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Background: The involvement of glycolysis in the regulation of the tumor

immunemicroenvironment has become a novel research field. In this study, the

specific functions and clinical significance of glycolysis-related genes (GRGs)

and immune-related genes (IRGs) were systematically characterized in lung

squamous cell carcinoma (LUSC).

Methods: We evaluated the prognostic value, interactions, somatic mutations,

and copy-number variations of GRGs and IRGs in LUSC from a dataset of The

Cancer Genome Atlas (TCGA). An integrated glycolysis–immune score (GIS)

model was generated by random forest algorithm and stepwise Cox regression

analysis. The predictive power of the GIS was examined by survival analysis,

receiver operating characteristics, univariate and multivariate analyses, and

subgroup analysis. The correlations between GIS and biological functions,

glycolysis, immune activity, immune cell infiltration, and genomic changes

were analyzed, and the potential of GIS to guide clinical treatment decisions

was evaluated.

Results: A total of 54 prognostic GRGs and IRGs were identified, and a

strong correlation was noted among them. However, most of them had

somatic mutations and a high incidence of CNV. The GIS model that

contained two GRGs (PYGB and MDH1) and three IRGs (TSLP, SERPIND1,

and GDF2) was generated and a high GIS indicated poor survival. Moreover,

we found that low GIS was associated with immune pathway

activation, M1 macrophage infiltration, and higher immune scores. Finally,

patients with low GIS were more sensitive to chemotherapy and

immunotherapy.

Conclusion: An integrated model based on glycolysis and immune

genes can distinguish the biological functions and immune infiltration

patterns of individual tumors, quantitatively estimate the prognosis

of patients with LUSC, and guide chemotherapy and immunotherapy

decisions.
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Introduction

Lung cancer is one of the leading causes of cancer-related

deaths worldwide and is the most common type of cancer (Siegel

et al., 2020). Overall, 80%–85% of human lung cancers are non-

small cell lung cancers (NSCLCs), and most NSCLCs contain two

major histological subtypes, namely, lung adenocarcinoma

(LUAD) and lung squamous cell carcinoma (LUSC), which

account for approximately 25–30% of all lung cancers (Chen

et al., 2014). Recent advances in targeted therapies have greatly

benefitted patients with LUAD. However, little progress has been

made in the development of LUSC-targeted therapies; as a result,

traditional chemotherapy remains the first-line treatment of

LUSC for decades. The 5-years survival rates of patients with

advanced LUSC treated with currently used chemotherapy were

less than 5% (Sun et al., 2007; Drilon et al., 2012), which appears

overwhelmingly discouraging. Thus, there is an urgent need to

determine prognostic biomarkers to identify patients who are

sensitive to treatment. This will enable clinicians to predict

clinical outcomes of LUSC timely and accurately and initiate

personalized treatment regimens.

Abnormal tumor immune microenvironment (TIME) and

tumor metabolic reprogramming are two important features of

tumors (Hanahan and Weinberg, 2011). Cancer cells have

traditional oxidative metabolism and glycolysis anaerobic

metabolism. However, their proliferation is characterized by

increased glycolysis metabolism, even in the presence of

oxygen (Warburg effect) (Icard et al., 2018). Previous studies

have focused on the Warburg effect, supporting the

aggressiveness and drug resistance of cancer cells (Lu et al.,

2015; Icard and Lincet, 2016), whereas the involvement of

glycolysis and its product, lactic acid, in the regulation of

TIME has recently become a research area. Studies have

reported that lactic acid leads to tumor immune escape and

inhibits the activity of T cells and natural killer (NK) cells while

being up-taken by regulatory T (Treg) cells andmaintaining their

immunosuppressive ability (Brand et al., 2016; Watson et al.,

2021). It can also inhibit monocyte activation and dendritic cell

differentiation (Colegio et al., 2014). Moreover, it induces the

M2 polarization of macrophages and promotes tumor growth

through mechanisms by involving the hypoxia-inducible factor

1-alpha (HIF-1α) (Colegio et al., 2014). Although glycolysis has a
clear inhibitory effect on the TIME, few studies have focused on

this relationship comprehensively.

In this study, we integrated glycolysis-related genes (GRGs)

and immune-related genes (IRGs) and constructed a systematic

glycolysis–immune score (GIS) model. This GIS model showed

stable prognostic efficacy in different datasets and clinical

subgroups of LUSC. We also demonstrated the relationship of

the GIS model to glycolysis and immune status and

systematically explored the biological mechanisms of GIS

from the perspectives of pathway activity, immune infiltration,

and genomic changes. Finally, the study presents that GIS can

identify patients with LUSCwho are susceptible to chemotherapy

and immunotherapy.

Methods

Genomic data and clinical information

RNA-sequencing data and clinical follow-up data from

TCGA-LUSC patients were downloaded from the database of

The Cancer Genome Atlas (TCGA). A total of 492 patients with

LUSC were enrolled after excluding patients who had missing

clinical information (such as stage, sex, and age) and who were

lost to follow-up. In addition, three datasets, namely, GSE29013,

GSE30219, and GSE37745, from the same chip platform

(GPL570) were downloaded from the Gene Expression

Omnibus (GEO) database. We enrolled patients whose

pathological diagnosis was squamous cell carcinoma and

excluded patients without detailed clinical information.

Finally, 166 patients with LUSC were enrolled and used as a

validation queue. The R Package ComBat was used to remove

batch effects among datasets.

The corresponding MAF data of TCGA-LUSC patients on

the Mutect2 platform were downloaded by the “TCGAbiolinks”

package. Then, we used the R package maftools to process the

MAF data, calculate the mutation load of samples, and draw the

mutation map of genes.

Copy-number variation (CNV) data of patients were

downloaded from the UCSC Xena Data Center (https://xena.

ucsc.edu/) and preprocessed by GISTIC 2.0. Amplifications and

deletions are defined with a threshold of 0.3.

The GRGs were collected from the MSIGDB database (www.

gsea-msigdb.org), and the IRGs were collected from the ImmPort

database (www.immport.org). The detailed gene list is provided

in Supplementary Table S1.

