modified with four
Gd-DTPA chelates per peptide to generate signal
enhancement on CMR images. The abundance of fibrin
in clots allows imaging thrombi in the left atrium, pul-
monary arteries, and coronary arteries in animal models
[8-14] and in clinical patients [15].
Another biomarker of clinical importance that has

been pursued with paramagnetic gadolinium contrast
agents is the uptake of lipoproteins within atherosclero-
tic plaques. Recombinant paramagnetic HDL particles
were used to image atherosclerotic regions in apoE-defi-
cient mice. The HDL particle system is formulated with
15-20 Gd-DTPA chelates per particle to provide ample
CMR signal enhancement [16] and could be coupled to
a macrophage scavenger receptor antibody for specific
imaging of macrophage rich plaques [17]. Another con-
trast agent that selectively accumulates in fatty deposits
of atherosclerotic plaques is gadofluorine. This gadoli-
num chelate contains fluorinated side chains that are
hydrophobic. The side chains cause gadofluorine to

form nanometer sized micelles when dispersed in water.
These small lipophilic particles have been shown to pre-
ferentially accumulate in the lipid-rich areas of vascular
plaques in cholesterol-fed rabbits [18].
The therapeutic uses of stem cells have become a

rapidly growing field of research. A number of new
CMR contrast agents and methods have been developed
with the aim of tracking stem cell delivery, migration,
viability and fate. Iron oxide contrast agents have domi-
nated stem cell tracking studies [19-22]. In most cases,
cultured stem cells are labeled in vitro with iron oxide
particles. Cell labeling is often accomplished with exo-
genous transfection agents that induce uptake of the
particles by endocytosis. The labeled cells are subse-
quently injected into the tissue of interest and detected
in the CMR image based on the loss of signal due to
enhancement of T2* relaxation. The use of iron oxide
particles provides abundant image contrast, which
allows detection of even a single labeled cell [23].
In addition to in vitro labeling of stem cells, iron

oxide particles have been utilized for in vivo imaging of
macrophages associated with atherosclerotic plaques.
Activated macrophages spontaneously uptake particulate
contrast agents by phagocytosis in animal models
[24-27] and clinical atherosclerosis [28,29]. One limita-
tion of MRI after systemic injection of iron oxide con-
trast agents is that they stay in the blood pool for a long
time, requiring a delay between injection and imaging
on the order of hours to days. Clinical imaging of caro-
tid plaques required 24 hours between injection and
imaging, which resulted in a 24% decrease in the image
intensity of the plaques [28]. The negative image con-
trast associated with iron oxide particles has been con-
sidered a drawback for these methods. As an alternative
approach, new pulse sequences and image processing
routines have been developed to generate positive con-
trast in the CMR images [30-37]. For example, a method
called “Inversion-recovery with ON-resonant water sup-
pression”, abbreviated as IRON, has been demonstrated
to generate bright image contrast that was correlated
with the number of labeled stem cells [36].
Iron oxide particles have also been formulated for

ligand directed targeting of cellular biomarkers. These
agents have been specifically targeted to holo-transferrin
[38], E-selectin [39], a peptide sequence from the trans-
activator protein (Tat) of HIV-1 [40-42], annexin V [43]
and VCAM-1 [44]. Specific targeting of iron oxide parti-
cles allows MRI detection of very sparse cellular recep-
tors. These particles have very high relaxivities, causing
large decreases in the T2* relaxation times of tissues
expressing the biomarker of interest. Typically, the spe-
cificity of the molecular targeting approach is confirmed
by histological staining of the targeted epitope combined
with microscopic localization of the iron oxide with
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Prussian blue staining. However, based on the delays
normally required between contrast agent injection and
imaging, the nonspecific uptake of particles in macro-
phages may overshadow accumulation at the target site.
Another novel application of iron oxide particles is the

construction of magnetic relaxation switches that
change their MR relaxation properties based on interac-
tions with biomolecules associated with various disease
states [45]. For example, particles have been formulated
with numerous copies of high-affinity ligands that bind
myeloperoxidase, an enzyme produced by inflammatory
cells that is associated with plaque vulnerability [46]. In
another cardiovascular application, iron oxide agents
conjugated to a2AP peptides have been used to detect
activated Factor 13, an enzyme that crosslinks fibrin and
stabilizes clots [47].

Quantification via Signal Enhancement
One of the most convenient methods for quantifying
paramagnetic contrast agent uptake is by simply calcu-
lating the change in the image intensity. Some studies
have demonstrated that the CMR signal is linearly
related to the contrast agent concentration within the
typical in vivo range [48,49]. However, this method
depends strongly on the imaging parameters and
requires careful calibration. In addition to actually
reporting contrast agent concentrations, CMR signal
enhancement can be used to quantify the physical size
of abnormal tissue, such as the volume of infarcted
myocardium or the extent of abnormal vessel
permeability.

Quantification of Pharmacokinetics
CMR signal enhancement was used to quantify the
pharmacokinetics of a molecular imaging contrast agent
in both the blood pool as well as the target tissue in an
atherosclerotic rabbit model [49]. Paramagnetic nano-
particles that bind to the aνb3-integrin, a biomarker of
angiogenesis, were produced by incorporating a highly
specific targeting ligand onto the particle surface. Ather-
osclerotic rabbits were injected with either aνb3-targeted
or nontargeted parmagnetic nanoparticles at a dose of 1
mL/kg (0.0046 mmol Gd3+/kg). As a point of reference,
the standard dose of conventional gadolinium agents for
clinical CMR scans is 0.1 mmol Gd3+/kg, which is 20-
fold higher than the dose delivered with paramagnetic
nanoparticles. Blood sampling was performed to deter-
mine the bulk pharmacokinetic behavior of the nanopar-
ticles and T1-weighted CMR images of the descending
aorta were collected over 24 hours to ascertain binding
to the angiogenic microvasculature in the vessel wall.
CMR was performed on a clinical 1.5T scanner with a
cross-sectional, multislice, T1-weighted, turbo spin echo,
fat-suppressed, black-blood imaging sequence.

