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Association between behavioral 
phenotypes and sustained use 
of smartphones and wearable 
devices to remotely monitor 
physical activity
Sarah J. Fendrich1*, Mohan Balachandran1 & Mitesh S. Patel1,2,3

Smartphones and wearable devices can be used to remotely monitor health behaviors, but little is 
known about how individual characteristics influence sustained use of these devices. Leveraging data 
on baseline activity levels and demographic, behavioral, and psychosocial traits, we used latent class 
analysis to identify behavioral phenotypes among participants randomized to track physical activity 
using a smartphone or wearable device for 6 months following hospital discharge. Four phenotypes 
were identified: (1) more agreeable and conscientious; (2) more active, social, and motivated; (3) more 
risk-taking and less supported; and (4) less active, social, and risk-taking. We found that duration and 
consistency of device use differed by phenotype for wearables, but not smartphones. Additionally, 
“at-risk” phenotypes 3 and 4 were more likely to discontinue use of a wearable device than a 
smartphone, while activity monitoring in phenotypes 1 and 2 did not differ by device type. These 
findings could help to better target remote-monitoring interventions for hospitalized patients.

Despite the well-established benefits of physical activity for both physical and mental health1–5, approximately 
50% of Americans fail to achieve the minimum recommended level of physical activity6. Self-monitoring of physi-
cal activity data has demonstrated promise for increasing activity levels and decreasing health risks7, particularly 
when paired with well-designed feedback and financial incentives8–12. Additionally, several studies have shown 
the utility of leveraging information on patient activity levels (e.g., step counts) to predict clinical outcomes, 
including hospital readmissions13–15.

As a result, many stakeholders are increasingly interested in using mobile devices to monitor and change 
health behaviors16. The use of mobile activity trackers, smart watches, and smartphones provide a convenient and 
accurate way of tracking exercise17,18, overcoming the burden of collecting sometimes less reliable self-reported 
activity data19. However, there remain significant barriers to motivating regular, sustained use of these tracking 
technologies17,20.

A primary challenge posed by the use of mobile tracking devices is that people tend to discontinue use over 
time17,21,22. In a recent study, members of our group randomly assigned patients discharged home from the 
hospital to track physical activity using either a smartphone or wearable device for 6 months22. In this study, 
61.2% of smartphone users were still tracking physical activity at 6 months compared to 46.5% of those given a 
wearable device, representing a significant difference between groups.

While these findings suggest that smartphones might lead to higher sustained use overall, there may be differ-
ences for different groups of patients. In a previous study, subgroups of participants distinguished by personality 
traits, social support, risk-taking attitudes, and baseline physical activity levels displayed varying responses to 
interventions targeting changes in physical activity23. Moreover, adoption and use of remote activity monitoring 
technologies have been shown to vary not only by sociodemographic characteristics such as age, gender, and 
income21,24, but also by physical activity levels25 and social and behavioral traits. Personality traits are associated 
with adherence to and efficacy of remote monitoring physical activity interventions26,27. Additionally, social 
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support and financial stability, for which credit score may serve as a proxy, have been linked to adherence to 
remote health monitoring systems28.

Though these characteristics are likely to independently influence adherence to and efficacy of remote moni-
toring interventions, previous research has yet to fully appreciate the dynamic ways in which they may interact 
to produce distinct behavioral profiles with meaningful implications for health behavior. For instance, while 
high levels of the personality trait neuroticism have been associated with poor health behaviors such as lower 
medication adherence, research suggests high levels of neuroticism may in fact promote healthier behavior 
when co-occurring with high levels of conscientiousness27. Thus, our objective was to employ a person-centered 
approach to understanding the socio-behavioral correlates of remote activity monitoring behaviors. One promis-
ing approach for identifying groups of individuals who may have similar characteristics, and thus may respond 
similarly to health behavior change interventions, is to construct “behavioral phenotypes” of users based on 
individual behaviors, preferences, and motivations16.

In this study, we leveraged demographic, behavioral, and physical activity data collected at baseline to identify 
underlying homogeneous subgroups of individuals using latent class analysis (LCA). We next examined associa-
tions between the resulting subgroups, termed ‘latent classes’ and hereafter referred to as behavioral phenotypes, 
and patterns of remote physical activity monitoring among patients randomized to use either a smartphone or 
wearable device. Specifically, we compared the duration and consistency of data transmission between device 
types among members of each behavioral phenotype, as well as between behavioral phenotypes within each 
device type in a series of survival and ANOVA analyses.

Results
Participants (n = 442; 223 using smartphones and 219 using wearables) were mostly female (n = 285, 64.5%), with 
a mean (SD) age of 47.4 (13.2) (Table 1). Fifty-eight participants from the original randomized clinical trial29 were 
excluded due to missing credit score data. Rates of patient death (smartphones: 3 patients; wearables: 6 patients) 
and overall dropout including death (smartphones: 5 patients; wearables: 11 patients) were similar between arms.