Construction of the GIS model

Initially, we screened the independent prognostic factors in

GRGs and IRGs by univariate Cox regression. For significant

independent prognostic factors (p < 0.05), we then used the

random forest algorithm to identify the 10 most important

prognostic genes within them. Then, we summarized all

possible gene combinations of these 10 genes and determined

the p-values of all combinations through Kaplan–Meier (KM)

analysis. Based on the p-values, the gene combinations with the
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best prognostic efficiency were screened out. Then, the

prognostic genes were used to construct a GIS model, as

provided below:

GI Score � ∑ iCoef f icient(mRNAi) × Expression(mRNAi)

The “servcomp” R package was used to calculate the

consistency of the C index, and a larger C-index indicated

that the prediction ability of the model was more accurate

(Schröder et al., 2011). The high- and low-risk groups were

divided based on the median GIS, and the prognostic value of the

risk model was evaluated by the KM survival curve, univariate

and multivariate Cox regression analyses, and time-dependent

receiver operating characteristics (ROC) curve system.

Functional enrichment analysis

The relative abundance of 22 immune cells per patient in the

TCGA-LUSC cohort was calculated using the cibersortR package

and LM22 feature. The ESTIMATE algorithm was used to

calculate the immune score and matrix score of the samples.

The R package gsva was used for single-sample gene set

enrichment analysis (ssGSEA) to evaluate the pathway

enrichment scores of the samples. The related pathway

activity was collected from previously published references

(Liberzon et al., 2011; Ayers et al., 2017; Gibbons and

Creighton, 2018; McDermott et al., 2018; Liang et al., 2020).

In addition, we collected the homologous recombination defect

(HRD) score, neoantigens, and microsatellite instability (MSI)

score (Thorsson et al., 2018) of samples from the study by

Thorsson et al. to evaluate patient response to

immunotherapy. Detailed gene sets are provided in

Supplementary Table S2.

Prediction of chemotherapy and
immunotherapy responses

The R package “pRRophetic” can evaluate patients’ response

to chemotherapy based on the Genomics of Drug Sensitivity in

Cancer database. Five first-line agents for treating LUSC (namely,

cisplatin, docetaxel, gemcitabine, paclitaxel, and vinorelbine)

were selected, and the median maximum inhibitory

concentration (IC50) for each patient was calculated using

ridge regression to assess the sensitivity to chemotherapy in

high- and low-risk groups. Then, the 10-fold cross-validation

was used to enhance the predictive accuracy. The Tracking of

Indels by Decomposition (TIDE) algorithm was used to assess

patient response to anti-programmed death-1 (PD1) and anti-

cytotoxic T-lymphocyte-associated protein 4 (CTLA4) therapy.

Then, we matched the genome data of the high and low

subgroups to a publicized cohort of 47 patients who can react

to anti-PD1 and anti-CTLA4 therapy by using unsupervised

subclass mapping (https://cloud.genepattern.org/gp/) and thus

predict the response of high and low subtypes to

immunotherapy.

Finally, we constructed a GIS model of a PD1-treated NSCLC

cohort (GSE135222) and a mature PDL1-treated urothelial

carcinoma cohort (IMvigor210) to evaluate the predictive

power of GIS for immunotherapy response rates.

GSE135222 included 27 patients with NSCLC treated with

PD1, and the IMvigor210 cohort included 298 patients with

melanoma treated with PDL1 and has integrated clinical

information.

Bioinformatics and statistical analysis

All statistical analyses and mappings were performed using R

software version 4.04 (R Foundation for Statistical Computing,

Vienna, Austria). The time-dependent area under the curve

(AUC) was calculated using the R package “survivalROC” to

evaluate the predictive power of variables. Univariate and

multivariate COX regression analyses were performed using

the R package “Survival.” A nomogram was drawn using the

“rms” package. The R package “DCA” was used to draw decision

curve analysis (DCA) curves. The Kruskal–Wallis test was used

to compare more than two groups and the Wilcoxon test to

compare two groups. The proportion differences were compared

by the chi-square test. KM plotters were used to generate survival

curves for subgroups in each dataset. Pearson correlation was

used for correlation tests.

Results

Preliminary screening of prognostic GRGs
and IRGs in LUSC

We screened for independent prognostic factors in GRGs

and IRGs in the training dataset (i.e., TCGA-LUSC cohort) and

performed univariate Cox regression analysis to select genes that

are significantly associated with prognosis. A total of

54 prognostic factors were identified, which included 48 risk

factors and six protective factors (Figure 1A). Figure 1B displays

their correlation network; six protective genes were negatively

correlated with other genes, and 48 risk genes were positively

correlated with other genes. Oncoplot presented mutation maps

of prognostic factors in LUSC (Figure 1C). Specifically, the most

common mutation of prognostic factors was a nonsense

mutation, the most common change in base started from

cytosine to thymine, and the HGF gene had the highest

mutation frequency (Figure 1D). Fifty-four prognostic factors

had extensive CNV events in LUSC (Figure 1E). The circle

diagram presents their overall CNV status on chromosomes
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(Figure 1F). Most of the mutations in prognostic genes were

nonsense mutations, whereas CNV events occurred extensively,

suggesting that prognostic genes were mainly regulated by CNV

than by single nucleotide variation.

Generation and evaluation of GIS models

We used the random forest algorithm to identify the

10 most important genes among the 54 prognostic factors

FIGURE 1
Identify prognostic-related GRGs and IRGs. (A) The volcano map illustrates the results of the univariate Cox analysis. (B) Correlation network of
prognostic GRGs and IRGs. (C)Oncoplot displays mutationmaps of prognostic GRGs and IRGs. (D) Summary of prognostic GRGs and IRGsmutation
events in TCGA-LUSC. (E) Summary of CNV events for prognostic GRGs and IRGs in TCGA-LUSC. (F) The circle diagram presents the CNV maps of
prognostic GRGs and IRGs on chromosomes. CNV, copy number variation; IRGs, immune-related genes; GRGs, glycolysis and immune score;
TCGA-LUSC, The Cancer Genome Atlas Lung Squamous Cell Carcinoma.
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(Figure 2A). Then, we used the exhaustion method to find all

combinations of the 10 genes and found 1,023 of them. A Cox

regression model was constructed by gene combination, and

the p-value of each model was evaluated by KM analysis.

Finally, a five-gene model was selected to be the best

prognostic model (Figure 2B), and detailed results are

provided in Supplementary Table S3. The model contains

two GRGs (PYGB and MDH1) and three IRGs (TSLP,

SERPIND1, and GDF2), and the gene coefficients are listed

in Supplementary Table S4. The C-index display model

demonstrated good predictive performance in TCGA

queues and external validation queues (Figure 2C). In the

survival analysis, the survival rate of the high GIS group was

significantly lower than that of the low GIS group (Figure 2D,

p < 0.0001). The AUC values of the model at 1, 3, and 5 years

were 0.64, 0.69, and 0.65, respectively (Figure 2E). Figure 2F

presents the distribution of GIS in the TCGA cohort and the

transcription map of the model genes. We also evaluated the

effectiveness of GIS in an external validation queue. In the

survival analysis, the survival of patients with high GIS was

significantly worse (Supplementary Figure S1A, p = 0.013). In

the ROC analysis, the AUC values of GIS in 1, 3, and 5 years

were 0.61, 0.61, and 0.63, respectively (Supplementary Figure

S1B). Supplementary Figure S1C illustrates the distribution of

GIS in the GEO queue and the transcription map of the model

genes.