The experimental data was fit to pharmacokinetic
models in two steps. First, a standard two compartment
pharmacokinetic model was used to describe only the
blood concentrations without consideration of the ima-
ging data. Then, a three-compartment pharmacokinetic
model was developed to describe the in vivo behavior of
the nanoparticles in both the blood pool as well as the
aortic wall using the imaging data to represent the
nanoparticle concentrations in the vessel wall. Compart-
ments 1 and 2 represent the bulk distribution of nano-
particles throughout the blood stream. The third
compartment consists of the vasa vasorum of the aortic
wall where the nanoparticles can specifically bind to the
aνb3-integrin. The constants that describe the transfer
into and out of this compartment, k13 and k31, are
lumped parameters that are used to describe both pas-
sive transfer and active binding.
Blood samples were spiked with nanoparticles to yield

gadolinium concentrations ranging from 0 to 45 μM.
These calibration samples were imaged using the in vivo
pulse sequence to determine the relationship between
nanoparticle concentration and signal enhancement.
The image enhancement varied linearly with gadolinium
concentration at these low concentrations, in agreement
with mathematical simulations of the turbo spin echo
CMR sequence. T1 mapping was also performed using a
mixed spin echo inversion recovery pulse sequence [50]
to measure the longitudinal relaxivity of the nanoparti-
cles in blood, 12.7 (s*mM)-1. Blood sampling after IV
injection of nanoparticles demonstrated that the gadoli-
nium concentration decayed bi-exponentially over time,
as is typically observed with these nanoparticle agents
[51]. Fitting the experimental data to the two-compart-
ment pharmacokinetic model did not reveal any signifi-
cant differences between the rabbits treated with
targeted versus nontargeted nanoparticles. The half-life
for the distribution phase was 20.2 minutes, while the
elimination half-life was 11.9 hours.
CMR of the aortic wall revealed that the targeted

nanoparticle agent generated at least two-fold higher
signal enhancement at 0.5 and 1 hour post injection
than the nontargeted nanoparticles. In both groups, the
signal enhancement steadily increased up to 2.5 hours
post injection, reflecting the relatively slow transfer of
the contrast agent from the blood pool compartment
into the angiogenic capillary network where interaction
with the aνb3-integrin occurs (Figure 1). Both the tar-
geted and nontargeted formulations reached their maxi-
mum signal enhancement between 2.5 and 8 hours post
injection. The targeted group returned to its baseline
value within 12.5 hours post injection. Fitting both
the blood clearance and tissue uptake data with a
three compartment model showed no significant differ-
ences in k12, k21, v1, or k31 between the targeted and
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nontargeted groups. However, k13 (representing transfer
from the blood into the aortic wall) and ke (elimination
from the blood pool) were significantly higher for the
targeted formulation. While k13 represents the passive
transfer from the blood into the third compartment in a
standard three compartment model, the nanoparticles
are not just passively transferred but also actively bind-
ing within the third compartment. These two effects can
not be differentiated with this model and combine
together, resulting in an apparent increase in k13 for the
targeted nanoparticles compared to the nontargeted
formulation.
These pharmacokinetic parameters were used to cal-

culate the area under the curve (AUC), a traditional
index of availability. The local tissue concentration of
targeted nanoparticles was doubled compared to nontar-
geted particles (1.64 vs 0.84 nmol Gd3+/g tissue/h,
respectively) even though their AUCs in the blood were
very similar (3.28 vs 3.60 nmol Gd3+/mL blood/h). The
maximum amount of gadolinium that reached the tar-
geted site relative to the total dose was 0.18% for non-
targeted particles and 0.38% for targeted nanoparticles.
These results demonstrate that quantitative CMR can be
used to noninvasively track binding of a molecularly tar-
geted contrast agent, which has previously only been
accomplished with nuclear and optical imaging [52,53].
The primary advantage of this approach is that tissue
concentrations of the contrast agent can be calculated
noninvasively without the need to collect tissue samples.
This allows repeated measurements of the uptake and
washout of the agent in the same animal during disease
progression or under the influence of a therapeutic
intervention. One limitation of this technique, however,

is that blood samples spiked with the contrast agent
were used to convert the MRI signal enhancement to
the tissue nanoparticle concentration. Although the par-
ticles are exposed to the blood stream, the image inten-
sity of a voxel also depends upon the tissue relaxation
times and water content, which may decrease the accu-
racy of the particle concentration measurements.
This study demonstrates that pharmacodynamic mod-

els can be used to describe the in vivo binding charac-
teristics of site-targeted nanoparticle agents. The
lipophilic gadolinium chelate used in this nanoparticle
formulation can be envisioned as a surrogate marker for
any drugs that might be incorporated into the lipid
layer, such as doxorubicin, paclitaxel, or fumagillin
[54-56]. Highly lipophilic drugs, such as fumagillin, have
very low disassociation rates from the nanoparticles,
typically less than 10% of the total dose [56], allowing
MRI to provide a reasonable estimate of the drug deliv-
ered to tissue. Standard methods for pharmacodynamic
modeling rely on blood pool measurements of the drug
concentration without considering the accumulation in
the target tissue [57,58]. Noninvasive imaging, however,
could serially monitor the actual concentration of the
drug in the end organ [59], and lead to more accurate
modeling of therapeutic response. This feature could
become increasingly important as specifically targeted
agents are developed, and the clinical need arises to
monitor local concentrations of the drug beyond the
blood pool.

