
cancers

Article

Landscape of Bone Marrow Metastasis in Human
Neuroblastoma Unraveled by Transcriptomics and Deep
Multiplex Imaging

Daria Lazic 1 , Florian Kromp 1,2 , Fikret Rifatbegovic 1, Peter Repiscak 1, Michael Kirr 3, Filip Mivalt 1 ,
Florian Halbritter 1 , Marie Bernkopf 1, Andrea Bileck 4 , Marek Ussowicz 5 , Inge M. Ambros 1,
Peter F. Ambros 1 , Christopher Gerner 4 , Ruth Ladenstein 1, Christian Ostalecki 3 and
Sabine Taschner-Mandl 1,*

����������
�������

Citation: Lazic, D.; Kromp, F.;

Rifatbegovic, F.; Repiscak, P.; Kirr, M.;

Mivalt, F.; Halbritter, F.; Bernkopf, M.;

Bileck, A.; Ussowicz, M.; et al.

Landscape of Bone Marrow

Metastasis in Human Neuroblastoma

Unraveled by Transcriptomics and

Deep Multiplex Imaging. Cancers

2021, 13, 4311. https://doi.org/

10.3390/cancers13174311

Academic Editors: Maria

Valeria Corrias and

Vladimir Spiegelman

Received: 22 July 2021

Accepted: 23 August 2021

Published: 26 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; daria.lazic@ccri.at (D.L.);
florian.kromp@scch.at (F.K.); fikret.rifatbegovic@ccri.at (F.R.); peter.repiscak@ccri.at (P.R.);
Mivalt.Filip@mayo.edu (F.M.); florian.halbritter@ccri.at (F.H.); marie.bernkopf@ccri.at (M.B.);
inge.ambros@ccri.at (I.M.A.); peter.ambros@ccri.at (P.F.A.); ruth.ladenstein@ccri.at (R.L.)

2 Software Competence Center Hagenberg (SCCH), 4232 Hagenberg, Austria
3 Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany;

kirr@students.uni-marburg.de (M.K.); Christian.Ostalecki@uk-erlangen.de (C.O.)
4 Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;

andrea.bileck@univie.ac.at (A.B.); christopher.gerner@univie.ac.at (C.G.)
5 Department and Clinic of Pediatric Oncology, Hematology and Bone Marrow, Transplantation, Wroclaw

Medical University, 50-556 Wroclaw, Poland; ussowicz@o2.pl
* Correspondence: sabine.taschner@ccri.at; Tel.: +43-1-40470-4050

Simple Summary: Bone marrow metastasis frequently occurs in patients with solid cancers and most
often leads to poor outcome. Yet, the composition of bone marrow metastases, including tumor and
surrounding cells, has so far not been characterized. Herein, we aimed to investigate the diversity
of tumor and surrounding cells, i.e., the microenvironment, in bone marrow metastases, using the
childhood tumor neuroblastoma as a model. To this end, we screened genome-wide datasets to
define a panel of cell-specific markers for multiplex microscopy of metastatic bone marrow samples,
and developed DeepFLEX, a computational pipeline for subsequent image analysis. Thereby, we
identified 35,000 single cells covering metastasized tumor cells, and various types of developing
immune and bone marrow cells. In parallel, we analyzed the transcriptome, i.e., all genes that are
expressed as mRNA, of 38 patients with and without bone marrow metastasis. We found vast tumor
cell diversity and identified a marker protein, FAIM2, which can help to identify a broader range
of tumor cell variants. In addition we showed that tumor cell metastasis in the bone marrow is
associated with an immune response resembling inflammation, and the presence of cells that can
repress an immune attack against cancer cells. Our study suggests that metastatic tumor cells are
shaping the bone marrow microenvironment and builds the basis to further investigate its clinical
relevance.

Abstract: While the bone marrow attracts tumor cells in many solid cancers leading to poor outcome
in affected patients, comprehensive analyses of bone marrow metastases have not been performed on
a single-cell level. We here set out to capture tumor heterogeneity and unravel microenvironmental
changes in neuroblastoma, a solid cancer with bone marrow involvement. To this end, we employed
a multi-omics data mining approach to define a multiplex imaging panel and developed DeepFLEX,
a pipeline for subsequent multiplex image analysis, whereby we constructed a single-cell atlas of
over 35,000 disseminated tumor cells (DTCs) and cells of their microenvironment in the metastatic
bone marrow niche. Further, we independently profiled the transcriptome of a cohort of 38 patients
with and without bone marrow metastasis. Our results revealed vast diversity among DTCs and
suggest that FAIM2 can act as a complementary marker to capture DTC heterogeneity. Importantly,
we demonstrate that malignant bone marrow infiltration is associated with an inflammatory response
and at the same time the presence of immuno-suppressive cell types, most prominently an imma-
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ture neutrophil/granulocytic myeloid-derived suppressor-like cell type. The presented findings
indicate that metastatic tumor cells shape the bone marrow microenvironment, warranting deeper
investigations of spatio-temporal dynamics at the single-cell level and their clinical relevance.

Keywords: bone marrow; metastasis; neuroblastoma; tumor heterogeneity; tumor microenvironment;
single-cell analysis; multiplex imaging; deep learning; transcriptomics; disseminated tumor cells

1. Introduction

Metastasis is the major cause of cancer-related deaths [1] and relies on the ability
of tumor cells to disseminate from the primary site and adapt to distant tissue environ-
ments [2]. This is an arduous process, which can fuel heterogeneity among metastasizing
and disseminated tumor cells (DTCs) [3]. Tumor heterogeneity manifests in variations of
clinically important features such as the abundance of prognostic markers as well as thera-
peutic targets, which complicates patient stratification and explains failure of therapeutic
approaches [4–7].

Cancer cells are attracted by distant microenvironments that promote their growth
and survival [8]. One such hospitable microenvironment is the bone marrow, which has a
major role in dormancy and relapse [9] and is a frequent site of dissemination in numerous
solid cancers [10,11], such as breast cancer, colorectal cancer and neuroblastoma [12].