Evaluation of the predictive independence
of GIS models

We firstly used univariate Cox and multivariate Cox

regressions to analyze the relationship between the risk

score, clinical characteristics, and prognosis. Univariate Cox

regression was an independent prognostic indicator in both

training and validation sets (Figure 3A, p < 0.01). Multivariate

Cox regression indicated that GIS was still an independent

prognostic factor of overall survival in both training and

validation cohorts after correcting other clinical features

(Figure 3B, p < 0.01). The subgroup analysis also revealed

FIGURE 2
Construction of the GIS risk model. (A) Random forest screening of top10 important prognostic genes. (B) Log-rank test of p-value for each
genemodel. (C)C-index of the best model in TCGA and GEO queues. (D) KM survival curves of high and lowGIS groups in the TCGA cohort. (E) ROC
curves of GIS in the TCGA cohort at 1, 3, 5, and 8 years (F) Survival status and model gene expression of patients in the TCGA cohort. GEO, Gene
Omnibus Expression; KM, Kaplan–Meier; ROC, receiver operating characteristics curve; GIS, glycolysis–immune score; TCGA, The Cancer
Genome Atlas.
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that GIS remained a reliable prognostic factor in different

clinical subgroups (Supplementary Figure S2). The GIS model

proved to be a promising prognostic indicator for predicting

the survival of patients with LUSC, and we subsequently

constructed a nomogram to better quantify the risk

assessment for these patients (Figure 3C). The nomogram

correction curves reflected that the nomogram model had

good stability and accuracy at 1, 3, and 5 years (Figure 3D).

The TROC analysis revealed that the nomogram model was

the best predictor when compared with clinical features

(Figure 3E). We subsequently performed DCA to evaluate

the decision benefits of the nomogram model and found that

the nomogram is suitable for risk assessment of patients with

LUSC at 1, 3, and 5 years (Figures 3F–H).

Functional enrichment analysis and
glycolysis spectrum of GIS

Furthermore, we quantified the activity of some typical

biological pathways using the ssGSEA algorithm and assessed

the correlation between GIS and pathways. The heat map

illustrates the relationship among GIS, biological pathway

activity, classical glycolysis, and immune gene expression

(Figure 4A). The corresponding correlation analysis is given

on the right side of the heat map (Figure 4B). We found that

EMT, hypoxia, and some immune-related pathways (such as

the CCR, major histocompatibility complex [MHC] class 1,

and type II interferon [IFN] response) GIS was significantly

negatively correlated and significantly upregulated in the low

FIGURE 3
Verifying the GIS-related risk model. (A) Univariate Cox regression analysis of GIS and clinical features in the TCGA and GEO datasets. (B)
Multivariate Cox regression analysis of GIS and clinical features in the TCGA and GEO datasets. (C) Nomogram based on the GIS model to quantify
individual patient risk. (D)Nomogram calibration curve. (E) tROC curves of nomogram and clinical features. NomogramDCA curves at 1 (F), 3 (G), and
5 (H) years. DCA, decision curve analysis; GEO, Gene Omnibus Expression; ROC, receiver operating characteristics curve; GIS,
glycolysis–immune score; TCGA, The Cancer Genome Atlas.
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FIGURE 4
Functional analysis of the GIS risk model. (A) Heat maps of the correlations among GIS, biological pathway activity, glycolysis gene expression,
immune gene expression, and clinical features. Red name with * represents upregulation in the high GIS group, and green name with * represents
upregulation in the low GIS group; *p < 0.05, **p < 0.01, ***p < 0.001. (B) Correlation analysis of GIS and biological pathway activity, glycolysis gene
expression, and immune gene expression (top to bottom). (C) GSEA enrichment map shows the five pathways of interest within the high GIS
group. (D) GSEA enrichment map shows the five pathways of interest within the low GIS group. GIS, glycolysis–immune score; GSEA, gene set
enrichment analysis.
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GIS group. In addition, four glycolysis genes were positively

correlated with GIS and upregulated in high GIS, whereas four

immunity genes were negatively correlated with GIS and

upregulated in low GIS. GSEA revealed that cell cycle,

oxidative stress, and DNA replication activity were

significantly increased in the high GIS group (Figure 4C),

whereas lysosome and lymphocyte migration pathways were

significantly enriched in the low GIS group (Figure 4D). In

summary, these results suggest increased glycolysis activity

and active tumor replication and proliferation in the high GIS

group, whereas increased immune and cytotoxic activity in the

low GIS group.

Immune infiltration analysis of GIS

We further evaluated the correlation between GIS and

immune landscape in detail. The heat map illustrates the

correlation of GIS, estimate score, and abundance of

immune-infiltrating cells (Figure 5A). The corresponding

correlation analysis results are provided on the right side of

the heat map (Figure 5B). The results revealed that patients

with high GIS had higher tumor purity, whereas patients with

low GIS had increased immune scores and estimate scores.

Immune cell infiltration analysis also indicated that GIS was

positively correlated with M2 macrophages and mast cells and

increased in the high GIS group, whereas M1 macrophages

and gamma delta T cells were negatively correlated with GIS

and increased in the low GIS group. These results further

suggest that antitumor immunity is suppressed in patients

with high GIS, whereas antitumor immunity is active in

patients with low GIS. Furthermore, we analyzed four

indexes that affect the response to immunotherapy.

Accordingly, the MSI and HRD scores were significantly

negatively correlated with GIS and increased in the low GIS

group (Figure 5C,D). This suggests that patients with low GIS

have more chromosomal instability, leading to more tumor-

specific neoantigen generation (Ganesh et al., 2019; Eso et al.,

2020; Shi et al., 2021). However, no difference was found in

insertion and deletion (indel) neoantigens and single-

nucleotide variant (SNV) neoantigens between the high and

low GIS groups (Figure 5E,F).