Monitoring Endothelial Dysfunction
Quantification of contrast agent uptake has also been
utilized in clinical research to map the extent and

Figure 1 In vivo CMR molecular imaging of angiogenesis in atherosclerosis. Serial imaging of the aortic wall (arrow) of an atherosclerotic
rabbit up to 2.5 hours post injection of aνb3-targeted nanoparticles allows quantification of contrast agent uptake. The temporal evolution of
the nanoparticle concentration in the tissue and the blood was used to determine the pharmacokinetic profiles of targeted vs nontargeted
particles. Reprinted with permission from Neubauer, et al [49].
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severity of tissue disruption following ischemic injury.
Serial contrast-enhanced cardiac magnetic resonance
(CE-CMR) was used to characterize inflammation in the
coronary vessel wall of patients after acute myocardial
infarction (AMI) [60]. Inflammation plays a key role in
the development of atherosclerosis [61] and is closely
linked to plaque rupture, the underlying cause of myo-
cardial infarctions and strokes [62]. Plaque vulnerability
is determined more by the plaque composition and
amount of inflammation rather than the degree of lumi-
nal narrowing [63]. Clinical CMR contrast agents non-
specifically distribute throughout the extracellular space,
but the amount of leakage out of the capillary bed is
dependent upon the permeability and the surface area
of the vasculature. Inflammation causes increased vascu-
lar permeability, resulting in increased extravasation of
the contrast agent. CE-CMR has been used to character-
ize acute inflammation within the vessel wall in giant
cell arteritis and Takayasu’s arteritis [64,65]. CE-CMR of
the coronary artery wall was performed in 10 patients
with AMI 6 days and 3 months after coronary interven-
tion and in 9 volunteers without coronary artery disease
[60]. All subjects were imaged on a 1.5T scanner 30-40
minutes after an IV bolus of 0.2 mmol/kg of Gd-DTPA.
Contrast enhancement within the coronary wall was cal-
culated based on the contrast-to-noise ratio (CNR)
between the image intensity of the coronary wall and
the blood signal in the aorta. Noise was measured in a
region of interest placed outside the chest wall.
Six days after AMI, the image enhancement in the

coronary wall averaged 7.8, which was significantly
higher than the enhancement observed in normal sub-
jects, 5.3. Coronary vessel enhancement was highly cor-
related with the angiographic severity of lumen
narrowing. Signal enhancement in the stenotic coronary
artery segments, defined as greater than 25% luminal
narrowing via x-ray angiography, was significantly higher
(CNR = 10.9) than the enhancement measured in the
nonstenotic segments (CNR = 6.4). Three months after
AMI, the average CNR in the coronary artery wall was
6.5, a significant decrease compared to the value 6 days
after AMI. This reduction in average CNR was caused
by a decrease in the CNR from the stenotic vessels,
CNR = 6.8, while the CNR in the angiographically nor-
mal segments did not change between the acute and
chronic phase of infarction. The spatial extent of
enhanced segments, vessels displaying CNR values
above 9.7, decreased from 70% at six days to 25% at
three months post AMI. Mirroring the results from
CE-CMR, the levels of a general inflammatory marker,
C-reactive protein, were significantly higher at six days
post AMI compared to the three month timepoint, 2.6
vs. 0.8 mg/dl, respectively. The observed image enhance-
ment pattern during the post-infarction period may be

associated with transient inflammation or edema in the
pathologically altered coronary vessel wall. Serial CE-
CMR could be used to quantify the spatial extent and
intensity of coronary inflammation in patients after
AMI. Further studies will be required to determine the
utility of this approach to predict clinical events or
monitor the response to therapeutic interventions. Some
therapies designed to increase angiogenesis in the
ischemic regions may also significantly increase vascular
permeability and dramatically increase CE-CMR image
enhancement. Under these conditions, CE-CMR may
not accurately reflect local inflammation, but rather the
combined physiological effects of both the disease as
well as the therapy.

Drug Delivery
Combining a molecularly targeted imaging agent with a
therapeutic drug could provide a range of benefits in
the clinical management of patients with cardiovascular
disease. The imaging agent would allow confirmation
and quantification of local drug delivery, and enable per-
sonalization of treatment protocols based on the phar-
macokinetics in the target tissue. In addition, specific
targeting of the agent could improve uptake and reten-
tion of the drug at the sites of disease while lowering
the exposure to other susceptible organs and reducing
the occurrence of side effects. The acute therapeutic
response to an anti-angiogenic drug was studied in
atherosclerotic rabbits treated with aνb3-targeted para-
magnetic nanoparticles containing the drug fumagillin
[56]. CMR was performed on a 1.5 T clinical scanner to
estimate drug deposition in the aortic wall. One week
later, the level of neovascular aνb3-integrin expression
was assessed using aνb3-targeted paramagnetic nanopar-
ticles without fumagillin. Aortic areas displaying high
CMR enhancement at the time of treatment had the lar-
gest subsequent reduction in aνb3-targeted CMR signal
1 week later (Figure 2), suggesting that combining ima-
ging with therapy may not only confirm and quantify
the local delivery of chemotherapeutics but may also
provide early predictions of the subsequent treatment
effects.
In addition to the acute response to therapy, CMR

molecular imaging could provide serial monitoring of
the end organ effects with the ultimate goal of optimiz-
ing drug treatment regiments and customizing patient
protocols. The anti-angiogenic effect of atorvastatin with
and without targeted delivery of fumagillin was serially
monitored for eight weeks by MRI in atherosclerotic
rabbits [55]. Atorvastatin was dosed continuously via
incorporation into the feed, while fumagillin treatment
was provided once every four weeks. Rabbits were
imaged on a clinical 1.5T scanner before and three
hours post injection of aνb3-targeted nanoparticles.
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Histology revealed that the image enhancement was
strongly correlated to the microvascular density in the
aortic wall in a logarithmic fashion (Figure 3). During
eight weeks of study, atorvastatin treatment did not

