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G R A P H I C A L A B S T R A C T
� A diagnostic model of negatively corre-
lated microRNA (miRNA)/mRNA pairs
was developed to distinguish breast
cancer from benign breast disease.

� Combined biometric research and ex-
periments can significantly improve
diagnostic accuracy.

� The immunological characteristics of
breast cancer tumors were analyzed
using miR-205-5p/High mobility group
box 3 (HMGB3) and miR-96-5p/
Forkhead Box O1 (FOXO1).
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Background: MicroRNA (miRNA) and mRNA levels in matching specimens were used to identify miRNA–mRNA
interactions. We aimed to integrate transcriptome, immunophenotype, methylation, mutation, and survival data
analyses to examine the profiles of miRNAs and target mRNAs and their associations with breast cancer (BC)
diagnosis.
Methods: Based on the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA),
differentially expressed miRNAs and targeted mRNAs were screened from experimentally verified miRNA-target
interaction databases using Pearson's correlation analysis. We used real-time quantitative reverse transcription
polymerase chain reaction to verify BC and benign disease samples, and logistic regression analysis was used to
establish a diagnostic model based on miRNAs and target mRNAs. Receiver operating characteristic curve analysis
was performed to test the ability to recognize the miRNA-mRNA pairs. Next, we investigated the complex in-
teractions between miRNA-mRNA regulatory pairs and phenotypic hallmarks.
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Results: We identified 27 and 359 dysregulated miRNAs and mRNAs, respectively, based on the GEO and TCGA
databases. Using Pearson's correlation analysis, 10 negative miRNA-mRNA regulatory pairs were identified after
screening both databases, and the related miRNA and target mRNA levels were assessed in 40 BC tissues and 40
benign breast disease tissues. Two key regulatory pairs (miR-205-5p/High mobility group box 3 (HMGB3) and
miR-96-5p/Forkhead Box O1 (FOXO1)) were selected to establish the diagnostic model. They also had utility in
survival and clinical analyses.
Conclusions: A diagnostic model including two miRNAs and their respective target mRNAs was established to
distinguish between BC and benign breast diseases. These markers play essential roles in BC pathogenesis.
Introduction

The most recent cancer report published by the International Agency
for Research on Cancer of the World Health Organization indicated that
there are as many as 2.26 million incident breast cancer cases globally
annually.1 Data from the Breast Imaging Reporting and Data System
(BI-RADS) revealed four types of lesions based on ultrasonographic and
mammographic findings. BI-RADS category 4 represents masses with
potential abnormalities that require biopsy, of which three are substand-
ard types (4a, 4b, and 4c) with an elevated suspicion.2 Such lesions do not
show the morphological features of breast cancer but have a risk of ma-
lignancy over time, ranging from 2 to 95%. This variability may result in
unnecessary biopsies and overtreatment of nonmalignant tumors.

Early diagnosis of invasive breast carcinoma (BRCA) is essential for
reducing related mortality. Growing evidence suggests that mRNAs and
microRNA (miRNA) play important roles in carcinogenesis by regulating
cell division and differentiation, apoptosis, epithelial-to-mesenchymal
transition, and chemotherapy resistance.3,4 Bioinformatics can provide
novel insights into biomarkers for diagnosis and prognosis based on
mRNA expression profiles. miRNAs are abnormally expressed in breast
cancer, gastric cancer, leukemia, and other diseases and can control
mRNA expression post-transcriptionally via base-pairing with comple-
mentary sequences within mRNAs.5–7 Many studies have emphasized the
essential role of miRNA-mRNA axes in breast cancer. For instance,
miR-145-5p, which regulates SRY-Box Transcription Factor 2 (SOX2), is
considered a potential marker for predicting breast cancer stemness,8 and
miR-483-3p, which targets Methyltransferase Like 3 (METTL3), is
involved in breast cancer treatment.9

Furthermore, miR-590-5p directly targeted Yes1 Associated Tran-
scriptional Regulator (YAP1) in both in vitro and in vivo xenograft models,
inhibiting tumorigenesis in colorectal cancer cells.10 A comprehensive
meta-analysis of miRNAs for predicting women's cancer by Bastami et al.
that analyzed 126 studies from 69 articles, with a total of 48,844 breast
and gynecological cancer patients and 68,477 healthy individuals, by
comparing the data accuracy of a single miRNA versus multiple miRNAs,
demonstrated that a combination of multiple miRNAs appeared to be
more favorable than a single miRNA.11 The same study also revealed that
it is adequate to select suitable candidate miRNA-mRNA pairs as a
combination of new molecular biomarkers after screening public data-
bases and performing molecular verification in BRCA.