Considering model fit parameters, the results of likelihood ratio tests, the distribution of the sample across 
classes, and model interpretability, a 4-class LCA model was selected (Supplementary Table 1). This model yielded 
low values for Akaike information criterion (AIC) and sample size adjusted Bayesian information criterion (BIC) 
and high entropy. Though the 3-class model yielded slightly lower BIC, the likelihood ratio test for the 4-class 
model was statistically significant, indicating significantly improved model fit when using 4 classes compared 
to 3 classes. Additionally, while the 5-class model yielded slightly lower AIC and higher entropy than the 4-class 
model, the likelihood ratio test was not statistically significant, indicating that these differences do not signifi-
cantly improve model fit. The sample was also the most evenly distributed across classes in the 4-class model.

Behavioral phenotype descriptions
The four behavioral phenotypes differed significantly on all latent class indicators aside from age and physical 
activity (p-values for ANOVA test < 0.01; Table 1). Phenotypes also differed significantly on a number of addi-
tional sociodemographic criteria such as race, insurance type, education level, marital status, and household 
income (Table 2). However, they did not differ in body mass index or Charlson comorbidity index.

Table 1.   Baseline latent class indicators summarized by behavioral phenotype. SD, standard deviation. 
a ANOVA tests were used for all variables aside from sex (male vs female), for which a chi-squared test was 
used. b Derived from the International Physical Activity Questionnaire (IPAQ). MET minutes represent the 
amount of energy expended carrying out physical activity per week. c Derived from the Medical Outcomes 
Survey (MOS), scaled down from 0–100 to 0–5. d Derived from the Domain-Specific Risk-Taking (DOSPERT) 
Scale. *p-value is significant (p < 0.05).

Latent class indicators

Overall sample
n = 442

Phenotype 1 Phenotype 2 Phenotype 3 Phenotype 4

p-valuea

n = 158 (35.7%) n = 105 (23.8%) n = 86 (19.5%) n = 93 (21.0%)

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Age 47.4 (13.2) 44.5 (11.8) 55.2 (10.7) 44.5 (12.0) 46.3 (15.4) 0.978

Male, N (%) 157 (35.5) 46 (29.1) 51 (48.6) 40 (46.5) 20 (21.5)  <  0.001*

Physical activity, MET minutesb 2311 (3154) 2368 (3391) 2647 (3186) 2117 (2689) 2014 (3107) 0.290

Extroversion (1–5, 5 = most extroverted) 3.5 (0.8) 3.6 (0.7) 3.7 (0.8) 3.6 (0.6) 3.0 (0.6)  < 0.001*

Agreeableness (1–5, 5 = most agreeable) 4.3 (0.6) 4.7 (0.3) 4.4 (0.5) 3.8 (0.6) 3.9 (0.6)  <  0.001*

Conscientiousness (1–5, 5 = most conscientious) 4.2 (0.6) 4.6 (0.3) 4.3 (0.5) 3.8 (0.6) 3.6 (0.5)  < 0.001*

Neuroticism (1–5, 5 = most neurotic) 2.7 (0.9) 2.4 (0.8) 2.4 (0.8) 3.1 (0.8) 3.3 (0.7)  < 0.001*

Openness (1–5, 5 = most open) 3.9 (0.6) 3.9 (0.6) 4.1 (0.6) 4.0 (0.6) 3.4 (0.5)  < 0.001*

Social Support (0–5, 5 = most support)c 4.1 (0.9) 4.2 (0.9) 4.4 (0.8) 3.8 (1.1) 3.9 (0.9)  < 0.001*

Health/safety risk-taking (1 to 7, 7 = extremely likely to engage in risky 
behavior)d 2.4 (1.2) 2.2 (1.0) 2.1 (1.1) 3.6 (1.4) 2.1 (0.9) 0.009*

Social risk-taking (1 to 7, 7 = extremely likely to engage in risky behavior) 4.8 (1.2) 4.7 (1.3) 5.1 (1.0) 5.7 (0.8) 3.8 (1.0) 0.003*

Credit score (300–850, 850 = excellent) 617 (118) 547 (76) 738 (77) 586 (107) 626 (113)  < 0.001*
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Phenotypes were characterized by the key latent class indicators driving group distinctions (Fig. 1; Table 3). 
Below we elaborate on these defining features and on sociodemographic characteristics of note.

Phenotype 1—more agreeable and conscientious.  Phenotype 1 was the largest subgroup, comprising 
35.7% of the sample (n = 158). This phenotype scored the highest in agreeableness (+ 0.67 SD above the sample 
mean) and conscientiousness (+ 0.67 SD), with participants in this phenotype only reporting high levels of both 
features (Supplementary Table 2). They also had the lowest credit scores (− 0.59 SD) and are characterized by 
lower scores in neuroticism (− 0.33 SD). In terms of sociodemographic features, phenotype 1 was composed of 
more non-Hispanic Black participants and participants with lower income and levels of education.