reduce aνb3-integrin expression in the aortic wall.
Fumagillin treatment, on the other hand, resulted in a
transient (2-3 week) reduction in image enhancement,
indicating successful anti-angiogenic treatment. Com-
bining the fumagillin and atorvastatin treatments yielded
a persistent decrease in the CMR signal, suggesting that
chronic statin treatment could be used to prolong the
effects of discrete doses of an anti-angiogenic agent. An
effective and sustained anti-angiogenic treatment could
stabilize atherosclerotic plaques by decreasing intra-
mural hemorrhage.
Although these studies demonstrate effective drug

delivery via targeted nanoparticles and noninvasive
monitoring of the therapeutic effect via CMR molecular
imaging, there are a number of limitations with the ani-
mal model. The atherosclerotic rabbits displayed
expanded vasa vasorum and adventitial angiogenesis, but
they did not exhibit the pathological signatures of vul-
nerable plaques, such as intraplaque hemorrhage, thin
fibrous caps or plaque rupture. As a result, the ultimate
therapeutic effect of anti-angiogenic drugs on the most
clinically important atherosclerotic lesions cannot be
determined in this animal model. Evaluating these tech-
niques in other animal models, such as dogs or pigs,
using more advanced atherosclerotic triggers, such as
vascular balloon injury, de-endothelialation or cuffing,
will be needed before clinical translation can be
considered.

Quantitative T1/T2 mapping
Rather than relying on changes in image intensity to
quantitate contrast agent uptake, a more accurate
method requires calculating relaxation times before and
after contrast agent injection. The difference between
relaxation times before and after contrast agent injection
can be used to directly calculate the tissue concentra-
tions of the agent [66,67]. The binding of paramagnetic
nanoparticles targeted to tissue factor expressed on cul-
tured smooth muscle cells was calculated based on
changes in T1 relaxation times [66]. This agent carried
94,000 gadolinium chelates per particle, generating long-
itudinal relaxivities (relative to the concentration of
nanoparticles) of 1,690,000 (s*mM)-1 at 1.5T and
910,000 (s*mM)-1 at 4.7T. This extremely high relaxivity
results in a minimum detection limit, defined as the
concentration of particles required to generate a con-
trast to noise ratio equal to 5, for this agent of 113 pM,
which is within the range of the biological abundance of
many important biomarkers. To demonstrate the sensi-
tivity of this high-relaxivity agent to biomarker expres-
sion, the nanoparticles were targeted to tissue factor
expressed on cultured smooth muscle cells (Figure 4)
[66]. Tissue factor is a transmembrane glycoprotein with
a prominent role in a number of important biological

Figure 2 Quantitative molecular imaging can predict response
to anti-angiogenic therapy. CMR molecular imaging of
atherosclerotic rabbits treated with aνb3-targeted nanoparticles
carrying an anti-angiogenic drug, fumagillin, demonstrated signal
enhancement in the aortic wall. Follow-up imaging with aνb3-
targeted nanoparticles was performed 7 days later to assess residual
angiogenic activity in the vessel. Quantitation of enhancement at
the time of treatment was related to the amount of drug delivered
to the growing atherosclerotic plaques and correlated to the
change in signal 7 days after treatment. Sections of the abdominal
aorta with the highest signal enhancement at the time of aνb3-
targeted fumagillin nanoparticle treatment showed the greatest
reduction in aνb3-integrin expression assessed 1 week later.
Reprinted with permission from Winter, et al [56].

Figure 3 CMR image enhancement with aνb3-targeted
nanoparticles correlates to the density of angiogenic
microvessels. CMR molecular imaging of angiogenesis with aνb3-
targeted paramagnetic nanoparticles was directly related to
histological measurement of microvessel density in atherosclerotic
rabbits. The number of microvessels expressing both aνb3-integrin
and platelet/endothelial cell adhesion molecule (PECAM), a general
vascular marker, were counted in aortic sections. The microvessel
density was correlated in a logarithmic fashion (R2 = 0.84) to the
CMR signal enhancement observed after injection of aνb3-targeted
particles. Reprinted with permission from Winter, et al [55].
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processes, such as angiogenesis, thrombosis, cell signal-
ing, hemostasis and mitogenesis [68]. Smooth muscle
cells comprise the media layer of arteries and are
involved in vascular repair following injury and the pro-
gression of atherosclerosis.
Cultured smooth muscle cells were exposed to tissue

factor targeted nanoparticles or nontargeted nanoparti-
cles. The T1, T2 and proton density of the cell layers
were quantified on a 1.5T clinical scanner with a mixed
spin echo and inversion recovery sequence. The mixed-
scanning protocol combines multiecho spin echo and
inversion recovery acquisitions, generating a series of
images with different T1 and T2 weightings [50]. The
T1 and T2 relaxation times and proton density are cal-
culated from the mixed images based on ratios of the
signal intensities and linear least squared fitting. Model-
ing of the MRI signal enhancement predicted that tar-
geted nanoparticles reached a concentration of 468 pM,
while the nontargeted particles reached a concentration
of only 88 pM. The modeling estimates were validated
by gas chromatography of the samples, revealing a parti-
cle concentration of 530 pM for the targeted nanoparti-
cles and 111 pM for the nontargeted nanoparticles.