In this study, through a comprehensive assessment of miRNA-mRNA
expression profiles in BRCA and benign breast diseases, we determined
the miRNA-mRNA regulatory network and its complex role in the path-
ogenesis of BRCA. To identify essential differentially expressed mRNAs
and miRNAs in breast cancer, mRNA andmiRNAmicroarray datasets and
RNA-sequencing data were separately obtained from the Gene Expres-
sion Omnibus (GEO) database and The Cancer Genome Atlas (TCGA). We
employed TarBase and MiRTarBase for target mRNA screening to iden-
tify critical miRNA-mRNA regulatory pairs and summarized experimen-
tally confirmed miRNA-mRNA pairs. miRNAs and target mRNAs axes
were assessed in formalin-fixed paraffin-embedded (FFPE) specimens
using reverse transcription and RT-qPCR. Pearson's correlation validation
was performed to establish a logistic regression model to assess diag-
nostic significance. This study conducted an extensive analysis of miRNA-
mRNA regulation in BRCA and benign breast disease tissues to further
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explore the mechanisms of breast cancer. The combination of bioinfor-
matics and RT-qPCR clarified miRNA-mRNA dysregulation and further
determined the early diagnostic mechanism of breast cancer.

Methods

Acquisition and processing of miRNA and mRNA expression profiles

Figure 1 illustrates the workflow of the current study. RNA-
sequencing profiles and associated clinical information from TCGA
Breast Invasive Carcinoma (TCGA-BRCA) database were obtained from
the Global Data Consortium (GDC) data portal of the National Cancer
Institute (https://portal.gdc.cancer.gov/). We then searched for breast
cancer-related gene microarray and high-throughput sequencing
expression datasets in the GEO database (http://www.ncbi.nlm.nih
.gov/geo/) using the keyword “breast cancer”. Filters were set to “se-
ries” and “expression profiling by array”, “expression profiling by high-
throughput sequencing”, “noncoding RNA profiling by array”, “non-
coding RNA profiling by high-throughput sequencing”, and “Homo sapi-
ens”. RNA-Seq data were analyzed using the “edgeR” R package. The
network analysis tool GEO2R (http://www.ncbi.nlm.nih.gov/geo/g
eo2r/) was used to conduct the Wilcoxon rank-sum test between
normal and cancerous specimens based on GEO dataset queries and
limma R packages in the GEO database. The fold-change (FC) of differ-
entially expressed mRNAs (DE-mRNAs) and miRNAs (DE-miRNAs) was
calculated. The cut-off criteria were P < 0.05 and jlog2FCj � 1.

Predicting the target mRNAs of miRNAs in BRCA

To screen the target mRNAs of the miRNAs, we used TarBase and
miRTarBase, which contain experimentally verified miRNA-mRNA in-
teractions. Pearson's correlation analysis based on TCGA-BRCA RNA-
sequencing data was performed to verify the reverse regulatory rela-
tionship between miRNAs and potential target mRNAs in BRCA. P< 0.05
and r < 0 were considered as cut-off criteria.

Functional analysis for DE-miRNAs and DE-mRNAs in BRCA

Gene ontology (GO) functional and Kyoto Genome Encyclopedia
(KEGG) pathway analyses of the DE-mRNAs in the network were per-
formed using HiPlot (https://hiplot.com.cn). DAVID-mirPath (a miRNA
path analysis network server)12 was used for the analysis, considering the
cluster profile tool in HiPlot. P < 0.05 and counts >2 indicated statisti-
cally significant differences in enriched GO/KEGG terms.

Sample collection and RNA isolation

We obtained 40 FFPE breast cancer tissue samples, and benign breast
tumor samples were obtained from patients surgically treated at the First
Affiliated Hospital of Nanjing Medical University. Table 1 shows the
clinical characteristics of the 40 patients with BC. An RNAprep Pure FFPE
Kit (TIANGEN Biotech, Beijing, China) was used for total RNA extraction
from the FFPE tissues, according to the manufacturer's instructions. The
RNA concentration was assessed using a NanoDrop ND-1000 spectro-
photometer (Thermo Fisher Scientific, Waltham, MA, USA).