Phenotype 2—more active, social, and motivated.  Phenotype 2 comprised 23.8% of the sample 
(n = 105). This phenotype was older than the overall sample (+ 0.59 SD from sample mean) and males were over-
represented in this phenotype relative to the whole sample. Participants in this phenotype reported the highest 
number of MET minutes per week across classes (+ 0.11 SD), which reflect the amount of energy expended car-
rying out physical activity. They also scored the highest in openness (+ 0.33 SD), extroversion (+ 0.25 SD), and 
social support (+ 0.33 SD), and had the highest credit scores (+ 1.03 SD), reflecting a greater degree of social and 
motivated behavior. There were fewer non-Hispanic Black participants and more Hispanic participants, college 
graduates, and higher income participants in this phenotype relative to the overall sample.

Table 2.   Baseline sociodemographic characteristics included in cox proportional hazard models, summarized 
by behavioral phenotype. SD, standard deviation; CCI, Charlson Comorbidity Index; IQR, interquartile range. 
a Chi-Squared test, aside from age, BMI, and CCI, for which one-way ANOVA tests were used. *p-value is 
significant (p < 0.05). b Calculated as weight in kilograms divided by height in meters squared.

Variable

Phenotype 1 Phenotype 2 Phenotype 3 Phenotype 4

p-valuea

n = 158 (35.7%) n = 105 (23.8%) n = 86 (19.5%) n = 93 (21.0%)

n (%) n (%) n (%) n (%)

Study arm 0.014*

Smartphone 82 (51.9) 53 (50.5) 53 (61.6) 35 (37.6)

Wearable 76 (48.1) 52 (49.5) 33 (38.4) 58 (62.4)

Gender  < 0.001*

Male 46 (29.1) 51 (48.6) 40 (46.5) 20 (21.5)

Female 112 (70.9) 54 (51.4) 46 (53.5) 73 (78.5)

Race  < 0.001*

Non-Hispanic White 35 (22.2) 76 (72.4) 40 (46.5) 54 (58.1)

Non-Hispanic Black 106 (67.1) 19 (18.1) 36 (41.9) 31 (33.3)

Hispanic 8 (5.1) 6 (5.7) 5 (5.8) 5 (5.4)

Other 9 (5.7) 4 (3.8) 5 (5.8) 3 (3.2)

Insurance type  < 0.001*

Commercial 66 (41.8) 70 (66.7) 46 (53.5) 50 (53.8)

Medicare 55 (34.8) 33 (31.4) 22 (25.6) 32 (34.4)

Medicaid 36 (22.8) 2 (1.9) 17 (19.8) 11 (11.8)

Education level  < 0.001*

Less than high school 16 (10.1) 2 (1.9) 7 (8.1) 5 (5.4)

High school graduate 100 (63.3) 45 (42.9) 52 (60.5) 62 (66.7)

College graduate 42 (26.6) 58 (55.2) 27 (31.4) 26 (28.0)

Marital status  < 0.001*

Single, never married 83 (52.5) 19 (18.1) 45 (52.3) 38 (40.9)

Married or domestic partnership 30 (19.0) 10 (9.5) 16 (18.6) 21 (22.6)

Other 45 (28.5) 76 (72.4) 25 (29.1) 34 (36.6)

Household income  < 0.001*

 < 50,000 67 (42.4) 18 (17.1) 33 (38.4) 26 (28.0)

50,000–100,000 24 (15.2) 27 (25.7) 15 (17.4) 11 (11.8)

 > 100,000 7 (4.4) 35 (33.3) 15 (17.4) 14 (15.1)

Declined to respond 60 (38.0) 25 (23.8) 23 (26.7) 42 (45.2)

Age, mean (SD) 44.5 (11.8) 55.2 (10.7) 44.5 (12.0) 46.3 (15.4) 0.969

Body mass index, mean (SD)b 31.9 (9.1) 29.3 (7.1) 31.9 (9.3) 30.3 (9.9) 0.550

CCI score, median (IQR) 4 (4) 3 (4) 3 (4) 3 (4) 0.370



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21501  | https://doi.org/10.1038/s41598-021-01021-y

www.nature.com/scientificreports/

Phenotype 3—more risk‑taking, less supported.  Phenotype 3 comprised 19.5% of the sample (n = 86). 
This phenotype reported the highest levels of risk-taking in both the health and safety domain (+ 1.00 SD) and 
social domain (+ 0.75 SD). Other defining characteristics include the lowest scores in social support (− 0.33 SD) 
and agreeableness (− 0.83 SD). Males were also overrepresented in this phenotype relative to the whole sample, 
as were participants on Medicaid.

Phenotype 4—less active, social, and risk‑taking.  Phenotype 4 comprised 21% of the sample (n = 93). 
Participants in this phenotype reported the lowest levels of physical activity (− 0.09 SD) and social risk-taking 
preferences (− 0.83 SD). They also scored the lowest in extroversion (− 0.63 SD), conscientiousness (− 1.00 SD), 
and openness (− 0.83 SD), and the highest in neuroticism (+ 0.66 SD). Males were underrepresented in this 
group.