Neuroblastoma, an extracranial neoplasm of the sympathetic nervous system, is the
most common solid tumor in patients in their first year of life and accounts for roughly 15%
of childhood cancer related deaths [13–15]. In more than 90% of metastatic stage (stage M)
neuroblastoma patients, tumor cells disseminate to the bone marrow [16,17], where some
tumor cells may resist initial chemotherapy and give rise to relapse. These relapse seeding
clones are frequently detected in the bone marrow already at the time-point of diagnosis,
but not in the primary tumor [4]. Based on bulk RNA-sequencing (RNA-seq), we have
previously shown differences between the transcriptome of DTCs with predominantly
hypoxia-associated genes enriched, and primary tumor cells with an increased expression
of mesenchymal genes [18]. Subsequently, two studies of neuroblastoma cell lines and
primary tumors unraveled the gene regulatory networks driving two plastic phenotypes,
adrenergic and mesenchymal type neuroblastoma cells, and highlighted their importance,
as the latter were more frequently found in post-therapy and relapse samples and were
more resistant to chemotherapy [19,20]. Thus, genetic and phenotypic tumor heterogeneity
can be considered key to why treatment outcome of metastatic disease remains poor.

Phenotypic heterogeneity of solid cancers has been investigated at the primary site at
single-cell resolution [21–24] and recently single cell RNA-sequencing has been employed
to identify the cell of origin and developmental trajectories in primary neuroblastoma
tumors [25–29]. To date, only a few reports have studied bone marrow metastases in
animal models [30], but no analyses in humans have been undertaken.

In recent years, numerous technologies for the analysis of single cells have emerged
and advanced rapidly. While single-cell RNA-seq (scRNA-seq) methods [31] enable high-
dimensional analyses of cells at the transcriptomic level, highly multiplexed imaging
methods [32] provide an image of every cell and thereby allow subcellular localization of
proteins as well as morphological assessment. Despite the volume of developing multiplex
imaging methods, the standard method to detect DTCs in bone marrow aspirates in
neuroblastoma routine diagnostic procedures, is still automated immunofluorescence plus
fluorescence in situ hybridization (AIPF), which is limited to only three biomarkers (GD2,
CD56 and one genetic marker) [33,34]. In order to gain deeper insights into intra-tumor
heterogeneity and capture metastasis-related changes in the bone marrow environmental
composition, a comprehensive single-cell map of bone marrow metastases is indispensable.
Thus, we sought to provide the first single-cell atlas of bone marrow metastases including
DTCs and cells of the microenvironment, by employing neuroblastoma as a model.
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Based on multi-omics data mining, we established a 20-plex antibody panel and
applied Multi-Epitope-Ligand Cartography (MELC), a multiplex imaging method with a
resolution of 450 nm that employs automated sequential cycles of staining with fluorophore-
coupled antibodies followed by immunofluorescence (IF) microscopy and photobleach-
ing [35,36]. We developed and validated an image analysis pipeline, called DeepFLEX,
which tackles frequent obstacles of IF-based imaging and in addition involves accurate,
deep learning-based cell and nucleus segmentation. In parallel, we separated the cells of
the bone marrow microenvironment from DTCs and profiled the transcriptome of 38 inde-
pendent tumor-cell infiltrated and non-infiltrated samples. Our study delivered the first
indication that metastasis of neuroblastoma tumor cells into the bone marrow is associated
with large microenvironmental adaptations, i.e., pro-inflammatory activation, but at the
same time upregulation of regulatory/suppressive signatures and cell types, most impor-
tantly an immature neutrophil, granulocytic myeloid-derived suppressor-like cell type.
Moreover, we revealed novel markers, including FAIM2 (Fas Apoptotic Inhibitory Molecule
2), to better capture heterogeneity of DTCs in bone marrow metastases of neuroblastoma
patients.

2. Methods
2.1. Subject Details

All subjects of this study are described in detail in Sections 2.1.1–2.1.3.

2.1.1. Neuroblastoma Cell Lines

Five patient-derived neuroblastoma cell lines were used for validation of biomarkers
and identification of the best sample preparation conditions. STA-NB-2, -4 and -10 were es-
tablished from primary tumors, and STA-NB-8 and STA-NB-12 from DTCs of bone marrow
aspirates. INSS (International Neuroblastoma Staging System) and MYCN amplification
status for all neuroblastoma cell lines were described previously [37] and are listed in
Table S1. Cells were maintained in RPMI1640-Glutamax-I (GIBCO) supplemented with 1%
Pen/Strep (GIBCO), 10% FCS (PAA Laboratories), 1 mM sodium pyruvate (PAN Biotech)
and 25 mM HEPES (PAN Biotech). All neuroblastoma cell lines were cultivated at 37 ◦C
and 5% CO2.

2.1.2. Bone Marrow Aspirates

Bilateral bone marrow aspirates were collected according to the SIOPEN/HR-NBL-1
study protocol or standard of care during routine diagnostics at initial diagnosis and at
clinical response evaluation time points. Samples were shipped at room temperature within
4 h or at 4 ◦C within 24 h. Bone marrow-derived mononuclear cells (MNCs) were isolated
by density gradient centrifugation (LymphoprepTM, AXIS-SHIELD PoC AS).

For the validation of antibodies, neuroblastoma cell lines were mixed with tumor-free
bone marrow-derived MNCs to obtain a tumor cell suspension of 5% neuroblastoma cell
line in bone marrow-derived MNCs.

For single-cell analysis, eight bone marrow aspirates (Table S2) were collected at
different time points along the therapy protocol from four neuroblastoma patients with
metastatic (INRG stage M or Ms) disease. For bulk RNA-sequencing for this study 38
bone marrow aspirates from 38 patients with (n = 17) and without (n = 21) bone marrow
infiltration were processed as previously described [18] (Table S3). Annotations of common
neuroblastoma genetic aberrations for the four patients are given in Table S4.

2.1.3. Peripheral Blood-Derived MNCs

Leftover samples of peripheral blood from routine diagnostics were collected and
peripheral blood-derived MNCs were isolated, washed and counted as described for bone
marrow-derived MNCs. Neuroblastoma cell lines were spiked into peripheral blood-
derived MNCs to obtain a tumor cell content of 5%. The cell mixture was cultivated in the
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presence of 0.125% (v/v) anti-CD3/CD28 beads (Thermo Fisher Scientific, Waltham, MA,
USA) and 1% (v/v) IFNγ (Peprotech) for 5 days.

2.2. Biomarker Identification by Data Mining

DTC-associated biomarkers were identified based on data mining of previously gen-
erated RNA-seq datasets and proteomics data, and guided by public databases. The
employed prioritization scheme is detailed in the supplementary methods (Tables S5–S7).

2.3. Biomarker Validation

Methods applied to validate selected biomarkers are detailed in the supplementary
methods.