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
https://hiplot.com.cn


Figure 1. Flow chart for identifying microRNA (miRNAs)-mRNA regulatory pairs and comprehensive analysis of regulatory pair roles in breast cancer (BC).
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Quantitative reverse transcription polymerase chain reaction

After adding poly(A) tails to all RNA samples, a poly(A) polymerase
Kit (Takara Bio USA, Inc., San Jose, CA, USA), PrimeScript RT Kit, and
SYBR Premix Ex Taq II (Takara Bio USA Inc.) were used for quantitative
reverse transcription polymerase chain reaction (RT-qPCR) to verify the
selected DE-mRNAs and DE-miRNAs, as directed by the manufacturer.
PCR amplification was performed on a qTOWER3 84 Real-Time Thermal
Cycler (Analytik Jena, Jena, Germany) in 10-μL reactions at 95 �C (20 s),
followed by 40 cycles at 95 �C (10 s) and 60 �C (20 s). Supplementary
Table 1 shows the sequences of the PCR primers used. RUN6B (U6) and
18S rRNA served as reference genes, and Livak et al.'s comparative cycle
threshold (2-△△Ct) method was used to analyze miRNA and mRNA
expression data.13
Survival analysis

Due to the lack of survival data in GEO datasets, the overall survival
(OS) provided by the TCGA-BRCA database was applied in the survival
Table 1
Clinicopathological and molecular features of breast cancer patients.

Parameters Breast cancer (n¼40) Rate (%)

Age (year)
Mean (standard deviation) 50.8 (12.1)
Median (min, max) 49 (31,75)

Grade, n
I 4 10
II 18 45
III 18 45

TNM stage in situ, n 1 2.5
I 17 42.5
II 12 30
III 10 25

Epithelial subtype, n
Luminal 17 42.5
HER2-enriched 8 20
Triple-negative 4 10
In situ 1 2.5

HER2: Human epidermal growth factor receptor 2; TNM: Tumor-node-
metastasis.
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analysis. Kaplan–Meier curves were drawn using the Kaplan–Meier plotter
to determine the impact of miRNA-mRNA axes on BRCA prognosis
(http://kmplot.com/analysis/index.php?p¼service&cancer¼breast).14

This online tool collects transcriptomic datasets, follow-up data, and
clinical information. Factors affecting relapse-free survival were assessed
using Cox proportional hazards regression analysis. Kaplan–Meier plots
were generated to visualize the prognostic value of the candidate miRNAs
and mRNAs. The sample size used to calculate OS was 1880; the
best-performing threshold was selected as the cut-off, and the maximum
follow-up time was 240 months. Hazard ratios (HR) and 95% confidence
intervals (CI) were determined. P < 0.05 indicated statistical significance.

Assessment of miRNA-mRNA pair and tumor-related phenotype interactions

The clinical information of the patients collected from theTCGA-BRCA
database was acquired from the GDC data portal of the National Cancer
Institute. According toThorsson, TCGA-BRCA sampleswere classified into
five groups using the Pam50method: luminal A, luminal B, Her-2 positive,
basal-like, and normal-like.15 The fractions of 22 infiltrating immune cell
types were calculated using CIBERSORT, a gene-based deconvolution
algorithm (https://cibersort.stanford.edu/index.php/). Differences in
immune cells between TCGA-BRCA patients and normal controls were
compared using theWilcoxon rank-sum test. TheUCSCXena platform (htt
ps://xena.ucsc.edu/) was searched using the Illumina Infinium Human-
Methylation450 BeadChip platform (Illumina, San Diego, CA, USA). The
methylation levels of CpG sites in TCGA-BRCA samples were obtained
using this platform, and these data were used to calculate the overall DNA
methylation level. Tumor mutational burden was used to measure the
total number of somatic variants and megabases.

Statistical analysis

R v3.6.3 (https://cran.r-project.org/; R Foundation for Statistical
Computing, Vienna, Austria), GraphPad Prism (GraphPad Software, San
Diego, CA, USA), and SPSS v.26 (SPSS Inc. Chicago, IL, USA) were used to
analyze the data. Continuous data are expressed as mean � SD and were
compared using the Student's t-test. Differentially expressed miRNAs and
mRNAs with jlog2FCj > 0.58 and P < 0.05 were considered statistically
significant. The association between miRNA and mRNA expression in

http://kmplot.com/analysis/index.php?p=service&amp;cancer=breast
http://kmplot.com/analysis/index.php?p=service&amp;cancer=breast
http://kmplot.com/analysis/index.php?p=service&amp;cancer=breast
http://kmplot.com/analysis/index.php?p=service&amp;cancer=breast
https://cibersort.stanford.edu/index.php/
https://xena.ucsc.edu/
https://xena.ucsc.edu/
https://cran.r-project.org/
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BRCA tissues was determined using Pearson's correlation analysis.
Receiver operating characteristic (ROC) curves were established based
on the indicated miRNA-mRNA pairs, and the areas under the curves
(AUC) were assessed to evaluate the diagnostic accuracy of these in-
dicators. Kaplan–Meier curves were compared using the log-rank test,
with P < 0.05 indicating statistical significance. The time interval from
diagnosis to death was defined as the OS. Cox regression analysis was
conducted for statistically significant DE-miRNAs or DE-mRNAs (P <

0.05). HR and 95% CIs were assessed to determine whether these in-
dicators are survival related. R v3.6.3, GraphPad Prism, and HiPlot
generated the plots.