Behavioral phenotype and sustained device use.  Differences within each phenotype.  Figure 2 shows 
the proportion of participants in each phenotype providing data over the 180 days after hospital discharge, com-
paring patients randomized to use smartphones versus wearable devices. The more agreeable and conscientious 
phenotype 1 and more active, social, and motivated phenotype 2 showed no differences in duration of data pro-
vision with smartphones versus wearables. However, the more risk-taking and less supported phenotype 3 and 
less active, social, and risk-taking phenotype 4 showed an increased likelihood to discontinue use of a wearable 

Figure 1.   Radar chart comparing behavioral profiles. Points reflect mean scores for each group on the latent 
class indicators coded as continuous variables. Axis boundaries are the minimum and maximum possible values 
for each measure. Age, gender, and physical activity were excluded.

Table 3.   Key factors driving behavioral phenotype (i.e., latent class) distinctions.

Phenotype 1 
More agreeable and 
conscientious
n = 158, 35.7%

Phenotype 2 
More active, social, and 
motivated
n = 105, 23.8%

Phenotype 3 
More risk-taking, less 
supported
n = 86, 19.5%

Phenotype 4 
Less active, social, and risk-
taking
n = 93, 21.0%

Higher agreeableness Higher physical activity Lower agreeableness Lower physical activity

Higher conscientiousness Higher openness Lower social support Lower extroversion

Lower neuroticism Higher extroversion Higher health safety risk taking Lower conscientiousness

Lower credit score

Higher social support

Higher social risk taking

Higher neuroticism

Older Lower openness

Higher credit score

Lower health safety risk taking

Lower social risk taking

Fewer males
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compared to a smartphone, though this difference was only statistically significant in phenotype 3 (unadjusted 
log rank test: p = 0.029).

The increased likelihood to discontinue wearable use in phenotype 3 remains significant in cox proportional 
hazard models adjusted for sociodemographic characteristics (Table 4). Consistent with the unadjusted analyses, 
smartphones and wearable devices did not differ significantly in the other phenotypes. Results do not change 
appreciably in a sensitivity analysis defining a day of data transmission as a day with at least 1000 steps reported 
(Supplementary Table 3).

ANOVA analyses comparing the proportion of days with step data provided during the 180-day study period 
reveal significantly more consistent activity monitoring in smartphone users compared to wearable users in 
both the more risk-taking and less supported phenotype 3 and less active, social, and risk-taking phenotype 4 
(p = 0.014 and p = 0.047, respectively; Supplementary Table 4). In the sensitivity analysis these differences are not 
statistically significant, though the increased consistency in data provision among smartphone users relative to 
wearable users shows trend level significance in phenotype 3 (p = 0.063; Supplementary Table 4).

Differences between phenotypes.  Unadjusted log rank tests show a significant difference in data provision 
between phenotypes among wearable users (p = 0.046), but not among smartphone users (p > 0.05; Fig. 3). In 
adjusted cox proportional hazard models, the log-rank test comparing phenotypes among wearable users trends 
towards significance (p = 0.051), as does the decreased likelihood to stop providing data in the more agreeable 
and conscientious phenotype 1 and more active, social, and motivated phenotype 2 relative to the less active, 
social, and risk-taking phenotype 4 (Table 5). Findings were similar in the sensitivity analysis (Supplementary 
Table 5).

There were no significant differences between phenotypes in the proportion of days with data provided in 
either device type (Supplementary Table 6). However, there are trend level differences between phenotypes in 
both device types in the sensitivity analysis (smartphones: p = 0.057, wearables: p = 0.093; Supplementary Table 6). 
Otherwise, results did not change appreciably in the sensitivity analysis (Supplementary Table 6).

Discussion
In this study, we demonstrate that “behavioral phenotypes,” or subgroups of individuals defined by co-occurring 
social, behavioral, psychological, and demographic traits had different patterns of sustained use of smartphones 
and wearable devices for tracking physical activity. In prior work, the overall sample had higher sustained use in 
the smartphone group when compared to the wearable group22. Our findings demonstrate that this only holds 
true for a subset of “at-risk” individuals. Specifically, duration and consistency of sustained activity monitoring 
differed by device type only in the more risk-taking and less supported phenotype 3 and less active, social, and 
risk-taking phenotype 4. In both phenotypes, smartphone users displayed significantly greater tracking consist-
ency compared to wearable users, while duration of activity monitoring was only statistically significantly higher 
among smartphone users in the more risk-taking and less supported phenotype 3. Additionally, behavioral phe-
notypes differed in duration of activity monitoring only among wearable users, not among smartphone users. This 
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Figure 2.   Kaplan–Meier survival plots displaying duration of sustained remote monitoring of physical activity 
data after hospital discharge to home across device types, stratified by behavioral phenotype. P-values are from 
unadjusted log-rank tests.
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is driven in part by the high rates of early drop-off in use of wearable devices observed in the more risk-taking 
and less supported phenotype 3 and less active, social, and risk-taking phenotype 4.