2.4. Multi Epitope Ligand Cartography

MELC was employed for multiplex IF-staining of the herein established 20-plex
antibody panel, as described [36].

Briefly, MELC is based on repetitive cycles of antibody staining and photobleaching.
After system start, four fields of view are selected and calibration (brightfield and dark-
frame) images are acquired. Prior to every staining and photobleaching cycle with the
acquisition of the corresponding fluorescence tag and post-bleaching image, the slide is
washed with PBS and a phase-contrast image is taken.

Camera (ApogeeKX4, Apogee Instruments) and light source maintain the same posi-
tion; the motor-controlled xy stage of the inverted fluorescence microscope (Leica DMIRE2,
Leica Microsystems; x20 air lens; numerical aperture, 0.7) moves in between fields of view.
Images with a resolution of 2018 × 2018 pixels are acquired, with one pixel corresponding
to 0.45 µm at a 20× magnification. Thus the whole image covers a field of view covering
908.1 × 908.1 µm.

Additionally, negative control secondary antibodies were implemented, which were
applied to the sample prior to indirect staining of the respective primary antibody.

The subsequently applied interphase fluorescence in situ hybridization (iFISH) is
described in the supplementary methods.

2.5. Sample Preparation, RNA-Isolation and RNA-Sequencing

The dimethyl sulfoxide (DMSO) frozen MNC samples of bone marrow aspirates were
stored in liquid nitrogen. Upon thawing, density gradient centrifugation (LymphoprepTM,
Axis-Shield, Dundee, UK) was performed in order to remove dead cells. Following the
density gradient separation, the GD2 positive DTC fraction was separated from the GD2
negative MNC fraction at 4 ◦C as described earlier [38]. In brief, the MNC fraction con-
taining the GD2 positive DTC fraction was washed with PBS at 300 g for 10 min at 4 ◦C.
The supernatant was discarded and the cells were re-suspended in 2 mL ice-cold magnetic-
activated cell sorting (MACS) buffer (PBS pH 7.2, 0.5% bovine serum albumin, 2 mM
ethylene diamine tetraacetic acid). Afterwards, the cells were incubated with 2.5 µL FITC-
labeled anti-GD2 antibodies (14.18 delta CH2 clone) at 4 ◦C for 20 min, followed by a 15 min
incubation with 75 µL anti-FITC magnetic beads (Miltenyi, Bergisch Gladbach, Germany).
Finally, the DTC-depleted MNC fraction was collected during the MACS sorting at 4 ◦C
and immediately homogenized in QIAzol (Qiagen, fortuna dusseldorf, Germany). The total
RNA was isolated with the miRNeasy Micro Kit (Qiagen) following the manufacturer’s
protocol. The quantity and integrity were assessed by the Qubit RNA HS Assay Kit (Life
Technologies, Foster, CA, USA) and the TapeStation High Sensitivity RNA ScreenTape
(Agilent, Santa Clara, CA, USA). For RNA-Seq, 30 ng of total RNA was used for cDNA
synthesis following the NEBNext Ultra RNA (non-directional protocol) and NEBNext Ultra
RNA II (directional protocol) library preparation kits (New England BioLabs, Ipswich, MA,
USA). Upon cDNA synthesis, the library was completed in an automated way at the EMBL
Genomics Core Facility (Heidelberg, Germany). RNA-Seq was performed at the Illumina
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HiSeq 2000 platform by pooling six samples per lane and generating 50 bp single-end
reads.

2.6. DeepFLEX

The main parameters used by methods integrated into the pipeline are listed below.
Further parameters are detailed in Table S8.

2.6.1. Image Processing

Images were registered, as previously described [39] (Figure S1a). Then, flat field
correction using brightfield and dark frame calibration images was performed to eradicate
gross variations in illumination (Figure S1b). Accumulative background noise caused
by residual post-bleaching signals was eliminated by subtracting post-bleaching images
from successive fluorescence tag images (Figure S1c). To reduce vignetting (reduction in
image brightness toward periphery compared to image center), intensity distributions were
corrected using regularized energy minimization on the set of all fluorescence tag images
from our eight samples via CIDRE v0.1 [40] (Figure S1d).

2.6.2. Segmentation

For accurate nuclei and cell segmentation, annotated datasets [41] of propidium
iodide or phase-contrast images were created, respectively. We trained the deep learning
architecture Mask R-CNN for instance-aware segmentation, as previously described [42].
Briefly, after augmenting the training dataset with automatically generated artificial images,
we used image tiling and rescaling to segment MELC images in order to make them
compatible with the input size (256 × 256 pixels) of the trained Mask R-CNN. The phase
contrast image of the propidium iodide staining cycle (which is acquired prior to each
IF staining) was segmented into a labeled cell mask (Figure S1e), while the fluorescence
tag image (nuclear stain propidium iodide) was segmented into a labeled nucleus mask
(Figure S1f). Inferred objects were only counted as cells if they were reproduced in the
nucleus mask (Figure S1g). We furthermore removed cells affected by image artifacts or
located in poorly illuminated image corners by user-guided region selection (Figure S1h).

2.6.3. Feature Extraction

The segmentation masks were used as a reference to generate multi-channel single-cell
images (Figure S2a), based on which intensity and morphological features were extracted
(Figure S2b, Table S9). The morphology of the cell nucleus was described by the features
size, perimeter, roundness and solidity. To describe the morphology of the cell, the size
and perimeter of the features were extracted. We used three intensity features to quantitate
marker abundance: mean intensity, total intensity and mean of the top 20% intensities
(less dependent on cell size). Intensity was measured per cell, per nucleus, and per cell
cytoplasm and membrane (= cell − nucleus).

2.6.4. Normalization

To eliminate unspecific staining caused by secondary antibodies and to increase the
signal-to-noise ratio, features extracted from the second secondary antibody were divided
by features extracted from the negative control secondary antibody (Figure S2c).

To further remove the unspecific binding of primary antibodies and batch vari-
ation in staining intensity, autofluorescence, and illumination, we applied RESTORE
v0.1 [43] (Figure S2d) to predict a background level (threshold separating signal and
noise/background) for each marker in each image based on a mutually exclusive counter-
part (Table S15). The application of RESTORE is detailed in the supplementary methods.