Results

Identification of DE-miRNAs and DE-mRNAs in BRCA

This study included 21 miRNA expression datasets from GEO,
including four RNA-Seq datasets (3 from tissue, 1 from peripheral blood)
and 17 microarray datasets from tissue, peripheral blood, serum, and
plasma. Five mRNA expression microarray datasets were obtained from
tissue samples. In addition, three mRNA expression RNA-Seq datasets,
including two from tissues and one from peripheral blood, were included.
Table 2 presents detailed information on the GEO datasets used in this
study. A total of 27 DE-miRNAs and 359 DE-mRNAs were at the inter-
section of TCGA and GEO datasets.
Functional enrichment and pathway analyses

Using DAVID-mirPath, the enrichment analysis of five upregulated and
five downregulated miRNAs was performed. The targets of the five upre-
gulated miRNAs (hsa-miR-21-5p, hsa-miR-182-5p, hsa-miR-96-5p, hsa-
Table 2
Information on the selected GEO datasets for breast cancer.

Parameters Experiment type Source name GEO accession Platform

microRNA
expression

Array Tissue GSE144463 GPL1546

GSE58606 GPL1883
GSE38167 GPL1494
GSE48088 GPL1461
GSE44124 GPL1476
GSE32922 GPL7723
GSE45666 GPL1476
GSE42072 GPL1624
GSE26659 GPL8227
GSE7842 GPL5173

Serum GSE98181 GPL2157
Plasma GSE118782 GPL8786

GSE41526 GPL8179
GSE22981 GPL8179

Peripheral blood GSE83270 GPL2200
GSE53179 GPL1655
GSE31309 GPL1413

Sequencing Tissue GSE131599 GPL1857
GSE117452 GPL1679
GSE68085 GPL1099

Peripheral blood GSE72080 GPL1115
Gene expression Array Tissue GSE50428 GPL1364

GSE59246 GPL1360
GSE71053 GPL570
GSE115275 GPL2182
GSE64790 GPL1961

Tissue GSE52194 GPL1115
Sequencing GSE99680 GPL1857

Peripheral blood GSE41245 GPL1476

GEO: Gene Expression Omnibus.
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miR-200c-3p, and hsa-miR-342-3p) were enriched in 70 KEGG pathways,
208 GO biological processes, 11 GO cellular components, and 20 GO mo-
lecular functions, and the top 15 annotations ordered by -log10p-value are
shown on the left of Supplementary Figure 1. The targets of the five
downregulated miRNAs (hsa-miR-195-5p, hsa-miR-139-5p, hsa-miR-205-
5p, hsa-miR-125b-5p, and hsa-miR-145-5p) were enriched in 44 KEGG
pathways, 208GObiological processes, 20GO cellular components, and 20
GO molecular functions, and the top 15 annotations ordered by -log10p-
value are shown on the right of Supplementary Figure 1. Next, we analyzed
the 359 differentially expressed mRNAs using the Hiplot platform with a
cluster profile, as shown in Supplementary Figure 2. The results disclosed
that the enrichedKEGGpathways of dysregulatedmiRNAswere frequently
associated with signal transduction pathways such as the p53, FoxO, TGF-
beta, Hippo, and ErbB pathways. Tumorigenesis-related events such as
proteoglycans in cancer, fatty acidmetabolism, fatty acid biosynthesis, and
pancreatic cancer were also involved.
Negatively regulated miRNA/mRNA pairs related to BRCA

First, miRTarBase and TarBase were used to select experimentally
verified target mRNAs associatedwith DE-miRNAs. As shown in Figure 2B,
negatively regulated miRNA-mRNA pairs were identified based on the in-
tersections between the 359 DE-mRNAs and the two databases. Next, the
Benjamini–Hochbergmethodwas used tofilter out 10miRNA-mRNA pairs
with significant negative correlations (adjusted P < 0.05) in TCGA. Upre-
gulated miRNA/downregulated mRNA pairs included miR-21-5p/
Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1), miR-182-5p/
Arrestin domain-containing 3 (ARRDC3), miR-96-5p/Forkhead Box O1
(FOXO1), miR-200c-3p/Fibulin 5 (FBLN5), andmiR-342-3p/Transforming
Acidic Coiled-Coil Containing Protein 1 (TACC1), and downregulated
miRNA/upregulated mRNA pairs included miR-195-5p/Rac GTPase-
Tumor group, n Control group, n

Total Stage (0,I,II,III,IV) Classification (Luminal A,
Luminal B, Her2,
Triple negative)