The less sustained activity monitoring seen in these phenotypes is in line with previous research. The more 
risk-taking and less supported phenotype 3 and less active, social, and risk-taking phenotype 4 reported the 
lowest baseline physical activity levels, which research has linked to a decreased likelihood of forming successful 
activity tracking habits30. These phenotypes also both display personality traits seen in “Type D” or distressed 
personality type, a well-established phenotype marked by a tendency toward negative emotions and social inhi-
bition. Type D personality is correlated with high levels of neuroticism and low levels of conscientiousness, 
agreeableness, and social support, seen in both phenotypes 3 and 4, and has been associated with poor health 
outcomes and a sedentary lifestyle31–33.

Whereas the less active, social, and risk-taking phenotype 4 displayed poor activity monitoring performance 
across both device types, the more risk-taking and less supported phenotype 3 was a top performer among 
smartphone users, showing less sustained and consistent activity monitoring only among wearable users. This 
may be because the more risk-taking and less supported phenotype 3 diverges from the less active, social, and 

Table 4.   Cox proportional hazard models associating study arm with last day of data transmission, censoring 
on patient death and adjusting for patient-level sociodemographic characteristics. Models were fit separately 
for each behavioral phenotype. HR, hazard ratio; CI, confidence interval; BMI, body mass index; CCI, 
Charlson Comorbidity Index. *p-value is significant (p < 0.05).

Variable

Phenotype 1 Phenotype 2 Phenotype 3 Phenotype 4

n = 158, n events = 65 
(41.1%) n = 105, events = 28 (26.7%) n = 86, events = 31 (36.0%) n = 93, events = 44 (47.3%)

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

Study arm

Smartphone Ref. Ref. Ref. Ref.

Wearable 1.14 (0.67–1.95) 0.622 1.24 (0.53–2.91) 0.619 4.36 (1.68–11.37) 0.003* 1.50 (0.73–3.08) 0.269

Age 1.00 (0.98–1.03) 0.813 0.98 (0.93–1.03) 0.334 1.01 (0.97–1.05) 0.668 1.02 (0.98–1.05) 0.354

Gender

Male Ref. Ref. Ref. Ref.

Female 1.15 (0.62–2.13) 0.652 1.66 (0.68–4.03) 0.264 1.21 (0.50–2.92) 0.672 1.39 (0.59–3.30) 0.456

Race

Hispanic Ref. Ref. Ref. Ref.

Non-Hispanic 
Black 1.15 (0.36–3.66) 0.816 0.19 (0.02–1.51) 0.116 1.56 (0.15–16.00) 0.707 1.23 (0.24–6.30) 0.806

Non-Hispanic 
White 0.44 (0.12–1.61) 0.214 0.69 (0.15–3.26) 0.644 0.98 (0.10–9.86) 0.987 2.09 (0.43–10.26) 0.362

Other 1.31 (0.31–5.48) 0.714 0.35 (0.03–4.70) 0.430 0.72 (0.04–13.10) 0.824 2.51 (0.30–20.64) 0.393

Insurance type

Commercial Ref. Ref. Ref. Ref.

Medicare 0.75 (0.38–1.48) 0.408 0.93 (0.30–2.87) 0.903 3.29 (1.06–10.23) 0.040* 0.91 (0.39–2.15) 0.836

Medicaid 1.15 (0.58–2.29) 0.683 8.06 (0.64–
101.37) 0.106 5.60 (1.57–19.92) 0.008* 2.31 (0.79–6.76) 0.128

Education level

Less than high 
school Ref. Ref. Ref. Ref.

High school 
graduate 0.67 (0.30–1.47) 0.312 0.45 (0.04–4.44) 0.491 4.60 (0.87–24.23) 0.072 1.45 (0.30–6.90) 0.642

College graduate 0.58 (0.23–1.44) 0.243 0.26 (0.03–2.58) 0.247 8.72 (1.12–67.58) 0.038* 0.76 (0.13–4.49) 0.763

Marital status

Single, never 
married Ref. Ref. Ref. Ref.

Married or 
domestic partner-
ship

0.97 (0.49–1.91) 0.931 1.53 (0.33–7.08) 0.584 0.44 (0.14–1.43) 0.173 1.13 (0.47–2.73) 0.784

Other 1.82 (0.82–4.02) 0.141 2.35 (0.39–14.06) 0.348 0.53 (0.13–2.16) 0.372 0.82 (0.27–2.49) 0.724

Household income

 < 50,000 Ref. Ref. Ref. Ref.