2.6.5. Feature Validation

Clustering stability and specificity were evaluated based on the first field of view from
patient sample BM 1.1 containing 2021 cells. The evaluation was performed using consen-
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sus clustering on single-cell feature vectors comprised of (I) all three intensity features in the
cell, nucleus and cytoplasm/membrane with the morphological features, (II) the mean of
the 20% highest pixel intensities in all three cell compartments with morphological features,
(III) the mean intensity in all three cell compartments with morphological features, (IV) the
total intensity in all three cell compartments with morphological features and (V) the mean
of the 20% highest pixel intensities in all three cell compartments without morphological
features. Consensus clustering was carried out with the R/Bioconductor package “cola”
v1.6.0 [44] repeating Gaussian mixture modelling for model-based clustering (partition
method = mclust) of t-distributed stochastic neighbor embedded (perplexity = 30) and
z-score standardized data into ten clusters (G = 10) 100 times, each time randomly sub-
sampling the feature space with a sampling rate of 0.8. Clustering stability and specificity
were measured by the three provided metrics proportion of ambiguous clustering (PAC),
concordance (CON) and mean silhouette score (MSS) and their mean (mean clustering
score, MCS) defined as:

MCS =
(1 − PAC) + CON + MSS

3
(1)

Significantly different feature values between clusters were determined using the
F-test, as described by Gu et al. Principal component analysis (PCA) with the R package
FactoMineR v2.4 and FactoExtra v1.0.7 [45] was carried out on the autoscaled single-cell
feature vectors comprised of the mean of the 20% highest pixel intensities of all 20 markers
with the morphological features from all ten determined clusters combined, and on the
autoscaled single-cell feature vectors comprised of the mean of the 20% highest pixel
intensities of the DTC markers (CD276, GD2, CD24, CD56, FAIM2) with the morphological
features from the five DTC clusters (cluster 1, 4, 5, 7 and 9) only.

2.6.6. Single-Cell Analysis

Normalized features were converted into an FCS file format and loaded into cytosplore
v.2.3.1 [46]. A-tSNE (approximated and user steerable t-distributed Stochastic Neighbor
Embedding, perplexity = 30) [47] and subsequent clustering by GMS (Gaussian Mean Shift,
σ = 45) [48] clustering was computed on the complete single-cell dataset of eight bone
marrow samples and resulted in 10 clusters, which were exported as FCS files together
with the CSV file of the corresponding heatmap. The latter were imported into python v3.7
to allow further quantitative and explorative analysis with the python data visualization
library seaborn v0.10.rc0 [49] (Figure S2e). Hierarchical clustering of DTCs into 30 sub-
clusters was performed using the complete-link/Voorhees algorithm [48] provided by
seaborn v0.10.

2.7. RNA-Sequencing Analysis

Quality checks and trimming of the raw RNA-Seq data files were conducted using
FastQC v0.11.9 [50] and Trim Galore v0.6.6 [51]. RNA-Seq single-end reads were aligned
to the Ensembl GRCh38.p13 v102 [52] human genome using HiSat2 v2.2.1 [53] and reads
were assigned to gene counts using featureCounts v2.0.1 [54]. Data analysis was per-
formed in R v4.0.3 [55] using a combination of tidyverse [56], stats and variancePartition
v1.20.0 [57] packages for data manipulation and exploratory data analysis. This was fol-
lowed by differential expression analysis (Table S10) using DESeq2 v1.30.0 [58] package
and Gene Set Enrichment Analysis (GSEA) carried out using clusterProfiler v3.18.1 [59]
with fgsea v1.16.0 [60] algorithm. The GSEA genes from the differential expression analysis
were ranked according to the log2 fold change and converted to entrez_gene_ids using
biomaRt [61] package. The GSEA enrichment was done against different geneset collec-
tions obtained from the Molecular Signatures Database (MSigDB) [62–64] using msigdbr
v7.2.1 [65] package (Table S11). Tumor microenvironment cell estimation was performed
with gsva function from the GSVA v1.38.2 [66] package specifying ssgsea method [67] and
using the HAY_BONE_MARROW [68] genesets from the MSigDB.
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After detailed exploratory data analysis, we identified a strong batch effect (denoted
in the text as library_type; U—unstranded and SR—stranded protocol) originating from
different RNA-seq preparation protocols and preparation batches. In order to account for
the batch effect in the downstream analyses, it was either included in the DESeq2 model
for differential expression analysis or, where batch corrected counts were required, it was
removed using the removeBatchEffect() function from the limma [69] package. To further
ameliorate possible influences of batch effects, we repeated the analysis with/without
batch correction and focused on results that were consistent between both analyses (data
not shown).

3. Results
3.1. Comprehensive Single-Cell Multiplex Immunofluorescence Imaging Panel

To analyze bone marrow metastases on a single-cell level, we sought to establish a
MELC panel specific to neuroblastoma DTCs and the bone marrow microenvironment,
which is mostly composed of hematopoietic and mesenchymal (stromal) cells.

Therefore, in our workflow (Figure 1a), we first selected DTC-associated biomarkers
in a multi-omics data mining approach, which we then validated separately by conven-
tional IF staining. Data mining based on RNA-seq data of stage M neuroblastoma primary
tumors, DTCs, and bone marrow-derived mononuclear cells (MNCs); proteomics data
of neuroblastoma tumors, neuroblastoma cell lines, and peripheral-nerve-associated fi-
broblasts; and public databases (Uniprot, Protein Atlas, PubMed) revealed 12 DTC-related
biomarkers that were highly or exclusively expressed by DTCs and primary tumor cells
and localized to the cytoplasmic membrane (Figure 1b,c) [20,70–73]. These 12 DTC-related
biomarkers were tested using optimized IF-sample preparation protocols in a systematic
validation procedure (Figures S3a,b and S4a, Table S12) on neuroblastoma cell lines in
isolation (Figure S3c, Table S1) and spiked into MNCs (Figure 1d and Figure S4b). Upon
validation (Table S13), FAIM2, which was highly abundant by proteomics specifically in
neuroblastoma cells (Figure S5), GD2, CD56, VIM and B7-H3 were selected for multiplex
imaging of DTCs (Figure 1e).

Second, in order to explore potential changes in the bone marrow microenvironment,
we selected 14 protein markers for cell types found in the adult bone marrow, i.e., bone
marrow hematopoietic stem and progenitor cells, T-helper (Th) cells, cytotoxic T cells
(CTL), regulatory T-cells (Treg), B-cells, monocytes/macrophages, granulocytes, natural
killer (NK)-cells and mesenchymal cells [11,74,75], and validated the expression on neu-
roblastoma cell lines spiked into MNCs (Table S14, Figure 1e). Subsequently, the staining
sequence for 19 valid antibodies was determined in MELC assays followed by nuclear
staining, finally resulting in a specific and robust 20-plex panel (Figure 1f, Table 1).