8 40 0, 13, 15, 12, 0 Not given 10

8 122 Not given 31, 33, 27, 31 11
3 44 Not given 0, 0, 0, 44 23
3 33 Not given 8, 10, 11, 4 3
7 50 Not given Not given 3

22 Not given Not given 15
7 101 Not given Not given 15
9 7 Not given 3, 0, 0, 4 7

77 2, 20, 47, 5, 3 Not given 17
93 0, 2, 66, 22, 9 Not given 5

2 24 Not given Not given 24
30 Not given Not given 10
40 Not given Not given 20
20 Early stage Not given 20

3 6 Not given Not given 6
0 11 Early stage 11, 0, 0, 0 5
2 48 0, 41, 7, 0, 0 Not given 57
3 189 Not given 40,55,44,50 2
1 58 Not given Not given 10
9 103 Not given 62,2,10,29 11
4 14 Not given Not given 18
8 21 Not given 5,5,5,11 10
7 86 Not given 20,33,17,16 19

6 Not given Not given 12
7 6 Not given 0,0,0,6 6
2 3 Not given 0,0,0,3 3
4 17 Not given Not given 3
3 14 Not given Not given 19
1 10 Not given Not given 20



Figure 2. The 27 microRNA (miRNAs) and 359 mRNA network visualized by Cytoscape. There were 177 miRNA (up)-mRNA (down) pairs and 247 miRNA (down)-
mRNA (up) pairs screened out by miRtarbase and Tarbase, which contain experimentally validated miRNA-mRNA regulatory pairs. Red represents the upregulated
miRNAs/mRNAs in BC versus NCs, while blue represents the downregulated miRNAs/mRNAs in BC versus NCs. Ovals represent mRNAs, and triangles represent
miRNAs. BC: Breast cancer; NCs: Negative controls.
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activating protein 1 (RACGAP1), miR-139-5p/Tumor protein D52
(TPD52),miR-205-5p/Highmobility group box 3 (HMGB3),miR-125b-5p/
Poly (ADP-ribose) polymerase 1 (PARP1), andmiR-145-5p/Tropomyosin 3
(TPM3) [Table 3]. Throughdatabase screening,we identified10 negatively
correlated miRNA/mRNA pairs for experimental verification.
Verification of miRNA and mRNA amounts in the BRCA tissue

Poly(A) RT-qPCR was performed to analyze the expression levels of
the 10 DE-miRNAs and 10 DE-mRNAs in 40 tumors and 40 benign breast
disease tissue samples. The results showed that among miRNAs, miRNA-
205-5p, miRNA-139-5p, miR-145-5p, and miR-96-5p met the standard.
The test results for the mRNAs targeted by these four miRNAs showed
that TPD52 (P ¼ 0.021, FC ¼ 1.287), HMGB3 (P ¼ 0.015, FC ¼ 1.329),
PARP1 (P ¼ 0.004, FC ¼ 2.349), and TPM3 (P ¼ 0.029, FC ¼ 3.993) met
the standards. The complete RT-qPCR data are shown in Figure 3A.
Pearson's correlation analysis was performed to examine the interactions
between DE-miRNAs and DE-mRNAs. Among the four miRNA/mRNA
pairs, miR-205-5p/HMGB3 (P ¼ 0.008, r ¼ �0.350) and miR-96-5p/
FOXO1 (P¼ 0.028, r¼�0.290) showed a significant negative correlation
Table 3
Pearson's correlation analysis of miRNA-mRNA pairs in breast cancers in TCGA.

Parameters miRNA Parameters mRNA p-value r-value

Up miR-21-5p Down PIK3R1 8.02E-09 –0.170
miR-182-5p ARRDC3 2.70E-08 –0.164
miR-96-5p FOXO1 2.33E-20 –0.269
miR-200c-3p FBLN5 3.26E-05 –0.123
miR-342-3p TACC1 1.02E-05 –0.130

Down miR-195-5p Up RACGAP1 1.46E-18 –0.256
miR-139-5p TPD52 4.58E-15 –0.229
miR-205-5p HMGB3 1.58E-03 –0.093
miR-125b-5p PARP1 4.83E-16 –0.237
miR-145-5p TPM3 8.87E-13 –0.209

ARRDC3: Arrestin domain-containing 3; FBLN5: Fibulin 5; FOXO1: Forkhead
Box O1; RACGAP1: Rac GTPase-activating protein 1; HMGB3: High mobility
group box 3; PARP1: Poly(ADP-ribose) polymerase 1; PIK3R1: Phosphoinositide-
3-Kinase Regulatory Subunit 1; TACC1: Transforming Acidic Coiled-
Coil Containing Protein 1; TCGA: The Cancer Genome Atlas; TPD52:
Tumor protein D52; TPM3: Tropomyosin 3.
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[Figure 3B and Table 4]. Immunohistochemistry images in the HPA
database revealed elevated HMGB3 levels in BRCA cells compared with
those in normal breast cells, whereas the expression of FOXO1 in BRCA
cells was lower than that in normal breast cells [Supplementary Figure 3].