50,000–100,000 0.67 (0.26–1.72) 0.407 0.54 (0.11–2.56) 0.437 1.93 (0.59–6.34) 0.281 0.69 (0.22–2.20) 0.534

 > 100,000 2.43 (0.64–9.28) 0.194 1.11 (0.20–6.18) 0.905 3.10 (0.63–15.23) 0.164 0.23 (0.05–1.01) 0.051

Declined to 
respond 1.08 (0.61–1.90) 0.791 0.79 (0.16–3.82) 0.768 1.16 (0.39–3.44) 0.784 0.73 (0.33–1.59) 0.423

BMI 0.99 (0.96–1.02) 0.367 1.01 (0.96–1.07) 0.652 0.96 (0.92–1.00) 0.071 1.01 (0.98–1.05) 0.508

CCI 0.98 (0.89–1.09) 0.770 1.19 (1.02–1.39) 0.025* 1.00 (0.87–1.15) 0.977 0.89 (0.76–1.04) 0.140
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risk-taking phenotype 4 and the Type D profile on a number of traits related to sociability: phenotype 3 displays 
high extraversion, high openness, and high degrees of social risk taking, while phenotype 4 reported the lowest 
scores on these metrics. This suggests that sustained use of wearable devices may be more reliant on charac-
teristics such as neuroticism, conscientiousness, and social support, while sustained activity monitoring using 
smartphone devices may be more dependent on traits related to sociability and openness. Future research might 
seek to investigate other baseline characteristics that may mediate the relationship between these characteristics 
and successful physical activity monitoring via a smartphone device, such as general daily smartphone use.

The more active, social, and motivated phenotype 2 displayed high levels of sustained and consistent activity 
monitoring across device types, most notably showing increased adherence to activity monitoring compared to 
the other phenotypes in the wearable arm. Though this is generally unsurprising, a driving feature of this phe-
notype was older age, which contrasts with previous research suggesting older adults are less likely to develop 
successful habits using wearable activity monitoring technology34,35. It is possible that the high levels of social 
support reported by this phenotype, in addition to support from the study team, may have partially offset initial 
acceptance and usability barriers oft-cited in older adults35,36. This reflects the importance of considering indi-
vidual differences when examining patterns in and barriers to use of monitoring technologies in older adults, 
particularly given that they represent a rapidly growing segment of the population likely to benefit from activity 
monitoring technologies34.

In this study we directly compare activity monitoring use patterns between device types while accounting for 
differences in users’ behavioral, psychological, and demographic profiles. Findings suggest that smartphones may 
be a better option when prioritizing the scalability of activity monitoring interventions, given that smartphone 
users provided at least as many days of step data as wearable users across all four behavioral phenotypes. How-
ever, granted that wearables did not underperform smartphones among all subgroups of individuals, trade-offs 
between device types should be considered within the context of the goals and target population of a specific 
program. For instance, while most people already own a smartphone37, which reduces program costs and bar-
riers related to users forgetting to carry or charge an extra device38, not everyone carries their phone on them 
throughout the entire day, so some activity may not be recorded. Additionally, wearables can track biometric 
and sleep data that smartphones cannot29. When feasible, we recommend conducting qualitative assessments 
of user characteristics as well as preferences and perceived barriers to adoption and use to better tailor remote-
monitoring interventions to the given population.

p = 0.31 p = 0.046
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Figure 3.   Kaplan–Meier survival plots displaying duration of sustained remote monitoring of physical activity 
data after hospital discharge to home across behavioral phenotypes, stratified by device type. P-values are from 
unadjusted log-rank tests. Across both device types there is an initial drop-off in the number of participants 
providing data in the less active, social, and risk-taking phenotype 4: within the first week, 20.7% of wearable 
users and 14.3% of smartphone users stopped providing data. In the more risk-taking and less supported 
phenotype 3, we observe similarly high rates of initial drop-off only in the wearable arm, with 15.2% of wearable 
users discontinuing use within the first week, compared to only 5.7% in the smartphone arm. Rates of first-week 
drop-off in phenotypes 1 and 2 were lower and relatively consistent between arms, ranging from approximately 
5–9%.
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Limitations
This study is limited in that it is a secondary analysis of a randomized control trial, which was not designed to 
detect differences across two study arms and four subgroups of participants. Thus, the analyses in the current 
study may be underpowered. Additionally, our sample consists of patients within one health system and who had 
recently been discharged from the hospital, which may limit the generalizability of our findings. Nevertheless, 
the divergence in activity monitoring patterns we identify within subgroups of this sample points to the utility 
of addressing individual variation in traits related to health behaviors and technology use.

Conclusion
To our knowledge, our study is the first to investigate the association between socio-behavioral profiles and 
sustained physical activity tracking, notably comparing monitoring patterns across multiple device types. We 
demonstrate the importance of accounting for individual differences in the implementation and evaluation of 
activity monitoring programs. Four “behavioral phenotypes” of participants differentiated by personality traits, 
behavioral tendencies, and social resources showed distinct patterns in the sustained duration and consistency 
of remote activity monitoring, particularly among individuals randomized to use wearable devices. We find that 
“at-risk” phenotypes characterized by tendencies toward negative affect and lower levels of baseline physical 
activity and social support were more likely to discontinue use of wearable devices.

Table 5.   Cox proportional hazard models associating behavioral phenotype with last day of data transmission, 
censoring on patient death and adjusting for patient-level sociodemographic characteristics. Models were fit 
separately for each study arm. HR, hazard ratio; CI, confidence interval; BMI, body mass index; CI, Charlson 
Comorbidity Index; Ref, reference level.