FIGURE 5
Immune landscape of the GIS risk model. (A)Heat maps of the correlations among GIS, estimate score, immune cell infiltration abundance, and
clinical features. Red namewith * represents upregulation in the highGIS group, and green namewith * represents upregulation in the lowGIS group;
*p < 0.05, **p < 0.01, ***p < 0.001. (B)Correlation analysis of GIS, estimate score, and immune cell infiltration abundance (top to bottom). Scatter and
box plots of the correlation between GIS and (C)MSI score, (D) HRD score, (E) indel neoantigens, and (F) SNV neoantigens. Indel, insertion and
deletion; GIS, glycolysis–immune score; MSI, microsatellite instability; HRD, homologous recombination deficiency; SNV, single-nucleotide variant.
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Correlation between GIS and genome
changes

Recent studies have proposed using the tumor mutation

burden (TMB) as a novel indicator in predicting

immunotherapy response and prognosis, as more mutated

genes may generate new antigenic peptides that can be

recognized by the immune system. Antigens containing

mutated peptides can activate the immune system and

enhance anti-tumor immunity (Matsushita et al., 2012; Rizvi

FIGURE 6
Genomic mutation landscapes of GIS models. (A) Forest map of the high-frequency mutated genes with significant mutation differences
between the high GIS and low GIS groups. (B) Correlation between GIS and all mutant loads. (C) Correlation between GIS and non-synonymous
mutation load. (D)Oncoplot of the high-frequency mutated genes in the high GIS group. (E)Oncoplot of the high-frequency mutated genes in the
low GIS group. (F) Circle diagram summarizing CNV events on different chromosome arms in the high and low GIS groups. (G) Box plot of the
difference in chromosome amplification between the high GIS and lowGIS groups. (H) Box plot of the difference in chromosome deletions between
the high GIS group and the low GIS group. GIS, glycolysis–immune score; CNV, copy number variation.
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et al., 2015; Chan et al., 2019). Therefore, we explore the

correlation between TMB and GIS. Through Fisher’s test, we

identified three high-frequency mutated genes with significant

mutation differences, namely, TP53, ZFHX4, and TTN, with

increased mutation frequency in the low GIS group

(Figure 6A). However, the number of mutation techniques

and non-synonymous mutations demonstrated an increasing

trend in the low GIS group, but it was not significant (Figures

6B,C). The waterfall diagram illustrates the mutation maps of

high-frequency mutated genes in the high and low GIS groups

(Figures 6D,E). CNV caused genomic changes in patients as

chromosome segment changes, and we subsequently analyzed

the correlation between CNV and GIS. The circle graph presents

the overall CNV landscape of patients with high and lowGIS, and

the results revealed that patients with low GIS have more CNV

events (Figure 6F). The box plot illustrates that both

amplification and missing events in the low GIS group were

significantly higher than those in the high GIS group

(Figures 6G,H).

The GIS model can guide clinical
treatment decision

We firstly assessed the sensitivity of patients to five

commonly used chemotherapy agents for lung cancer, namely,

FIGURE 7
The GIS model guides the clinical treatment decision. (A) Box plot of the predicted IC50 values of five commonly used lung cancer drugs in the
high and low GIS groups. (B) KM survival curves of patients receiving chemotherapy in the TCGA cohorts with high and low GIS. (C) The TIDE
algorithmwas used to predict the overall response rate to immunotherapy in the high and low GIS groups. (D) Subclass mapping was used to predict
the sensitivity of patients in the high and low GIS groups to anti-PD1 and anti-CTLA4 therapy. (E) KM survival curves of high and low GIS groups
in the GSE135222 cohort. (F) KM survival curves of the high and lowGIS groups in the IMvigor210 cohort. (G)Correlation between GIS and TMB in the
IMvigor210 cohort. (H) Correlation between GIS and neoantigens in the IMvigor210 cohort. GIS, glycolysis–immune score; GSEA, gene set
enrichment analysis; TMB, tumor mutation burden; KM, Kaplan–Meier; TCGA, The Cancer Genome Atlas; TIDE, Tracking of Indels by
Decomposition.
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cisplatin, docetaxel, gemcitabine, paclitaxel, and vinorelbine.

Accordingly, patients with low GIS were more sensitive to

these five chemotherapeutic agents (Figure 7A). In the

validation cohort, the low GIS group was more sensitive to

the other four drugs, except for gemcitabine (Supplementary

Figure S1D). The survival analysis revealed that among patients

receiving chemotherapy in the TCGA cohort, survival was better

in patients with low GIS (Figure 7B, p = 0.029). Previous results

suggested that patients with low GIS may be more sensitive to

immunotherapy; thus, we subsequently assessed patient response

to immunotherapy. In the TIDE analysis, patients with low GIS

were more sensitive to immunotherapy (Figure 7C), although not

significant in the validation cohort (Supplementary Figure S1E).

Subclass mapping indicated that patients with lowGIS were more

sensitive to anti-PD-1 and anti-CTLA-4 therapy, and the same

results were observed in the validation cohort (Figure 7D,

Supplementary Figure S1F). Subsequently, we validated GIS in

an NSCLC cohort that received anti-PD-1 therapy, and the

results presented poorer survival in patients with high GIS

(Figure 7E, p = 0.066). The efficacy of GIS was also evaluated

in IMvigor210, a large immunotherapy cohort, which exhibited

significantly worse survival in patients with high GIS (Figure 7F).

Further analysis revealed that TMB and neoantigens were

negatively correlated with GIS in the IMvigor210 cohort and

significantly increased in the low GIS group (Figures 7G,H). This

may explain the high benefit of immunotherapy in patients with

low GIS.

Discussion

With the limited success of LUSC-related targeted

therapies, traditional chemotherapy remains the first-line

treatment for decades; thus, patients with advanced LUSC

treated with current chemotherapy show poor 5-years survival

rates, that is, less than 5%. Therefore, there is an urgent need to

identify prognostic biomarkers to accurately and timely

predict clinical outcomes of LUSC and initiate personalized

treatment programs. Glycolysis not only plays an important

role in tumor invasion and drug resistance but also has a

strong inhibitory effect on the TIME (Brand et al., 2016;

Watson et al., 2021). The complex role of glycolysis and

TIME reflects great promise in immunotherapy and

targeted cancer therapy (Ganapathy-Kanniappan and

Geschwind, 2013; Ganapathy-Kanniappan, 2017). In this

study, we constructed a GIS model based on GRGs and

IRGs and demonstrated that this model has satisfactory

predictive efficacy in different clinical subgroups of

datasets. Therefore, it can be used as an independent

prognostic factor for patients with LUSC. Furthermore, we

explored the relationship between the GIS model and

biological function, immune cell infiltration, and genome

changes. Several transcriptomic models are proved to have

promising applications in lung cancer and have surprising

potential in predicting prognosis (Wang et al., 2021a; Gao

et al., 2021; Feng et al., 2022; Guo et al., 2022; Jiang et al.,

2022). Compared with these models, our model not only has

good performance in predicting prognosis but also can

distinguish between “cold” and “hot” tumors and provide a

reference for clinical treatment decisions of patients

with LUSC.