Predictive value of miRNA-mRNA regulator pairs in BRCA

Logistic regression analysis was performed to evaluate the predictive
value of the miR-205-5p/HMGB3 and miR-96-5p/FOXO1 panels by
including two miRNA-mRNA pairs in an RT-qPCR validation cohort
containing 40 BRCA tissues. The ROC curve (logistic regression model ¼
�0.2286 þ 0.0082*miR-96-5p þ �0.8506*FOXO1 þ �0.2136*miR-
205-5p þ 0.2818*HMGB3) analysis [Figure 4A] confirmed that this
model had good diagnostic value (AUC ¼ 0.856, 95% CI: 0.759–0.953).
ROC curves were generated for the two DE-miRNAs and two DE-mRNAs
in TCGA [Figure 4B], further confirming that these four indicators have
diagnostic value [Figures 4C and D]. According to the ROC curve of the
four combined indicators (AUC¼ 0.999), their diagnostic advantage was
significantly better than that of a single indicator.

We also analyzed the expression levels of the two DE-mRNAs in
miRNA-mRNA pairs based on clinicopathological features. As shown in
Figures 5A and B, the expression levels of FOXO1 and miR-205-5p were
associated with the age at diagnosis and breast cancer stage. The
expression levels of the miR-205-5p/HMGB3 pair differed between the
luminal A and B groups [Figure 5C]. The same difference was observed
between the luminal B and normal-like groups.
Overall survival data

Because the clinical tissue samples were limited and the GEO data-
base had no clinical data, survival analysis was conducted based on TCGA
data. The HRs of various clinical parameters in the TCGA testing set (n ¼
1880) were estimated using univariate and multivariate Cox regression
analyses. As is depicted in Supplementary Figure 4, HMGB3 level
significantly correlated with OS (HR ¼ 1.39, 95% CI: 1.01–1.91;
P ¼ 0.044) in TCGA. This demonstrates that HMGB3 influences the
prognosis of breast cancer and provides novel insights into breast cancer
treatment. Unfortunately, we did not have additional survival data to
estimate the prognostic model, and more research is required regarding
the predictive value of the two miRNA-mRNA regulatory pairs in BRCA.



Figure 3. Validation of the expression of
10 differentially expressed microRNA
(miRNAs) and 10 differentially expressed
mRNAs by RT-qPCR. (A) The miRNA
expression levels of miR-96-5p were
upregulated in BC, whereas those of miR-
139-5p, miR-205-5p, and miR-145-5p
were downregulated. The mRNA expres-
sion levels of PIK3R1, ARRDC3, FOXO1,
FBLN5, and TACC1 were downregulated
in BC, whereas those of TPD52, HMGB3,
PARP1, and TPM3 were upregulated. (B)
Pearson's correlation analysis of miRNA-
mRNA regulatory pairs in 80 samples.
Two negatively correlated miRNA-mRNA
regulatory pairs were plotted. Data are
presented as mean � SEM. *p < 0.05, **p
< 0.01 and ***p < 0.001 (Student's t-
test). p-values are listed in Table 4.
ARRDC3: Arrestin domain-containing 3;
BC: Breast cancer; FBLN5: Fibulin 5;
FOXO1: Forkhead Box O1; HMGB3: High
mobility group box 3; PARP1: Poly (ADP-
ribose) polymerase 1; PIK3R1: Phosphoi-
nositide-3-Kinase Regulatory Subunit 1;
RT-qPCR: Real-time quantitative reverse
transcription PCR; SEM: Standard error of
the mean; TACC1: Transforming Acidic
Coiled-Coil Containing Protein 1; TPD52:
Tumor protein D52; TPM3: Tropomy-
osin 3.

Table 4
Pearson’s correlation analysis of miRNA-mRNA pairs in FFPE breast cancer samples.