In conclusion, we here provide a validated 20-plex MELC panel for neuroblastoma
composed of DTC markers, including a novel candidate marker called FAIM2, as well as
myeloid, lymphoid, mesenchymal, and hematopoietic stem and progenitor cell markers
(Figure 1f).
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0.05, *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001. Bottom: Protein expression in NB peripheral-nerve-associated fibroblasts (PF), 
neuroblastoma cells lines and TU samples. LFQ, Label-Free Quantification; FPM, fragments per million. (c), Extension of 
potential DTC biomarkers by immune checkpoint molecules (PD-L1, PD-1, B7-H3), mesenchymal-type neuroblastoma cell 
markers (VIM, PROM1), therapeutic target NCAM-L1 and diagnostic neuroblastoma marker CD56. DESeq2, FDR-ad-
justed p value: ns, p > 0.05, *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001. (d), Representative MELC images of newly identified DTC 
biomarkers DCLK1, FAIM2 and TAG1 on separate samples stained by MELC. Top: DCLK1 (green) and GD2 (red) on BM-
MNCs and neuroblastoma cells line STA-NB-10 (mixed 20:1); center: FAIM2 (green) and GD2 (red) on BM-MNCs and 

Figure 1. Data mining and establishment of a multiplex imaging panel (MELC). (a), Flow chart of experimental approach.
(b), five potential disseminated tumor cell (DTC) biomarkers identified by data mining of RNA-seq data, proteomics data
(LC-MS/MS) and literature. Top: mRNA transcription (RNA-seq) in neuroblastoma primary tumors (TU), diagnostic (dx)
and relapse (rel) DTCs and bone marrow-derived mononuclear cells (BM-MNCs). DESeq2, FDR-adjusted p value: ns, p >
0.05, *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001. Bottom: Protein expression in NB peripheral-nerve-associated fibroblasts (PF),
neuroblastoma cells lines and TU samples. LFQ, Label-Free Quantification; FPM, fragments per million. (c), Extension of
potential DTC biomarkers by immune checkpoint molecules (PD-L1, PD-1, B7-H3), mesenchymal-type neuroblastoma cell
markers (VIM, PROM1), therapeutic target NCAM-L1 and diagnostic neuroblastoma marker CD56. DESeq2, FDR-adjusted
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p value: ns, p > 0.05, *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001. (d), Representative MELC images of newly identified DTC
biomarkers DCLK1, FAIM2 and TAG1 on separate samples stained by MELC. Top: DCLK1 (green) and GD2 (red) on
BM-MNCs and neuroblastoma cells line STA-NB-10 (mixed 20:1); center: FAIM2 (green) and GD2 (red) on BM-MNCs and
neuroblastoma cell line STA-NB-2 (20:1), bottom: TAG1 (green) on peripheral blood-derived MNCs and neuroblastoma
cell line STA-NB-4 (20:1) stimulated with IFNγ and anti-CD3/28 beads. Nuclei were counterstained with DAPI (blue). (e),
Representative MELC images of our single-cell 20-plex panel on one patient bone marrow sample. (f), Single-cell 20-plex
panel composed of DTC, myeloid, lymphoid, mesenchymal and HSPC (hematopoietic stem and progenitor cell) markers.

Table 1. Validated 20-plex antibody panel and MELC imaging sequence. All primary and secondary antibodies, which
passed the validation procedure and were included in the final 20-plex MELC panel. Negative control secondary antibodies
were implemented, which were applied to the sample prior to indirect staining of the respective primary antibody. n.r., not
relevant.

Step Antibody Conjugate Class|Host|Isotype Clone Supplier Catalogue-
Number

Optimal
Dilution

Sw α Rb FITC polyclonal swine IgG polyclonal Dako F0205 1:50

1 FAIM2 unconj. polyclonal rabbit IgG polyclonal ThermoFisher PA5-20311 1:50

Sw α Rb FITC polyclonal swine IgG polyclonal Dako F0205 1:50

2 CD25 PE monoclonal mouse IgG HI25a ImmunoTools 21810254 1:20

Ms α Biot. Cy3 monoclonal mouse IgG 3D6.6 Jackson
ImmunoResearch 200-162-211 1:800

3 PD-1 biotinylated monoclonal mouse IgG1 NAT105 BioLegend 367418 1:50

Ms α Biot. Cy3 monoclonal mouse IgG 3D6.6 Jackson
ImmunoResearch 200-162-211 1:800

4 CD29 FITC monoclonal mouse IgG1 HI29a ImmunoTools 21810293 1:20

5 CD24 FITC monoclonal mouse IgG1 SN3 ImmunoTools 21270243 1:20

6 GD2 FITC monoclonal chinese
hamster/humanized ch14.18/deltaCHO Tübingen n.r. 1:100

7 CD3 PE monoclonal mouse IgG1 UCHT1 ImmunoTools 21620034 1:20

8 CD34 PE monoclonal mouse IgG1 4H11[APG] ImmunoTools 21270344 1:20

9 CD4 PE monoclonal mouse
IgG2a,k VIT4 Miltenyi Biotec 130-113-214 1:20

10 CD20 PE recombinant human IgG1 REA780 Miltenyi Biotec 130-111-338 1:20

11 CD8 PE monoclonal mouse IgG1 HIT8a ImmunoTools 21810084 1:20

12 CD14 PE monoclonal mouse IgG1 18D11 ImmunoTools 21620144 1:20

13 CD44 PE monoclonal rat IgG2b IM7 ImmunoTools 21850444 1:20

14 CD45 PE monoclonal mouse IgG1 HI30 ImmunoTools 21810454 1:20

15 CD56 PE monoclonal mouse IgG1 B-A19 ImmunoTools 21810564S 1:20

16 HLA-DR PE monoclonal mouse IgG1 HI43 ImmunoTools 21819984 1:20

17 HLA-ABC PE monoclonal mouse IgG2a W6/32 ImmunoTools 21159034 1:20

18 B7-H3 PE human IgG1 REA1094 Miltenyi Biotec 130-118-570 1:40

Gt α Ch FITC polyclonal goat IgG polyclonal ThermoFisher A16055 1:500

19 Vimentin unconj. recombinant chicken IgY polyclonal Milipore/Chemicon AB5733 1:100

Gt α Ch FITC polyclonal goat IgG polyclonal ThermoFisher A16055 1:500

20 Propidium
Iodide PI n.r. n.r. Genaxxon

bioscience M3181.0010 1:1000
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3.2. DeepFLEX Extracts Morphological Features and Protein Localization That Contribute to
Cell Classification

To allow unsupervised single-cell analysis of MELC imaging data, we next devel-
oped DeepFLEX (Figure 2a), a semi-automated, deep learning-based pipeline. DeepFLEX
addresses common challenges of IF-based multiplex imaging methods, such as inhomo-
geneous illumination, background noise, autofluorescence and unspecific binding, which
are either not addressed or not effectively solved in available single-cell image analysis
pipelines [76–81].