Imaging Tissue pH
Some CMR contrast agents have been specifically
designed to report on the local physiological conditions,
such as temperature, pH or oxygenation. In these cases,
the changes in relaxation times are not used to calculate
contrast agent concentrations, but rather the physiologi-
cal parameter of interest. A paramagnetic chelate, Gd-
DOTA-4AmP5-, was designed to report pH based on
changes in the proton exchange kinetics between the
bulk water and the metal coordinated water due to pro-
tonation of the phosphonates on the side-arms of the
chelate [69]. However, a fundamental limitation of any
such agent is that the MRI enhancement relies on the
local concentration of the agent as well as the tissue pH.
To account for the concentration dependence, a non-pH

sensitive agent was used to map the wash in and wash
out kinetics of the molecule.
For both the pH-sensitive and the pH-insensitive

agents, the MRI signal enhancement varied linearly with
concentration up to 4 mM. The relaxivity of
Gd-DOTP5- was 3.0 1/(mM*s), while the relaxivity of
Gd-DOTA-4AmP5- varied from 3.2 to 4.5 1/(mM*s)
over a pH range from 5.75 to 8.0. The pH of mouse kid-
neys was mapped using a 4.7T research scanner. A ser-
ies of spin echo images were acquired every 40 seconds
to track the MRI enhancement for 1 hour post injection.
To obtain an accurate measurement of the wash in and
wash out kinetics for the pH-sensitive and pH-insensi-
tive agents, Gd-DOTP5- was injected and imaged for 1
hour, followed by injection of Gd-DOTA-4AmP5- and
imaging for 1 hour, followed by injection of another
dose of Gd-DOTP5- and 1 hour of imaging. In three
control mice, the pH of the kidney cortex was 7.3, the
medulla had a pH of 7.0, and the calyx-ureter had a pH
of 6.3. Immediately after the MRI scans, urine was col-
lected and the pH was measured as 5.9. In addition to
the control animals, a group of mice were treated with
acetazolamide, a carbonic anhydrase inhibitor that
causes systemic metabolic acidosis and alkalinization of
the urine due to reduced reabsorption of bicarbonate in
the kidney. Acetazolamide raised the pH of the cortex
to 7.7, the medulla to 8.0 and the calyx-ureter to 7.5.
Urine collected immediately after the CMR scans had a
pH of 8.0. The increases in kidney and urine pH com-
pared to the control animals are consistent with the
expected mode of action of acetazolamide. Noninvasive
mapping of tissue pH could be applied to a number of
clinical needs including predicting the therapeutic
response of tumors to chemo or radiation therapy [70]
or monitoring the progression or treatment of heredi-
tary defects in ion transport in the kidney [71,72]. The
need for two contrast agents is a significant limitation of
this technique. Any variation in the dose, distribution or
elimination of the agent due to changes in animal

Figure 4 Molecular imaging of tissue factor expression on cultured smooth muscle cells. Cell cultures were incubated with tissue factor
targeted nanoparticles (T), nontargeted nanoparticles (NT) or no nanoparticles (UT). Left: Spin-echo images of smooth muscle cell monolayers
acquired at 1.5T reveal image enhancement for the well treated with targeted particles, but not the wells receiving nontargeted or no
nanoparticles. Right: A maximum intensity projection through the 3 D stack of T1-weighted images acquired parallel to the cell monolayers
demonstrates the sensitivity of this targeting method for detecting labeled cells. Reprinted with permission from Morawski, et al [74].
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physiology or the experimental conditions would drama-
tically reduce the accuracy of the pH measurements.
A further modification of this pH-sensitive paramag-

netic contrast agent, Gd-DOTA-4AmP5-, has allowed
the tissue concentration to be determined directly by
PET imaging [73]. An 18F tag was coupled to one of the
pendant arms of the original chelate structure. Using a
hybrid MR-PET imaging system, the concentration of
the agent and the change in relaxation times can be
determined, providing a means to calculate pH. This
method, however, requires instrumentation that can per-
form both MR and PET imaging, which is not widely
available. In addition, the resolution of PET systems is
significantly lower than CMR scanners, resulting in
much larger voxels for the concentration map compared
to the relaxation time map. How these differences effect
the final spatial resolution for pH imaging will need to
be determined.

Direct Quantitation of CMR Contrast Agents
While changes in the proton signal intensity or relaxa-
tion times can be used to measure contrast agent uptake
or tissue physiology, these methods are indirect mea-
sures of the contrast agent. An alternative method is
direct detection of a signal originating from the agent
itself, much as PET, SPECT and optical imaging directly
map a nuclear or fluorescent tag incorporated onto the
agent. There are a number of important nuclei that are
visible by CMR techniques, such as 19F, 23Na, 31P, and
13C, however, the sensitivity of these elements tend to
be quite low. Typical clinical MRI utilizes the proton
(1H) signal, which represents a concentration of 110 M
and a relative MRI sensitivity of 1.0. In comparison, the
relative sensitivities of 19F, 23Na, 31P, and 13C are 0.83,
0.093, 0.066 and 0.016, respectively. Furthermore, the
concentrations of these elements tend to be very low in
biological samples, typically less than 10 mM, lowering
their sensitivity by orders of magnitude compared to
proton.