Variable

Smartphone Wearable

n = 223, n events = 72 
(32.3%)

n = 219, n events = 96 
(43.8%)

HR (95% CI) p-value HR (95% CI) p-value

Behavioral phenotype

Phenotype 1 0.94 (0.47–1.90) 0.865 0.59 (0.34–1.02) 0.060

Phenotype 2 0.75 (0.32–1.79) 0.523 0.55 (0.28–1.09) 0.086

Phenotype 3 0.73 (0.33–1.60) 0.437 0.74 (0.38–1.44) 0.368

Phenotype 4 Ref. Ref.

Age 1.01 (0.98–1.03) 0.552 0.99 (0.97–1.01) 0.478

Gender

Male Ref. Ref.

Female 1.39 (0.80–2.40) 0.240 1.20 (0.75–1.94) 0.451

Race

Hispanic Ref. Ref.

Non-Hispanic Black 1.28 (0.39–4.21) 0.685 0.53 (0.21–1.34) 0.178

Non-Hispanic White 1.01 (0.32–3.21) 0.992 0.58 (0.23–1.47) 0.247

Other 1.08 (0.24–4.83) 0.918 0.75 (0.23–2.48) 0.640

Insurance type

Commercial Ref. Ref.

Medicare 0.77 (0.43–1.40) 0.394 1.20 (0.67–2.14) 0.542

Medicaid 1.37 (0.67–2.81) 0.393 1.89 (0.97–3.68) 0.062

Education level

Less than high school Ref. Ref.

High school graduate 1.57 (0.52–4.73) 0.423 0.72 (0.36–1.45) 0.354

College graduate 0.87 (0.26–2.92) 0.822 0.73 (0.34–1.61) 0.440

Marital status

Single, never married Ref. Ref.

Married or domestic partnership 0.86 (0.44–1.69) 0.671 0.94 (0.53–1.66) 0.832

Other 1.20 (0.55–2.60) 0.645 1.06 (0.54–2.07) 0.867

Household income

 < 50,000 Ref. Ref.

50,000–100,000 1.31 (0.61–2.84) 0.489 0.64 (0.31–1.31) 0.220

 > 100,000 1.74 (0.69–4.41) 0.242 0.59 (0.25–1.38) 0.224

Declined to respond 1.42 (0.77–2.62) 0.263 0.71 (0.43–1.18) 0.187

BMI 0.97 (0.94–1.00) 0.051 1.00 (0.98–1.03) 0.800

CCI 1.04 (0.96–1.14) 0.336 1.00 (0.92–1.08) 0.973
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The differences in adherence to wearable- versus smartphone-mediated activity tracking we identify across 
behavioral subgroups point to the presence of distinct barriers to activity tracking experienced by different popu-
lations. Future research should aim to establish socio-behavioral profiles in larger populations and characterize 
the unique barriers associated with them—particularly among potentially at-risk profiles as described here—to 
inform the strategic design of remote-monitoring technologies and the health-promoting interventions reliant 
on them.

Methods
Study design.  This is a secondary analysis of a randomized clinical trial (ClinicalTrials.gov identifier: 
NCT02983812). The design and protocol of the trial have been previously published29. Patients were approached 
in-hospital between January 23, 2017 to January 7, 2019 and were eligible for participation in the trial if they 
were above the age of 18, could ambulate, had a smartphone compatible with the Withings HealthMate applica-
tion, and planned to be discharged to home.

Prior to hospital discharge, patients were randomly assigned to track their physical activity for 6 months using 
a smartphone or a wrist-worn wearable device. Participants in the smartphone arm tracked their physical activity 
using the Withings HealthMate application, connected via any compatible smartphone device. Participants in 
the wearable arm used a Withings Steel device provided by the study team with a battery lasting approximately 
8 months.

All participants received $50 to enroll and $50 upon trial completion. To level incentives across study arms, 
participants assigned to use a smartphone alone were also given the wearable device after completing the trial. 
For each participant, the first day of the 6-month study began day one after they were discharged. This study 
was approved by the University of Pennsylvania Institutional Review Board and participants provided written 
informed consent to participate in the clinical trial. All methods were performed in accordance with the relevant 
guidelines and regulations.

Using the Withings HealthMate application, physical activity data were transmitted from the devices to 
Way to Health39, a research technology platform used in prior work for activity interventions involving remote 
monitoring8,9,40–44. If data had not been transmitted for four consecutive days, patients were sent a notification 
to synchronize their device via their selected communication preference (text message, email, or telephone 
voice recording). A day of data transmission was defined as a day in which more than zero steps were reported.

Latent class analysis variable selection.  During enrollment, participants were asked to complete a 
sociodemographic survey and series of validated instruments to evaluate physical activity level45, personality46, 
risk-taking preferences47, and social support48. Data on patient credit scores (VantageScore V3) were obtained 
from Experian within 6 months of hospital discharge.