In addition to image processing, the pipeline integrates methods for deep learning-
based segmentation as well as extraction, normalization and analysis of single-cell data
that were recently published by our group and others (Figures S1a–h and S2a–e, Tables S8,
S9 and S15). Single-cell data extracted by DeepFLEX describe the morphology of cells (size,
perimeter) and nuclei (size, perimeter, solidity, roundness), and the protein expression in
three cell compartments (cell, nucleus, cytoplasm/membrane) by three different intensity
features (mean of the 20% highest pixel intensities (M20), mean intensity (ME), total
intensity (TO) each (Figure 2a).

Having developed a comprehensive single-cell image analysis pipeline, we next
performed an extensive feature validation and assessed the contribution of morphological
features and protein marker localization to cell classification (Figure 2b–d). To this end, we
performed 20-plex MELC analysis of one representative bone marrow sample with high
DTC infiltration (BM 1.1, Table S2) and applied DeepFLEX to one field of view. Next, we
subsampled features and evaluated cluster stability and specificity based on a consensus
clustering approach [44], reasoning that the more stable and specific the clusters are, the
better suited the respective feature subset is to describe their identity. We found that, out
of the three intensity features, M20 was the feature that best represented marker intensity
with a mean clustering score (MCS) of 0.501. However, using all three intensity features
combined gave the quantitatively (MCS = 0.560; Table S16) and qualitatively (e.g., CD14+

cells in segregated cluster; Figures S6–S9) best clustering result.
Moreover, clustering results deteriorated when morphological features were removed

leaving only marker intensity to describe single cells (Figure S10), which highlights the
importance of cellular and nuclear morphological features. This was supported by a
principal component analysis on all cells (Figure 2c) and on DTCs only (Figure S11) showing
a high contribution of morphological features to cell diversity and DTC heterogeneity,
respectively.

Finally, we asked whether protein localization differs between cell types and might
contribute to cell type classification using an F-test (Figure 2b) to find significantly different
features (FDR-adjusted p < 0.05) between clusters. We observed that for CD24, the scaled
mean value was higher in the cell and nucleus than in the membrane in the CD29+CD56−

cluster 3, while the opposite was true for the CD29−CD56+ cluster 4 (Figure 2d) showing
that protein localization can depend on the cell type.

In conclusion, we demonstrate the relevance of morphological features for cell clas-
sification, show that protein localization can be associated with the cell type and that the
best clustering result is obtained when using all three intensity features combined. We
therefore considered all morphological and intensity features as well as protein localization
in further analysis.



Cancers 2021, 13, 4311 11 of 26
Cancers 2021, 13, x FOR PEER REVIEW 11 of 25 
 

 
Figure 2. DeepFLEX and feature validation. (a), Schematic overview of the deep learning-based image processing (regis-
tration, illumination correction), segmentation, feature extraction, normalization and single-cell analysis pipeline Deep-
FLEX. Single cells are described by the intensity and morphological features. Morphological features: size and perimeter 
(of cell and nucleus), and solidity and roundness (of nucleus). Intensity features: total intensity, mean intensity and mean 
of 20% highest pixel intensities per cell compartment (cell, nucleus and cytoplasm with membrane) and marker. In total, 
nine intensity features per marker plus six morphological features. (b), Evaluating the contribution of cell compartment 
and morphological features to cell clustering (consensus clustering using Bioconductor package cola) using 2021 single-
cell vectors, comprised of the mean of the 20% highest pixel intensities (M20) to measure marker intensity and morpho-
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Figure 2. DeepFLEX and feature validation. (a), Schematic overview of the deep learning-based image processing
(registration, illumination correction), segmentation, feature extraction, normalization and single-cell analysis pipeline
DeepFLEX. Single cells are described by the intensity and morphological features. Morphological features: size and
perimeter (of cell and nucleus), and solidity and roundness (of nucleus). Intensity features: total intensity, mean intensity
and mean of 20% highest pixel intensities per cell compartment (cell, nucleus and cytoplasm with membrane) and marker. In
total, nine intensity features per marker plus six morphological features. (b), Evaluating the contribution of cell compartment
and morphological features to cell clustering (consensus clustering using Bioconductor package cola) using 2021 single-cell
vectors, comprised of the mean of the 20% highest pixel intensities (M20) to measure marker intensity and morphological
features, from one representative bone marrow (BM) sample (1.FoV of BM 1.1, Table S2). Signature heatmap showing scaled



Cancers 2021, 13, 4311 12 of 26

mean per cluster and feature. Barchart showing the maximal difference between significantly (F-test with FDR-corrected
p-value < 0.05) different clusters per feature. Green, morphological features; blue, M20 in cell: yellow; M20 in nucleus; red,
M20 in cytoplasm with membrane. (c), Biplot representation of principal component analysis (PCA) on the autoscaled data
(single-cell vectors, comprised of M20 of each marker and morphological features) in one representative BM sample (1.FoV
of BM 1.1), showing the projection of the data set in the PC1xPC2 plane. Length of adjacent and opposite leg of arrows
show contribution to first and second principal components, respectively. Green, morphological features; blue, M20 in cell:
yellow; M20 in nucleus; red, M20 in cytoplasm/membrane. (d), Left, scaled mean of CD24 marker intensity (M20) higher in
cell and nucleus than in cytoplasm/membrane in cluster 3 and vice versa in cluster 4; right, Gallery images of cell, nucleus
and cytoplasm/membrane segmentation masks, and propidium iodide (PI), CD24, CD56 and CD29 MELC stainings for
three representative cells from cluster 3 and 4.