19F CMR of Perfluorocarbon Nanoparticles
Direct detection of 19F has been explored in a number
of research studies because it has a relatively high sensi-
tivity, 83% compared to 1H, and there is virtually no
native background signal. Thus, fluorinated contrast
agents can provide a definitive and quantitative CMR
signature. For example, 19F CMR of fibrin-targeted per-
fluorocarbon (PFC) nanoparticles could be used to map
the formation of thrombi on ruptured atherosclerotic
plaques and quantify the extent of ruptures in the
fibrous cap. Human carotid endarterectomy samples
were treated with fibrin-targeted paramagnetic nanopar-
ticles and imaged at 4.7 T [74]. 1H CMR showed high
levels of signal enhancement along the luminal surface

due to nanoparticle binding to fibrin deposits. A 19F
projection image of the artery, acquired in less than five
minutes, displayed an asymmetric distribution of nano-
particles around the vessel wall corroborating the 1H
signal enhancement. Spectroscopic quantification of
nanoparticle binding allowed calibration of the 19F CMR
signal intensity. Co-registration of the quantitative nano-
particle map with the 1H image permitted visualization
of both anatomical and pathological information in a
single image (Figure 5). Combining information from 1H
and 19F CMR could allow prediction of subsequent
occlusion or distal embolization from unstable or dis-
rupted plaques, and aid clinical decision-making for
acute invasive intervention vs. pharmaceutical therapies.
Further experiments performed on a 1.5 T clinical

CMR system used rapid steady-state imaging to inde-
pendently image and quantify two different populations
of fibrin-targeted nanoparticles, perfluorooctylbromide
(PFOB) or perfluoro-15-crown-5-ether (CE), based on
their unique spectral signatures [75]. Both imaging and
spectroscopy could distinguish nanoparticles containing
either PFOB or CE as the core material. The signal to
noise for PFOB was lower than CE (10 vs. 25, respec-
tively), presumably due to the single CE peak (20
equivalent fluorine atoms) compared to the multiple
PFOB peaks (17 fluorine atoms distributed over 5
peaks). A clear linear relationship between the 19F signal
intensity and perfluorocarbon concentration was
demonstrated for both PFOB and CE using both ima-
ging and spectroscopy. From this demonstration on
fibrin clots, it follows that multiple perfluorocarbon
nanoparticle agents could be used to target different epi-
topes and achieve a noninvasive analogy to immunohis-
tochemistry. For example, simultaneous quantification
of angiogenesis in the vessel wall and fibrin deposition
on the plaque cap could be used to evaluate the patho-
physiological stage of an obstructive lesion.
Tissue inflammation is another biological marker of

unstable atherosclerotic plaques, inducing the release of
cytokines and upregulating the production of proteins
like vascular cell adhesion molecule-1 (VCAM-1). PFC
nanoparticles targeted to VCAM-1 were injected into
genetically engineered ApoE-/- mice, which mimic the
clinical progression of atherosclerosis, to map inflamma-
tion [76]. These mice display focal inflammation and
macrophage infiltration in the kidneys [77]. To defini-
tively identify nanoparticle binding in the kidneys, 19F
CMR was performed on a 11.7 T research scanner 2
hours after injection of VCAM-1 targeted PFC nanopar-
ticles (Figure 6). The 19F signal arising from the PFC
core provided an unambiguous marker of particle accu-
mulation, without the innate signal variations that can
confound typical 1H signal enhancement with traditional
paramagnetic or superparamagnetic CMR contrast
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agents. VCAM-1-targeted nanoparticles accumulated in
ApoE-/- kidneys to a greater extent than non-targeted
nanoparticles (3.7 billion particles per gram of tissue vs.
0.9 billion particles/gram). The uptake of targeted nano-
particles was also higher in the kidneys of ApoE-/- mice
compared to non-ApoE-/- controls (3.7 vs. 1.6 billion

particles/gram). Control animals also displayed no sig-
nificant difference in the uptake of targeted versus non-
targeted nanoparticles (1.6 vs. 1.5 billion particles/gram).
Typically, targeted CMR contrast agents generate

image enhancement as a result of both nonspecific
blood pool signal as well as the specific binding of the

Figure 5 Direct quantitation of contrast agent binding utilizing 19F CMR and fibrin-targeted PFC nanoparticles. (a) Optical image ex vivo
of a 5-mm cross section of a human carotid endarterectomy sample. This section showed moderate luminal narrowing as well as several
atherosclerotic lesions. (b) A 19F projection image acquired at 4.7 T through the entire carotid artery sample shows high signal along the lumen
due to nanoparticles bound to fibrin. (c) Concentration map of bound nanoparticles in the carotid sample. Reprinted with permission from
Morawski, et al [74].

Figure 6 Mapping tissue uptake of VCAM-1 targeted PFC nanoparticles with 19F CMR. Multinuclear imaging of kidneys from
atherosclerotic ApoE-/- (top) and wild-type control (bottom) mice imaged at 11.7T. (A) Proton MR of kidney anatomy. (B) 19F CMR for direct
detection of VCAM-1-targeted PFC nanoparticles. (C) A composite 1H/19F image allows precise overlay of molecular biomarker of inflammation
and anatomical detail. Reprinted with permission from Southworth, et al [76].
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agent to the biomarker of interest. Separating out these
two contributions can be very difficult to achieve in
vivo. One method to suppress the nonspecific signal uti-
lizes diffusion weighted 19F spectroscopy to null the sig-
nal arising from moving particles, representing the
unbound fraction in the blood pool, while retaining the
signal from stationary particles that are specifically
bound to the target epitope [78]. A genetically engi-
neered mouse model of squamous cell cancer, derived
by incorporating human papilloma virus into the mouse
genome [79], was studied with a 11.7 T research scan-
ner. Transgenic and age matched control mice were
injected with 1 ml/kg aνb3-targeted PFC nanoparticles
(corresponding to a PFC dose of 0.2 ml/kg) and scanned
90 minutes later to assess angiogenesis in these precan-
cerous lesions. Both the transgenic and control mice
displayed decreased 19F signal with increasing b-values.
However, 60-100% of the 19F signal remained at b-
values near 60,000 s/mm2 in the transgenic animals,
while no detectable 19F signal was observed in control
mice at b-values of 1500 s/mm2. The calculated appar-
ent diffusion coefficient (ADC) of PFC nanoparticles
was 33.1 m2/s in the transgenic mice, significantly lower
than the 19,563 m2/s ADC in the controls.
Angiogenesis is also a prominent feature in the pro-