Parameters miRNA p-value Fold-change (2-ΔΔCT) Parameters mRNA p-value Fold-change (2-ΔΔCT) Pearson's correlation

p-value r-value

Up miR-21-5p 0.823 1.177 Down PIK3R1 <0.0001 0.131 0.087 0.514
miR-182-5p 0.133 1.461 ARRDC3 0.005 0.198 0.016 0.310
miR-96-5p 0.025 3.415 FOXO1 0.033 0.239 0.028 –0.290
miR-200c-3p 0.251 1.395 FBLN5 0.029 0.450 0.021 0.300
miR-342-3p 0.197 1.193 TACC1 <0.0001 0.228 <0.0001 0.480

Down miR-195-5p 0.196 0.664 Up RACGAP1 0.204 1.996 0.016 –0.310
miR-139-5p 0.019 0.261 TPD52 0.021 1.287 0.004 0.550
miR-205-5p 0.009 0.338 HMGB3 0.015 1.329 0.008 –0.350
miR-125b-5p 0.081 0.235 PARP1 0.004 2.349 0.095 0.230
miR-145-5p 0.002 0.195 TPM3 0.029 3.993 0.494 0.091

ARRDC3: Arrestin domain-containing 3; FBLN5: Fibulin 5; FOXO1: Forkhead Box O1; FFPE: Formalin-fixed paraffin-embedded; RACGAP1: Rac GTPase-activating
protein 1; HMGB3: High mobility group box 3; PARP1: Poly(ADP-ribose) polymerase 1; PIK3R1: Phosphoinositide-3-Kinase Regulatory Subunit 1; RACGAP1: Rac
GTPase-activating protein 1; TACC1: Transforming Acidic Coiled-Coil Containing Protein 1; TPD52: Tumor protein D52; TPM3: Tropomyosin 3.
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Tumor-related phenotypes associated with signatures

We used a computational method (CIBERSORT) to analyze multiple
gene expression profiles in breast cancer to infer the proportions of the 22
immune cell subsets. Twelve immune cell types exhibited differential
expression in the BRCA and adjacent normal samples, as shown in
Figure 6A [all results are listed in Supplementary Table 2]. We further
investigated the association between each cell type and miRNA and
target mRNA expression. As shown in Figure 6B, miR-205-5p and its
target gene HMGB3 were associated with activated dendritic cells,
whereas miR-96-5p and its target gene FOXO1 were associated with M0
macrophages. Analysis of the tumor revealed that miR-96-5p/FOXO1
interacts with DNA methylation, tumor immunity, and inflammation in
the tumor microenvironment [Figure 6C].
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Discussion

miRNAs are endogenous regulators of gene expression that affect cell
proliferation, invasion, and metastasis, all of which are vital for cancer
progression.16,17 miRNA-mRNA interaction networks may act as new
biomarkers for early diagnosis and long-term prognosis of breast cancer
and may be potential targets for breast cancer treatment.18 It is of
far-reaching significance to identify miRNA-mRNA regulatory networks
and clarify their complex roles in immunity, tumorigenesis, and molec-
ular mechanisms.

We conducted an in-depth analysis of miRNA-mRNA pairs in breast
cancer tissues and benign controls. We found 28 eligible GEO datasets
and used GEO2R, “R-limma”, and “R-edgeR” to determine the expression
profiles of miRNAs and mRNAs. TCGA data were then combined to



Figure 4. Receiver operating characteristic (ROC) curves of the complex predictive model include four signatures (miR-205-5p, HMGB3, miR-96-5p, and FOXO1) to
distinguish BC from control samples. (A) ROC curves of the complex predictive model in the external validation cohort. (B) ROC curves of the complex predictive
model in TCGA. (C) ROC curves of each DE-miRNA (miR-205-5p and miR-96-5p) in TCGA. (D) ROC curves of each DE-mRNA (HMGB3 and FOXO1) in TCGA. De-
mRNAs: Differentially expressed mRNAs; De-miRNAs: Differentially expressed miRNAs; miRNA: microRNA; FOXO1: Forkhead Box O1; HMGB3: High mobility
group box 3; TCGA: The Cancer Genome Atlas.
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identify candidate DE-miRNAs and DE-mRNAs. A multistep method
identified 27 differentially expressed miRNAs and 359 differentially
expressed mRNAs.

Functional analysis of candidate DE-miRNAs and DE-mRNAs selected
from TCGA and GEO databases revealed that they were related to the
classic p53, FoxO, TGF-beta, and hippo pathways, consistent with pre-
vious studies.19–22 KEGG pathway analysis of proteoglycans in cancer has
attracted increasing attention. Proteoglycans affect malignant cells and
the tumor microenvironment in both solid and hematopoietic cancers.23

In the present study, we adopted strict criteria to identify vital
miRNA-mRNA regulatory pairs. DE-miRNAs and their target mRNAs
showed negatively correlated differential expression, as determined by
Pearson's correlation analysis, which was then tested in miRTarbase and
Tarbase, and the selected pairs were further examined.