3.3. Single-Cell Map of Tumor Cells and the Microenvironment in Neuroblastoma Bone
Marrow Metastases

To obtain a single-cell map of DTCs and the bone marrow microenvironment in
patients with neuroblastoma, we performed MELC and DeepFLEX analysis on a diverse
sample set of eight bone marrow samples (Table S2) collected from three-stage M and
one-stage Ms neuroblastoma patient at different time-points during therapy expected to
contain a range of zero and very few to high numbers of DTCs. This resulted in an atlas of
35,700 single cells distributed between ten clusters (Figure 3a).

After confirming that potential batch effects had been eliminated (Figure 3b), we
manually annotated clusters based on median feature values of cell type-specific marker
proteins (Figure 3c, Figures S12 and S13) and guided by a recently published single-cell
atlas [74] of healthy adult human bone marrow. In addition, we verified our annotation
using representative gallery images of each cell type (Figure 3d).

We found most of the expected immune cell types including T helper cells (Th cells),
cytotoxic T-lymphocytes (CTLs), monocytes and macrophages (MO/MΦ) as well as B-
cells. A dominant proportion of cells in the bone marrow microenvironment of patients
represented a hematopoietic mixed (Figure 3a, yellow cluster) and a stem and progenitor
(Figure 3a, grey cluster) cell phenotype. Moreover, we were able to identify a segregated
tumor cell cluster with co-expression of GD2, CD56, B7-H3, CD24 and FAIM2 (Figure 3a, or-
ange cluster, and Figure 3e). The mesenchymal marker VIM showed the highest expression
on monocytes and macrophages (Figure 3c and Figure S13). In bulk transcriptomic and
proteomic data (Figure 1c), VIM was also highly expressed in neuroblastoma cells, which
was in accordance with the IF staining results on neuroblastoma cell lines (Figures S3c and
S4b). However, in the eight bone marrow samples analyzed, which were prepared with
the same protocol (Figure S4a) and stained with the identical antibody (Table 1), DTCs
were negative for VIM (Figure 3c and Figure S13), and also the mesenchymal marker CD29.
This indicates that DTCs in our sample set are predominantly of an adrenergic type, but
clarification will require further robust mesenchymal markers.

CD29 was enriched in two clusters (Figure 3c). The first cluster, which we annotated
as myelocytes, was composed of cells with a banded nucleus, and hence low values for
roundness and solidity, and a strong expression of CD24, which was shown to be expressed
in immature neutrophils [82].

The second cluster (CD29+ cells) was negative for CD45 and hematopoietic lineage
markers and mainly composed of large cells, suggesting a mesenchymal, stromal pheno-
type. These cells, however, displayed a low abundance of VIM. One cluster exhibited a
pronounced expression of HLA-ABC, but could not be assigned to a specific cell type.

Taken together, we here provide a comprehensive representation of DTCs and the
bone marrow microenvironment of neuroblastoma patients.
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Figure 3. Single-cell map of eight bone marrow metastases from four patients with stage M and Ms neuroblastoma. (a),
Single-cell atlas of 35,700 single cells clustered colored by cell type. Dimensionality reduction was performed by A-tSNE
(approximated and user steerable t-distributed Stochastic Neighbor Embedding) and subsequent clustering by GMS (Gaussian
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Mean Shift) in Cytosplore. (b), A-tSNE plot of 35,700 single cells colored by sample before and after batch correction
using RESTORE [43]. (c), Heatmap showing the median feature values of all created clusters with feature-wise scaling.
n, nucleus; c, cell. Nine columns per marker represent, from left to right, mean intensity, total intensity and mean of the
highest 20% of pixel values in the (I) nucleus, (II) cell and (III) cytoplasm/membrane. DTCs, disseminated tumor cells;
Myel., myelocytes; MO/MΦ, monocytes/macrophages; HSPC, hematopoietic stem and progenitor cells; T-h cells, T-helper
cells; CTLs; cytotoxic T-lymphocytes; Mixed, hematopoietic mixed cell population. (d), Representative gallery images of
all cell types. For FAIM2, PD-1 and VIM we introduced negative controls (NC) to be used for normalization during data
processing. Hence, for these four biomarkers, the ratio between right column and left column (NC) represents the true
signal. (e), A-tSNE plot of 35,700 single cells colored by GD2, CD56, CD276, CD24 and FAIM2 signal intensity (mean of the
highest 20% of pixel values in the cytoplasm/membrane).