gression of aortic valve stenosis. Cholesterol-fed rabbits
develop aortic valve sclerosis, characterized by gross
thickening, macrophage infiltration, calcification, and
eventual bone formation that mimics the clinical presen-
tation of the disease [80-83]. Cholesterol-fed rabbits
underwent 19F CMR after injection of aνb3-targeted
nanoparticles to quantify angiogenesis in the aortic valve
leaflets [84]. The cholesterol feeding caused gross thick-
ening of the aortic valves accompanied by extensive
foam cell infiltration, non-calcified bone deposition, acti-
vation of myofibroblasts, abnormal microvascular prolif-
eration and upregulation of aνb3-integrin expression.
None of these abnormalities were observed in the nor-
mal valve tissue from control animals. Rabbits received
IV injections of 2.2 ml/kg aνb3-targeted nanoparticles,
nontargeted nanoparticles or in vivo competitive inhibi-
tion of aνb3-integrin binding via pretreatment with
aνb3-targeted safflower oil nanoparticles. Two hours
after nanoparticle injection, the aortic valve leaflets were
excised for 19F MR spectroscopy at 11.7T.
The crown ether (CE) signal arising from the nanopar-

ticle contrast agent was readily detected and distin-
guished from a perfluorooctylbromide (PFOB)
quantification reference based on the chemical shifts of
these perfluorocarbon species (Figure 7), allowing quanti-
fication of the total volume of bound nanoparticles (Fig-
ure 8). The volume of targeted nanoparticles bound to
the valves was 19.5 nL, which was more than three times
higher than the amount of nontargeted nanoparticles

(5.6 nL). Competitive inhibition of aνb3-integrin binding
reduced the amount of nanoparticles in the valves by
about half (10.3 nL). Valves from healthy rabbits treated
with targeted nanoparticles contained almost nine times
fewer nanoparticles (2.3 nL) than the valves from choles-
terol-fed rabbits. These techniques may be useful for
assessing atherosclerotic components of preclinical aortic
valve disease in patients and could assist in defining effi-
cacy of medical therapies. The sensitivity of this approach
for molecular detection of sparse quantities of inflamma-
tory epitopes in very thin structures at high field
strengths establishes a basis for future efforts to develop
localized spectroscopic methods at clinical field strengths
that could be useful for detecting disease and monitoring
therapies.
The ability of 19F CMR to directly detect and quanti-

tate the binding of specifically targeted nanoparticles is
a significant advantage over the use of paramagnetic or
superparamagnetic contrast agents, which are only visi-
ble based on their effects on the water signal. However,

Figure 7 Quantitative 19F spectroscopy of angiogenesis in
aortic valve disease. The 19F signal was utilized to quantify
binding of nanoparticles to the valve leaflets from (A) a rabbit
treated with aνb3-targeted nanoparticles and (B) a rabbit treated
with untargeted nanoparticles. Both nanoparticle formulations
consisted of a crown ether core, which generates a single peak. The
PFOB peaks originated from a reference standard utilized for
quantification. Nanoparticle binding in the rabbit treated with
targeted particles was much higher (Crown Ether/PFOB = 4.6) than
the rabbit treated with nontargeted particles (Crown Ether/PFOB =
2.2). Reprinted with permission from Waters, et al [84].
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a lingering disadvantage of these techniques is the lim-
ited sensitivity of CMR to any signal other than the bulk
water. These studies usually overcome this inherent lim-
itation by using some combination of high magnetic
field strength, employing MR spectroscopy, and/or very
long scan times.

Mapping Tissue Oxygenation
As with proton imaging, 19F contrast agents have been
developed for mapping tissue physiology, most notably
oxygenation. Oxygen is essential for tissue viability and
without an adequate supply, cellular dysfunction and
death rapidly occurs. Noninvasive monitoring of tissue
oxygenation could be utilized for diagnostic and thera-
peutic applications in a range of common diseases,
including myocardial ischemia, cancer, stroke and per-
ipheral vascular disease. The most common CMR tech-
nique to monitor tissue oxygenation is Blood Oxygen
Level Dependant (BOLD) imaging. BOLD imaging is
sensitive to the ratio of oxyhemoglobin and deoxyhemo-
globin and can be utilized for high spatial and temporal
mapping of the dynamic changes in brain oxygenation
during functional CMR studies [85]. However, the
BOLD CMR signal is not quantitatively related to tissue
oxygenation, because it depends strongly on a number
of other factors including blood volumes, blood flow,
hematocrit and pH [86]. Other CMR oximetry techni-
ques use contrast agents that are sensitive to the local

oxygen tension (pO2). A number of these agents are
based on perfluorocarbon molecules, which display a
linear dependence of the 19F spin lattice relaxation rate
on pO2 [87]. In order to accurately measure pO2, the
T1 relaxation time of the fluorinated compound must
be quantified in order to avoid the influence of contrast
agent concentration, T2 and other factors on the CMR
signal. Molecular oxygen is paramagnetic and the solu-
bility of oxygen in perfluorocarbons is three to ten times
higher than in water [88,89]. Oximetry based on 19F
CMR capitalizes on a number of strengths: it is a spin
1/2 nucleus, the sensitivity is approximately 83% com-
pared to 1H, it is 100% abundant, and endogenous fluor-
ine in biological samples only occurs at very low levels
and is typically undetectable because of very short T2
relaxation times. Due to the lack of a background 19F
signal in the body, PFC agents can be definitively identi-
fied and quantified by CMR.
PFCs generating multiple spectroscopic resonances

can be used provide multiple estimates of pO2 or to
measure pO2 and another physiological parameter, such
as temperature, that affects the 19F R1 value by solving
simultaneous equations [90]. For imaging, however, the
multiple 19F resonances can generate chemical shift arti-
facts or reduce the overall signal-to-noise [91,92]. PFCs
with a single resonance, such as perfluoro-15-crown-5-
ether or hexafluorobenzene offer high pO2 sensitivity
and minimal temperature sensitivity [93-95]. For exam-
ple, hexafluorobenzene has been investigated for map-
ping tumor oxygenation during hyperoxic interventions
using echo planar imaging (EPI) to maximize the tem-
poral resolution [95].