Immunotherapy has developed rapidly in LUSC in recent

years (Lazzari et al., 2017). LUSC tends to be highly

immunogenic and has higher TMB. Therefore, LUSC is an

ideal indication for immunotherapy (Li et al., 2018). However,

the overall response rate to immunotherapy is relatively low, and

only a subset of patients with LUSC can benefit from

immunotherapy (Forde et al., 2018). Therefore, the

identification of patients with LUSC having “hot” tumors is

expected to enhance treatment response to immunotherapy.

Through functional enrichment analysis, we found that low

GIS was associated with increased activity of some immune-

related pathways, such as CCR, MHC class 1, and type II IFN

response, and lysosome and lymphocyte migration, suggesting

that the low GIS group was a “hot” tumor with anti-tumor

immunoactivity (Ivashkiv, 2018; Dersh et al., 2021). We also

analyzed the immune cell infiltration in the low GIS group and

we found that the low GIS group had higher immune scores and

increased M1 macrophages and gamma delta T cells, suggesting

that low GIS tumors are immuno-activated “hot” tumors with

antitumor activity (Chanmee et al., 2014; Kabelitz et al., 2020;

Yazdanifar et al., 2020). The cell cycle and DNA replication

pathway were enriched in the high GIS group, indicating that

tumor proliferation was active in this group. Furthermore,

oxidative stress activity increased in the high GIS group, and

oxidative stress stimulates tumorigenesis and supports tumor cell

proliferation (Hayes et al., 2020; Kotsafti et al., 2020). Moreover,

high GIS was associated with increased glycolysis activity, and

low GIS was associated with increased immune gene activity.

Furthermore, we analyzed the immune cell infiltration in the

TIME of high GIS group, and the results revealed that a high GIS

was associated with higher tumor purity and M2 macrophages,

which may lead to immunosuppression and tumor-promoting

TIME (Chanmee et al., 2014) in the high GIS group. These results

suggest that high GIS could identify patients with “cold” tumors,

high glycolysis, metabolically active tumors, and suppressed

antitumor immunity. Subsequently, we found that the HRD

and MSI scores were negatively correlated with GIS and

significantly increased in the low GIS group, indicating that

tumors with low GIS may be more sensitive to chemotherapy,

have high immunogenicity, and are more sensitive to

immunotherapy (Le et al., 2017; Overman et al., 2017; Hoppe

et al., 2018; Silva et al., 2022). However, no significant difference

was found in the number of neoantigens between the two groups.

We subsequently found that TP53, ZFHX4, and TTN

mutated more frequently in the low GIS group. TP53 is
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generally considered a tumor-suppressor gene (Bykov et al.,

2018; Skoulidis and Heymach, 2019), whereas the TP53 gene

in the low GIS group shows a better survival rate and more

mutations, which may be caused by the active immune function

of low GIS. Recent studies have reported that genomic changes

are closely related to neoantigen formation and immunotherapy

response (Anagnostou et al., 2017). Our results indicate that

TMB differences between low and high GIS groups are not

significant, and GIS can better reflect patients’ immune

activity than TMB. We also found that both CNV

amplification and deletion events were significantly higher in

the low GIS group, and the chromosomal changes were more

closely related to GIS than the single nucleotide variation. Studies

have shown that chromosomal somatic rearrangement events

actively promote carcinogenesis and lead to immunosuppression.

However, our analysis showed that immunoactivity was stronger

in the low GIS group than in the high GIS group. These results

suggest that GIS can better reflect tumor immune status and

predict immunotherapy response than TMB and CNV.

In summary, low GIS appears to indicate “hot” tumors with

an immunoactivated phenotype that may be more sensitive to

treatment. We then systematically assessed patient response to

chemotherapy and immunotherapy. Accordingly, we found that

the low GIS group was more sensitive to chemotherapy than the

high GIS group. In addition, TIDE and subclass mapping

algorithms predicted that patients with low GIS would be

more sensitive to immunotherapy. More convincingly, we

found that a low GIS was associated with better outcomes in

the immunotherapy cohort of NSCLC. In a further large-scale

immunotherapy cohort, IMvigor210, better survival was

observed in patients with low GIS. A negative correlation was

noted between GIS and TMB and neoantigens in the

IMvigor210 cohort. Immunotherapy mainly relies on CD8+

T cells to recognize tumor-specific mutant antigens to induce

antitumor immunity (Wang et al., 2021b; Jhunjhunwala et al.,

2021). In addition, more somatic mutations will lead to the

formation of more potential new antigens (Matsushita et al.,

2012; Rizvi et al., 2015). Therefore, more neoantigens and TMB

in the low GIS group may lead to the increased sensitivity of

patients with low GIS to immunotherapy. Taken together, these

results demonstrate that the GIS model is a powerful tool for

guiding the treatment of patients with LUSC and that patients

with low GIS have a higher sensitivity to chemotherapy and

immunotherapy.

Despite its findings, this study has some limitations. First, this

study was based on high-throughput sequencing and only

considered inter-patient heterogeneity, but there was no intra-

tumor heterogeneity. Second, immunotherapy and chemotherapy

sensitivity predictions are based on computations and should be

validated in further clinical cohorts. Thus, additional in vivo and

in vitro experiments are needed to explore the specific biological

functions of GIS in LUSC.

In conclusion, the results of this study suggest a close

relationship between glycolysis and immune activity.

Moreover, the integrated model based on glycolysis and

immune genes can distinguish “cold and hot” patterns of

individual tumors from biological function and immune

infiltrating system, can quantitatively estimate the prognosis of

patients LUSC, and guide chemotherapy and immunotherapy

decisions.We thank all the participants who supported our study.