Variables were selected for inclusion in LCA model construction based on established associations with 
physical activity intervention responsiveness and success of remote health monitoring21,23–28. Indicators with 
insufficient variability were excluded given that they are unlikely to aid in identifying subgroups. All variables 
were converted into categorical variables in order to be included in the LCA, which requires discrete input49.

Latent class indicators across the following domains were included:

•	 Demographics, including age (coded as 18–34 years, 35–49 years, and > 50 years) and sex.
•	 Baseline physical activity, which was assessed using the International Physical Activity Questionnaire and 

scored as low, moderate, and high levels50.
•	 Risk-taking preferences were assessed based on patients’ self-reported likelihood to engage in risky behaviors 

related to health/safety and social situations, measured using the DOSPERT survey. The DOSPERT uses a 
7-point Likert scale and was converted into low (1–2.9), medium (3–4.9), and high (5–7) levels.

•	 Social support was measured using the overall score on the Medical Outcomes Study (MOS) Social Support 
survey, computed as the average of subscores assessing emotional/informational support, tangible support, 
affectionate support, and positive social interactions.

•	 Personality was assessed using the Big Five traits of extroversion, agreeableness, conscientiousness, neuroti-
cism, and openness. The MOS and Big Five surveys both use 5-point Likert scales, and were converted to 
low (1–2.9), medium (3–3.9), and high (4–5) levels of each trait, as done in previous work23.

Statistical analyses.  LCA is a statistical method used to identify distinct subgroups within a population 
based on patterns discerned among at least two observed dependent variables (‘latent class indicators’)51. Given 
a set of latent class indicators, the objective of LCA is to determine the optimal number of subgroups, or ‘latent 
classes’, to divide a population into such that latent classes are sufficiently distinct, and individuals can be catego-
rized into their most likely class with high accuracy.

LCA was selected because it has demonstrated superior performance to other common classification tech-
niques such as multidimensional scaling and cluster analysis in its reliability and accuracy, ability to objectively 
evaluate model fit, and balance of parsimony and complexity in its output52. This approach has previously been 
used to identify subgroups that differ meaningfully in response to a behavioral intervention to increase physical 
activity23 and in adherence to therapeutic interventions53,54.

The LCA was performed in Mplus (Version 8.2), a software package commonly used for LCA55. To identify 
the number of latent classes that yielded optimal model fit, we fit a series of latent class models beginning with 
the most parsimonious 2-class model and iteratively increasing the number of subgroup divisions up to five. 
Model fit was evaluated holistically based on quantitative measures of model fit as well as qualitative assessments 
of model interpretability49. Statistical indices of model fit considered include Akaike information criterion and 
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Bayesian information criterion values, which are measures of prediction error, and entropy, which is a measure 
of classification accuracy, with higher values reflecting increased class distinctiveness56,57. We used the Vuong-Lo-
Mendell-Rubin likelihood ratio test (LRT) to evaluate if adding another class statistically significantly improved 
model fit57,58. The distribution of patients throughout latent classes was also considered to maximize statistical 
power and model interpretability.

After determining the best fit model, we used descriptive statistics to evaluate differences in baseline and 
sociodemographic variables between latent classes in R (Version 3.5.1; R Foundation for Statistical Computing). 
Next, we characterized the key factors driving class distinctions based on group differences described in Table 1. 
This selection of driving factors was generally supported by an assessment of the characteristics that were either 
over- or underrepresented in each group. These characteristics were identified by examining the distribution 
of patients in each variable level (e.g., low, medium, or high degree of openness) in each class relative to the 
distribution in the overall sample (Supplementary Table 2). To do so, probability weights reflecting the estimated 
proportion of each class that fell into each level category were generated in Mplus.

To examine differences in duration of data activity monitoring between classes and study arms, we first gener-
ated survival curves using Kaplan–Meier estimates, plotting the proportion of patients providing data over the 
180 days after discharge, censoring on patient death. The duration of data transmission was estimated using the 
last day a step value was received. Using log rank tests, we examined the unadjusted differences between study 
arms in each latent class, as well as between latent classes in each study arm. Subsequently, Cox proportional 
hazard models were fit and adjusted for age, gender, race/ethnicity, insurance, education, marital status, annual 
household income, body mass index, and Charlson Comorbidity Index score.

To evaluate differences in the consistency of data transmission, we compared the proportion of days of data 
transmission using one-way ANOVA tests. This is in line with previous research that has defined consistency of 
activity tracking as the percentage of days tracked relative to the number of days during a trial59. As a sensitivity 
analysis, we repeated all analyses defining a day of data transmission as a day with over 1000 steps reported, since 
values less than 1,000 are unlikely to capture actual activity throughout a whole day, indicating a degree of data 
missingness60,61. Investigators and analysts were blinded to group assignment.

Data availability
Ms. Fendrich had full access to all the data in the study and takes responsibility for the integrity of the data and 
the accuracy of the data analysis.
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