Quantification of Metabolic Flux
Another important physiological marker of disease is
metabolic flux rates. For example, the creatine kinase
(CK) reaction is responsible for replenishing adenosine
triphosphate (ATP) by using phosphocreatine (PCr).
Quantitative 31P spectroscopy studies have shown signif-
icant reductions in cardiac PCr and ATP concentrations
in MI patients compared to healthy controls [96]. How-
ever, these measurements do not distinguish between
cell death, reduced substrate availability or impaired
enzyme activity. MR spectroscopy can be used to mea-
sure the rate of metabolic reactions by tracing the
exchange of saturated spins from one molecule to
another. The pseudo-first-order CK rate constant, k,
reflects the intracellular CK reaction kinetics and is
independent of myocyte number, while CK flux is
defined as the product of [PCr] and k. The value of k
can be interpreted as the fraction of the PCr pool used
to create ATP via the CK reaction each second, which is
a measure of intracellular metabolic function. Therefore,
k depends only on the surviving cells that contribute to

Figure 8 Quantitative comparison of nanoparticle binding in
valve leaflets. The volume of nanoparticles (in nanoliters) bound to
the valves was calculated from the 19F signal. The valves treated
with aνb3-targeted particles displayed three times higher signal
compared to the nontargeted formulation and twice the signal of
valves with competitive inhibition of aνb3-integrin binding. Minimal
nanoparticle deposition occurred in non-atherosclerotic animals
treated with targeted nanoparticles due to the lack of angiogenesis
in the valve. Reprinted with permission from Waters, et al [84].
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the 31P MRS signal and is not confounded by myocyte
loss. On the other hand, reduced myocardial CK flux
can be due to a loss of total enzyme activity, altered
intracellular substrate levels, or allosteric modifications
of the enzyme.
In a clinical study of myocardial infarction patients,

the CK kinetics were measured noninvasively using 31P
spectroscopy. The tissue concentrations of ATP and
PCR were measured and CK kinetics (k and CK flux)
were measured by magnetization transfer on a 1.5T clin-
ical scanner [97]. Myocardial [ATP] and [PCr] were 39%
to 44% lower in MI patients compared to healthy con-
trols, however the myocardial CK rate constant, k, was
normal in these patients. As a result of the lower tissue
PCr levels, the CK flux was reduced by 50% in the MI
patient population. These results demonstrate that ATP
loss following MI is a direct result of PCr depletion,
most likely due to myocyte loss. The maintenance of
normal k values indicates that intracellular CK metabo-
lism is maintained in the surviving myocytes. These
results reinforce the use of therapies for MI patients
that combat substrate loss or reduce energy demand,
rather than those that increase workload in the surviving
tissue. For example, beta blockers are routinely pre-
scribed for MI patients because they reduce the heart
rate and myocardial oxygen consumption. Using similar
31P spectroscopy techniques, a 50% reduction in CK flux
has been measured in patients with non-ischemic dilated
cardiomyopathy and mild-to-moderate chronic heart
failure (CHF) [98] and a 65% decrease in CK flux has
been reported in patients with pressure-overload left
ventricular hypertrophy and CHF [99].
Although this study demonstrates 31P CMR on clinical

patients, there are a number of technical hurdles that
limit the wide-spread use of this method in the clinic,
including the instrumentation required, limited resolu-
tion and long scan times. 31P spectroscopy requires spe-
cialty instrumentation that is not found on standard
clinical CMR scanners, such as dedicated cardiac 31P
coils and data processing packages. Also, the 31P data
was localized in only one dimension, yielding a relatively
poor resolution of roughly 6.5 by 6.5 by 1 cm. This
would limit the application to patients with relatively
large and well defined MIs. Furthermore, completion of
the spectroscopy exam took about 70 minutes. As a
result, the other CMR exams, including cine, tagging
and delayed myocardial enhancement, were performed
during a separate imaging session.

Conclusions
Quantitative CMR molecular imaging encompasses a
wide range of developing technologies, such as site-tar-
geted contrast agents, drug delivery vehicles, activatable
CMR probes and direct mapping of tissue metabolites.

As demonstrated by the research studies cited in this
review, the clinical application of these techniques could
offer far reaching benefits to patient populations, includ-
ing early detection of therapeutic response, localizing
ruptured atherosclerotic plaques, stratifying patients
based on biochemical disease markers, tissue-specific
drug delivery, confirmation and quantification of end-
organ drug uptake, and noninvasive monitoring of dis-
ease recurrence. In particular, molecular imaging with
PFC nanoparticle agents has demonstrated a number of
applications in animal models of cardiovascular disease.
The ability to combine 1H and 19F CMR offers anatomi-
cal localization as well as definitive and quantitative
mapping of nanoparticle uptake. Utilizing the nanoparti-
cle platform has proven to be highly flexible, enabling
selection of various contrast mechanisms, targeting
ligands or therapeutic drugs based on the requirements
of the specific application. Eventually, such agents may
play a leading role in reducing the human burden of
cardiovascular disease, by providing early diagnosis,
noninvasive monitoring and effective therapy with
reduced side effects.
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