In particular, thanks to the TCGA database and GEO database

for the analytical data.
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SUPPLEMENTARY FIGURE S1
External validation of GIS (A) KM survival curves of high and low GIS
groups in the GEO cohort. (B) ROC curves of GIS in the GEO cohort at
1, 3, 5, and 8 years (C)GIS, survival status, andmodel gene expression
profile of patients in the GEO cohort. (D) Box plot of the predicted
IC50 values of five commonly used lung cancer drugs in the high and

low GIS groups of the GEO cohort. (E) The TIDE algorithm was used
to predict the response of high and low GIS groups to immunotherapy
in the GEO cohort. (F) Subclass mapping was used to predict the
sensitivity of patients in the high and low GIS groups to anti-PD1 and
anti-CTLA4 treatment in the GEO cohort. GIS, glycolysis–immune
score; KM, Kaplan–Meier; GEO, Gene Omnibus Expression; TIDE,
Tracking of Indels by Decomposition; PD1, programmed death-
1 (PD1); CTLA4, anti-cytotoxic T-lymphocyte-associated protein 4.

SUPPLEMENTARY FIGURE S2
Subgroup Cox analysis of GIS Subgroup Cox regression analysis of GIS in
the TCGA queue (A) and GEO queue (B). GIS, glycolysis–immune score;
GEO, Gene Omnibus Expression; TCGA, The Cancer Genome Atlas.

References

Anagnostou, V., Smith, K. N., Forde, P. M., Niknafs, N., Bhattacharya, R., White,
J., et al. (2017). Evolution of neoantigen landscape during immune checkpoint
blockade in non-small cell lung cancer. Cancer discovery. Cancer Discov. 7 (3),
264–276. doi:10.1158/2159-8290.Cd-16-0828

Ayers, M., Lunceford, J., Nebozhyn, M., Murphy, E., Loboda, A., Kaufman, D. R.,
et al. (2017). IFN-γ-related mRNA profile predicts clinical response to PD-1
blockade. J. Clin. Invest. 127 (8), 2930–2940. doi:10.1172/jci91190

Brand, A., Singer, K., Koehl, G. E., Kolitzus, M., Schoenhammer, G., Thiel, A.,
et al. (2016). LDHA-associated lactic acid production blunts tumor
immunosurveillance by T and NK cells. Cell metabolism. Cell Metab. 24 (5),
657–671. doi:10.1016/j.cmet.2016.08.011

Bykov, V. J. N., Eriksson, S. E., Bianchi, J., and Wiman, K. G. (2018). Targeting
mutant p53 for efficient cancer therapy. Nat. Rev. Cancer 18 (2), 89–102. doi:10.
1038/nrc.2017.109

Chan, T. A., Yarchoan, M., Jaffee, E., Swanton, C., Quezada, S. A., Stenzinger, A.,
et al. (2019). Development of tumor mutation burden as an immunotherapy
biomarker: Utility for the oncology clinic. Ann. Oncol. 30 (1), 44–56. doi:10.
1093/annonc/mdy495

Chanmee, T., Ontong, P., Konno, K., and Itano, N. (2014). Tumor-associated
macrophages as major players in the tumor microenvironment. Cancers 6 (3),
1670–1690. doi:10.3390/cancers6031670

Chen, Z., Fillmore, C. M., Hammerman, P. S., Kim, C. F., andWong, K. K. (2014).
Non-small-cell lung cancers: A heterogeneous set of diseases. Nat. Rev. Cancer 14
(8), 535–546. doi:10.1038/nrc3775

Colegio, O. R., Chu, N. Q., Szabo, A. L., Chu, T., Rhebergen, A. M., Jairam, V.,
et al. (2014). Functional polarization of tumour-associated macrophages by
tumour-derived lactic acid. Nature 513 (7519), 559–563. doi:10.1038/nature13490

Dersh, D., Hollý, J., and Yewdell, J. W. (2021). A few good peptides: MHC class
I-based cancer immunosurveillance and immunoevasion. Nature reviews
immunology. Nat. Rev. Immunol. 21 (2), 116–128. doi:10.1038/s41577-020-0390-6

Drilon, A., Rekhtman, N., Ladanyi, M., and Paik, P. (2012). Squamous-cell
carcinomas of the lung: Emerging biology, controversies, and the promise of
targeted therapy. Lancet. Oncol. 13 (10), e418–26. doi:10.1016/s1470-2045(12)
70291-7

Eso, Y., Shimizu, T., Takeda, H., Takai, A., and Marusawa, H. (2020).
Microsatellite instability and immune checkpoint inhibitors: Toward precision
medicine against gastrointestinal and hepatobiliary cancers. Journal of
gastroenterology. J. Gastroenterol. 55 (1), 15–26. doi:10.1007/s00535-019-01620-7

Feng, S., Zhang, X., Gu, X., Zhou, M., Chen, Y., and Wang, C. (2022).
Identification of six novel prognostic gene signatures as potential biomarkers in
Small Cell Lung Cancer. Comb. Chem. High. Throughput Screen. 25. doi:10.2174/
1386207325666220427121619

Forde, P. M., Chaft, J. E., Smith, K. N., Anagnostou, V., Cottrell, T. R., Hellmann,
M. D., et al. (2018). Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl.
J. Med. 378 (21), 1976–1986. doi:10.1056/NEJMoa1716078

Ganapathy-Kanniappan, S., and Geschwind, J. F. (2013). Tumor glycolysis as a
target for cancer therapy: Progress and prospects.Mol. Cancer 12, 152. doi:10.1186/
1476-4598-12-152

Ganapathy-Kanniappan, S. (2017). Linking tumor glycolysis and immune
evasion in cancer: Emerging concepts and therapeutic opportunities. Biochim.
Biophys. Acta. Rev. Cancer 1868 (1), 212–220. doi:10.1016/j.bbcan.2017.04.002

Ganesh, K., Stadler, Z. K., Cercek, A., Mendelsohn, R. B., Shia, J., Segal, N. H., et al.
(2019). Immunotherapy in colorectal cancer: Rationale, challenges and potential.