After cross-examining the 27 DE-miRNAs and 359 DE-mRNAs between
the 2 databases, 259 miRNA (up)-mRNA (down) pairs and 177 miRNA
(down)-mRNA (up) pairs were screened. Pearson's correlation analysis was
used to screen the differentially expressedmiRNAs and their target mRNAs
from experimentally verified miRNA-target interaction databases (miR-
TarBase and TarBase). We filtered out 10 significantly negatively corre-
lated miRNA-mRNA pairs. Using poly(A) RT-qPCR, these 10 miRNA-
mRNA pairs were examined for expression in 40 BRCA and 40 benign
165
breast disease specimens. Finally, two negatively correlated regulatory
pairs, miR-205-5p/HMGB3, and miR-96-5p/FOXO1 were included in the
binary logistic regression model. Subsequent analyses supported the pre-
dictive value of these miRNA-mRNA pairs. Compared with single in-
dicators, the combination logistic regression model (y ¼ – 0.2286 þ
0.0082�miR-96-5p – 0.8506� FOXO1 – 0.2136�miR-205-5pþ 0.2818
� HMGB3) had higher performance, with significance in diagnosis.

MiR-205-5p inhibits breast cancer cell proliferation, migration, and
invasion and induces cell apoptosis in association with the long non-
coding RNA FGF14-AS2.24 Silencing miR-205-5p in BRCA decreased
tumor growth and metastatic spread in a mouse model.25 In the present
study, miR-205-5p expression in BRCA tissue specimens was significantly
downregulated compared with that in non-cancerous breast tissues,
which is consistent with the elevated miR-205-5p expression levels that
inhibited breast cancer development in the aforementioned studies. For
miR-96-5p analysis, many reports have demonstrated that BRCA cell
migration is promoted by activating mitogen-activated protein kinase
kinase (MEK)/extracellular signal-regulated kinase (ERK) signal trans-
duction,26 whereas the long noncoding RNA CASC2 inhibits growth and
metastasis in BRCA by regulating the miR-96-5p/Synoviolin 1 (SYVN1)
pathway.27 Studies have shown that miRNA-96-5p may negatively
regulate the tumor suppressor gene FOXO3, promote cell growth, and



Figure 5. Expression levels of microRNA (miRNAs)-
mRNA axes were compared in subgroups divided by
clinical features of BRCA patients obtained from
TCGA. Expression levels of FOXO1 and miR-205-5p
were associated with the age at diagnosis and tumor
stage of BRCA patients. *p < 0.05, both a and b
indicate statistically significant differences, and those
with a or b alone indicate no statistical difference.
BRCA: Breast carcinoma; FOXO1: Forkhead Box O1;
TCGA: The Cancer Genome Atlas.

Figure 6. The association between immune-related phenotypes and microRNA (miRNA)/target mRNA expression levels in BC. (A) Heatmap showing the immune cell
subset proportions in BC and NCs. Data are presented as the mean. (B) Association between expression of miRNAs/target mRNAs and the proportions of the 22
immune cell subsets by Pearson's correlation. (C) Association between miRNA/target mRNA expression and global methylation, tumor mutation burden, and four
tumor microenvironment factors (stromal score, immune score, tumor purity, and ESTIMATE score). “�” was placed through the cell when the p-value >0.05. BC:
Breast cancer; NCs: Negative controls.
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enhance malignancy.28 In the current study, miR-96-5p targeting of
FOXO1 affected the occurrence of breast cancer, suggesting the need for
further research on the relationship between miR-96-5p and the FOXO
family of proteins.

In OS analysis, HMGB3 expression significantly correlated with OS
(HR¼ 1.39, 95% CI: 1.01–1.91; P¼ 0.044) in TCGA. HMGB3 is absorbed
in a breast cancer prognostic model.29 Although no correlation was
detected between OS and miR-96-5p expression levels in tumor tissues,
circ_miR-96-5p is involved in evaluating breast cancer prognosis.30
166
To predict breast cancer using miRNA-mRNA pairs, we used a combi-
nation of bioinformatics methods and experiments that are more reliable
than a single biological information analysis or a single essential investi-
gation. Experimental methods can be used to verify the authenticity of the
identified miRNA-mRNA regulatory pairs, including photoactivatable
ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-
CLIP), high-throughput sequencing of RNA isolated by crosslinking
immunoprecipitation (HITS-CLIP, also known as CLIP-Seq), crosslinking
ligation and sequencing of hybrids (CLASH), biotin microarray, and



J. Li et al. Cancer Pathogenesis and Therapy 1 (2023) 159–167
western blotting. Bioinformatics has an absolute advantage over large-scale
data analyses.31 The combination of biometric research and experiments
can significantly improve diagnostic accuracy. However, with the limited
sample size, the current data require validation in large trials. Although the
clinical application of these findings remains distant, they provide sup-
plementary or alternative tools for routine diagnostic approaches to BRCA.
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