Nature reviews gastroenterology & hepatology. Nat. Rev. Gastroenterol. Hepatol. 16
(6), 361–375. doi:10.1038/s41575-019-0126-x

Gao, C., Gu, X., Chen, Y., Zhou, M., Jiang, F., and Zheng, S. (2021). Identification
of potential prognostic and predictive biomarkers for immune-checkpoint inhibitor
response in small cell lung cancer.Med. Sci. Monit. 27, e932275. doi:10.12659/msm.
932275

Gibbons, D. L., and Creighton, C. J. (2018). Pan-cancer survey of epithelial-
mesenchymal transition markers across the cancer genome Atlas. Developmental
dynamics : An official publication of the American Association of anatomists. Dev.
Dyn. 247 (3), 555–564. doi:10.1002/dvdy.24485

Guo, C. R., Mao, Y., Jiang, F., Juan, C. X., Zhou, G. P., and Li, N. (2022).
Computational detection of a genome instability-derived lncRNA signature for
predicting the clinical outcome of lung adenocarcinoma. Cancer Med. 11 (3),
864–879. doi:10.1002/cam4.4471

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: The next
generation. Cell 144 (5), 646–674. doi:10.1016/j.cell.2011.02.013

Hayes, J. D., Dinkova-Kostova, A. T., and Tew, K. D. (2020). Oxidative stress in
cancer. Cancer Cell 38 (2), 167–197. doi:10.1016/j.ccell.2020.06.001

Hoppe, M. M., Sundar, R., Tan, D. S. P., and Jeyasekharan, A. D. (2018).
Biomarkers for homologous recombination deficiency in cancer. J. Natl. Cancer
Inst. 110 (7), 704–713. doi:10.1093/jnci/djy085

Icard, P., and Lincet, H. (2016). The reduced concentration of citrate in cancer
cells: An indicator of cancer aggressiveness and a possible therapeutic target.
Drug resistance updates : Reviews and commentaries in antimicrobial and
anticancer chemotherapy. Drug resist. updat. 29, 47–53. doi:10.1016/j.drup.
2016.09.003

Icard, P., Shulman, S., Farhat, D., Steyaert, J. M., Alifano, M., and Lincet, H.
(2018). How the Warburg effect supports aggressiveness and drug resistance of
cancer cells? Drug resist. updat. 38, 1–11. doi:10.1016/j.drup.2018.03.001

Ivashkiv, L. B. (2018). IFNγ: Signalling, epigenetics and roles in immunity,
metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 18 (9),
545–558. doi:10.1038/s41577-018-0029-z

Jhunjhunwala, S., Hammer, C., and Delamarre, L. (2021). Antigen presentation in
cancer: Insights into tumour immunogenicity and immune evasion. Nat. Rev.
Cancer 21 (5), 298–312. doi:10.1038/s41568-021-00339-z

Jiang, F., Hu, Y., Liu, X., Wang, M., and Wu, C. (2022). Methylation pattern
mediated by m(6)A regulator and tumor microenvironment invasion in lung
adenocarcinoma. Oxid. Med. Cell. Longev. 2022, 2930310. doi:10.1155/2022/
2930310

Kabelitz, D., Serrano, R., Kouakanou, L., Peters, C., and Kalyan, S. (2020).
Cancer immunotherapy with γδ T cells: Many paths ahead of us. Cellular &
molecular immunology. Cell. Mol. Immunol. 17 (9), 925–939. doi:10.1038/
s41423-020-0504-x

Kotsafti, A., Scarpa, M., Castagliuolo, I., and Scarpa, M. (2020). Reactive oxygen
species and antitumor immunity-from surveillance to evasion. Cancers 12 (7),
E1748. doi:10.3390/cancers12071748

Lazzari, C., Karachaliou, N., Gregorc, V., Bulotta, A., Gonzalez-Cao, M.,
Verlicchi, A., et al. (2017). Second-line therapy of squamous non-small cell lung
cancer: An evolving landscape. Expert Rev. Respir. Med. 11 (6), 469–479. doi:10.
1080/17476348.2017.1326822

Le, D. T., Durham, J. N., Smith, K. N., Wang, H., Bartlett, B. R., Aulakh, L. K., et al.
(2017). Mismatch repair deficiency predicts response of solid tumors to PD-1
blockade. Sci. (New York, NY) 357 (6349), 409–413. doi:10.1126/science.aan6733

Frontiers in Genetics frontiersin.org13

Huang et al. 10.3389/fgene.2022.907058

https://www.frontiersin.org/articles/10.3389/fgene.2022.907058/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.907058/full#supplementary-material
https://doi.org/10.1158/2159-8290.Cd-16-0828
https://doi.org/10.1172/jci91190
https://doi.org/10.1016/j.cmet.2016.08.011
https://doi.org/10.1038/nrc.2017.109
https://doi.org/10.1038/nrc.2017.109
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.3390/cancers6031670
https://doi.org/10.1038/nrc3775
https://doi.org/10.1038/nature13490
https://doi.org/10.1038/s41577-020-0390-6
https://doi.org/10.1016/s1470-2045(12)70291-7
https://doi.org/10.1016/s1470-2045(12)70291-7
https://doi.org/10.1007/s00535-019-01620-7
https://doi.org/10.2174/1386207325666220427121619
https://doi.org/10.2174/1386207325666220427121619
https://doi.org/10.1056/NEJMoa1716078
https://doi.org/10.1186/1476-4598-12-152
https://doi.org/10.1186/1476-4598-12-152
https://doi.org/10.1016/j.bbcan.2017.04.002
https://doi.org/10.1038/s41575-019-0126-x
https://doi.org/10.12659/msm.932275
https://doi.org/10.12659/msm.932275
https://doi.org/10.1002/dvdy.24485
https://doi.org/10.1002/cam4.4471
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.ccell.2020.06.001
https://doi.org/10.1093/jnci/djy085
https://doi.org/10.1016/j.drup.2016.09.003
https://doi.org/10.1016/j.drup.2016.09.003
https://doi.org/10.1016/j.drup.2018.03.001
https://doi.org/10.1038/s41577-018-0029-z
https://doi.org/10.1038/s41568-021-00339-z
https://doi.org/10.1155/2022/2930310
https://doi.org/10.1155/2022/2930310
https://doi.org/10.1038/s41423-020-0504-x
https://doi.org/10.1038/s41423-020-0504-x
https://doi.org/10.3390/cancers12071748
https://doi.org/10.1080/17476348.2017.1326822
https://doi.org/10.1080/17476348.2017.1326822
https://doi.org/10.1126/science.aan6733
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.907058


Li, X., Shao, C., Shi, Y., and Han, W. (2018). Lessons learned from the blockade of
immune checkpoints in cancer immunotherapy. J. Hematol. Oncol. 11 (1), 31.
doi:10.1186/s13045-018-0578-4

Liang, J. Y., Wang, D. S., Lin, H. C., Chen, X. X., Yang, H., Zheng, Y., et al. (2020).
A novel ferroptosis-related gene signature for overall survival prediction in patients
with hepatocellular carcinoma. Int. J. Biol. Sci. 16 (13), 2430–2441. doi:10.7150/ijbs.
45050

Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P.,
and Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinforma.
Oxf. Engl. 27 (12), 1739–1740. doi:10.1093/bioinformatics/btr260

Lu, J., Tan, M., and Cai, Q. (2015). The Warburg effect in tumor progression:
Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett.
356 (2), 156–164. doi:10.1016/j.canlet.2014.04.001

Matsushita,H., Vesely,M.D., Koboldt, D. C., Rickert, C. G., Uppaluri, R., Magrini, V.
J., et al. (2012). Cancer exome analysis reveals a T-cell-dependent mechanism of cancer
immunoediting. Nature 482 (7385), 400–404. doi:10.1038/nature10755

McDermott, D. F., Huseni, M. A., Atkins, M. B., Motzer, R. J., Rini, B. I., Escudier,
B., et al. (2018). Clinical activity and molecular correlates of response to
atezolizumab alone or in combination with bevacizumab versus sunitinib in
renal cell carcinoma. Nature medicine. Nat. Med. 24 (6), 749–757. doi:10.1038/
s41591-018-0053-3

Overman, M. J., McDermott, R., Leach, J. L., Lonardi, S., Lenz, H. J., Morse, M. A.,
et al. (2017). Nivolumab in patients with metastatic DNAmismatch repair-deficient
or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label,
multicentre, phase 2 study. Lancet. Oncol. 18 (9), 1182–1191. doi:10.1016/s1470-
2045(17)30422-9

Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J.,
et al. (2015). Cancer immunology. Mutational landscape determines sensitivity to
PD-1 blockade in non-small cell lung cancer. Sci. (New York, NY) 348 (6230),
124–128. doi:10.1126/science.aaa1348

Schröder, M. S., Culhane, A. C., Quackenbush, J., and Haibe-Kains, B. (2011).
survcomp: an R/Bioconductor package for performance assessment and
comparison of survival models. Bioinforma. Oxf. Engl. 27 (22), 3206–3208.
doi:10.1093/bioinformatics/btr511

Shi, Z., Zhao, Q., Lv, B., Qu, X., Han, X., Wang, H., et al. (2021). Identification of
biomarkers complementary to homologous recombination deficiency for
improving the clinical outcome of ovarian serous cystadenocarcinoma. Clin.
Transl. Med. 11 (5), e399. doi:10.1002/ctm2.399

Siegel, R. L., Miller, K. D., and Jemal, A. (20202020). Cancer statistics, 2020. Ca.
Cancer J. Clin. 70 (1), 7–30. doi:10.3322/caac.21590

Silva, S. B., Wanderley, C. W. S., and Colli, L. M. (2022). Immune checkpoint
inhibitors in tumors harboring homologous recombination deficiency: Challenges
in attaining efficacy. Front. Immunol. 13, 826577. doi:10.3389/fimmu.2022.826577

Skoulidis, F., and Heymach, J. V. (2019). Co-occurring genomic alterations in
non-small-cell lung cancer biology and therapy. Nat. Rev. Cancer 19 (9), 495–509.
doi:10.1038/s41568-019-0179-8

Sun, S., Schiller, J. H., Spinola, M., and Minna, J. D. (2007). New molecularly
targeted therapies for lung cancer. J. Clin. Invest. 117 (10), 2740–2750. doi:10.1172/
jci31809

Thorsson, V., Gibbs, D. L., Brown, S. D., Wolf, D., Bortone, D. S., Ou Yang, T. H.,
et al. (2018). The immune landscape of cancer. Immunity 48 (4), 812–830. e14.
doi:10.1016/j.immuni.2018.03.023

Wang, C., Gu, X., Zhang, X., Zhou, M., and Chen, Y. (2021). Development and
validation of an E2F-related gene signature to predict prognosis of patients with
lung squamous cell carcinoma. Front. Oncol. 11, 756096. doi:10.3389/fonc.2021.
756096

Wang, Y., Tan, H., Yu, T., Chen, X., Jing, F., and Shi, H. (2021). Potential immune
biomarker candidates and immune subtypes of lung adenocarcinoma for
developing mRNA vaccines. Front. Immunol. 12, 755401. doi:10.3389/fimmu.
2021.755401

Watson, M. J., Vignali, P. D. A., Mullett, S. J., Overacre-Delgoffe, A. E., Peralta,
R. M., Grebinoski, S., et al. (2021). Metabolic support of tumour-infiltrating
regulatory T cells by lactic acid. Nature 591 (7851), 645–651. doi:10.1038/
s41586-020-03045-2

Yazdanifar, M., Barbarito, G., Bertaina, A., and Airoldi, I. (2020). Γδ T cells:
The ideal tool for cancer immunotherapy. Cells 9 (5), E1305. doi:10.3390/
cells9051305

Frontiers in Genetics frontiersin.org14

Huang et al. 10.3389/fgene.2022.907058

https://doi.org/10.1186/s13045-018-0578-4
https://doi.org/10.7150/ijbs.45050
https://doi.org/10.7150/ijbs.45050
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1016/j.canlet.2014.04.001
https://doi.org/10.1038/nature10755
https://doi.org/10.1038/s41591-018-0053-3
https://doi.org/10.1038/s41591-018-0053-3
https://doi.org/10.1016/s1470-2045(17)30422-9
https://doi.org/10.1016/s1470-2045(17)30422-9
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1093/bioinformatics/btr511
https://doi.org/10.1002/ctm2.399
https://doi.org/10.3322/caac.21590
https://doi.org/10.3389/fimmu.2022.826577
https://doi.org/10.1038/s41568-019-0179-8
https://doi.org/10.1172/jci31809
https://doi.org/10.1172/jci31809
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.3389/fonc.2021.756096
https://doi.org/10.3389/fonc.2021.756096
https://doi.org/10.3389/fimmu.2021.755401
https://doi.org/10.3389/fimmu.2021.755401
https://doi.org/10.1038/s41586-020-03045-2
https://doi.org/10.1038/s41586-020-03045-2
https://doi.org/10.3390/cells9051305
https://doi.org/10.3390/cells9051305
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.907058

	Development and validation of a combined glycolysis and immune prognostic signature for lung squamous cell carcinoma
	Introduction
	Methods
	Genomic data and clinical information
	Construction of the GIS model
	Functional enrichment analysis
	Prediction of chemotherapy and immunotherapy responses
	Bioinformatics and statistical analysis

	Results
	Preliminary screening of prognostic GRGs and IRGs in LUSC
	Generation and evaluation of GIS models
	Evaluation of the predictive independence of GIS models
	Functional enrichment analysis and glycolysis spectrum of GIS
	Immune infiltration analysis of GIS
	Correlation between GIS and genome changes
	The GIS model can guide clinical treatment decision

	Discussion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