3.4. Heterogeneity of Disseminated Tumor Cells and FAIM2 as a Novel Complementary Marker

To assess tumor heterogeneity of bone marrow metastatic cells, we next performed
hierarchical clustering on the single-cell data of the DTC cluster using only the DTC
markers from our 20-plex MELC panel. We obtained a clustermap with 30 DTC sub-clusters
ranging from clusters with very high co-expression of GD2, CD56, CD24 and CD276 to
such characterized by only one or two of these markers (Figure 4a). Heterogeneous
marker expression was also reflected by representative gallery images of individual DTC
phenotypes (Figure 4b). Notably, half of all DTCs belonged to sub-cluster 19, which
represented a dominant phenotype in the two highly tumor-infiltrated bone marrow
samples BM 1.1 and BM 3.1 (63% and 2.9%, respectively; Figure 4c). While DTCs showed
a round nuclear shape, cellular and nuclear size contributed to the fractionation of DTCs
into distinct sub-clusters and varied between different phenotypes, e.g., 17 and 30, which
was composed of large and small cells, respectively. Sub-cluster 18 and 20 displayed a
high expression of FAIM2, an inhibitory protein in the Fas-apoptotic pathway of tumor
cells [83,84], which was proposed as a tumor marker in small cell lung [85] and breast
cancer [86]. FAIM2 is known to be primarily expressed in neurons [83,87], which was
in accordance with our bulk proteomics data (Figure S5a). In our RNA-seq datasets,
FAIM2 transcription was significantly higher in tumor cells than in bone marrow-derived
MNCs (Figure S5b). Moreover, FAIM2 transcription was enriched in primary tumor cells
without MYCN amplification as compared to those with MYCN amplification (Figure
S5b), thus supporting previous findings [88]. However, we did not observe a differential
expression between these two classes in DTCs. Interestingly, in our single-cell analysis
of eight neuroblastoma bone marrow samples, FAIM2 was expressed only in a subset of
DTCs (Figures 3e and 4a,b). As other markers that were found to be expressed by DTCs,
FAIM2 was not exclusive to neuroblastoma cells, but was also found on other cell types
in the bone marrow (Figure 3e and Figure S13). To assess the correlation of FAIM2 and
other DTC markers, we plotted the respective marker abundances for all cells of all clusters
(Figure 3e) and the DTC cluster only (Figure S14). This corroborated the observation, that
only a subset of DTCs exhibit a high expression of FAIM2 along with low or intermediate
abundances of the other DTC markers, while the latter, GD2, CD56, CD274 and CD24,
were mostly co-expressed by DTCs. We further explored whether expression of these
markers was dependent on the genetic subtype and evaluated our RNA-seq dataset for
DTC marker expression in neuroblastoma with and without MYCN-amplification, loss
of chromosome 11q or other neuroblastoma-specific genetic aberrations (Figure 4d and
Figure S15). While FAIM2 and GD2 expression was constant, CD56 and CD276 were
significantly lower in tumors and DTCs that carried a chromosome 11q loss, but showed
no significant differential expression in other genetic subtypes, suggesting heterogeneity
between patient groups with specific genetic alterations in addition to heterogeneity at the
single-cell protein level.
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Figure 4. Characterization of DTC heterogeneity and qualification of FAIM2 as a novel complementary biomarker. (a),
Cluster map (hierarchical clustering by Voorhees) showing normalized single-cell feature values of DTCs. n, nucleus; c, cell.
Nine columns per marker represent, from right to left, mean intensity, total intensity and mean of the highest 20% of pixel
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values in the (I) nucleus, (II) cell and (III) cytoplasm/membrane. Color bar on the right shows 30 sub-clusters. Color bar on
the left shows the corresponding bone marrow sample. (b), Representative gallery images of six selected cells from different
DTC sub-clusters reflecting DTC heterogeneity. For FAIM2 we introduced negative controls (NC) to be used as background
threshold levels during data processing. Hence, for this biomarker, the ratio between right column and left column (NC)
represents the true signal. (c), Proportion of 30 DTC sub-clusters in highly tumor-infiltrated bone marrow samples (BM 1.1,
BM 3.1). (d), CD56 and CD276 mRNA transcription in bone marrow-derived mononuclear cells (MNCs) and neuroblastoma
tumor cells (TU/DTC) without (wt) and with (amp/loss) genetic aberration. Wilcoxon–Mann–Whitney with FDR-corrected
p-values: ns, **, p ≤ 0.01; ****, p ≤ 0.0001. FPM, fragments per million; amp, amplification.

Here we present a first exploratory survey of DTCs in bone marrow metastases on a
single-cell level highlighting a hitherto unappreciated diversity pointing towards multiple
distinct subclasses of DTCs. We show that FAIM2 marks a subset of DTCs and can serve as
a complementary biomarker for capturing DTC heterogeneity in neuroblastoma.

3.5. Analysis of Bone Marrow Microenvironmental Changes

We then investigated changes in the metastatic microenvironment upon dissemination
of tumor cells into the bone marrow. We first separately analyzed single-cell imaging data
of bone marrow samples with no (or very low) tumor cell infiltration and compared those
to bone marrow samples with high tumor cell content (Figure 5a,b and Figure S16).

Most prominently, a cluster of myelocytes appeared exclusively when DTCs were
present, but not in their absence. In addition, the proportion of hematopoietic mixed as
well as stem and progenitor cells, monocytes and macrophages, and undefined HLA-ABC+

cells was strongly reduced in samples with a high tumor cell infiltration. In contrast, we
observed a relative increase in the abundance of B-cells, Th cells and CTLs (Figure 5a).
In order to exclude that the myelocytic cluster, co-expressing CD24, which is also highly
expressed in DTCs, and the mesenchymal marker CD29, might contain mesenchymal-type
neuroblastoma cells [19,20], we performed interphase fluorescence in situ hybridization
(iFISH) subsequent to MELC. The bone marrow sample with the highest DTC fraction
and most abundant CD29+CD24+ cluster (BM 1.1) originated from a patient with a chro-
mosome arm 17q gain and was therefore interrogated using a 17q-specific probe. The
result (Figure 5c) unequivocally demonstrated that cells from the myelocytic cluster do
not carry supernumerary 17q signals and were therefore considered normal cells that only
appeared in the presence of DTCs in the bone marrow in our sample set. In addition, FISH
analysis also confirmed the accurate classification of DTCs. We clearly detected six copies
of 17q, which was in accordance with a previous FISH analysis of lymph node metastases
from the same patient (NB1, Figure S17). As substantial differences in the bone marrow
microenvironment upon tumor cell dissemination were identified by multiplex imaging,
we next investigated affected cell types and functional changes in more detail. We depleted
DTCs from 17 bone marrow aspirates collected at diagnosis (DTC content 1 to 70%) by
magnetic activated cell sorting. Transcriptome profiles of these 17 bone marrow MNCs,
i.e., the microenvironmental cell fraction, was then compared to 21 bone marrows without
tumor cell infiltration (13 samples were available from Rifatbegovic et al.). Accounting for
the technical limitations posed by inequalities in sample preparation, we identified 587
significantly (BH-adjusted p < 0.05 and log2FC > 1) differentially expressed genes, 353 were
up-regulated and 234 down-regulated in the non-tumor fraction of tumor cell infiltrated
bone marrow samples. Gene set enrichment analysis revealed a pronounced enrichment of
chemotaxis and migration signatures of neutrophils and leukocytes, a pronounced inflam-
matory response via IFNα and γ as well as TNFα and interaction of cytokines with their
receptors (Figure 5d).
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top) pseudo-colored according to cell type and based on propidium iodide image (right, bottom) acquired during MELC. 
Six copies of 17q (red) were detected on DTCs (D, orange) and 2 on myelocytes (M, brown). The 17p reference probe did 
not yield interpretable results due to preprocessing of the sample by MELC. Nuclei were counterstained with DAPI (blue). 
(d), RNA-seq analysis of MACS separated GD2 negative bone marrow MNC fraction of DTC-infiltrated (n = 17) and non-
infiltrated (n = 21) bone marrow. Top 20 significantly (p.adj < 0.05; p.adj = BH-adjusted p-value) positively enriched (NES 

Figure 5. Changes in the cell composition associated with the presence of tumor cells in the bone marrow. (a), Bar
charts demonstrating the cell composition in bone marrow samples with no/low and high tumor cell infiltration. DTCs,
disseminated tumor cells; Myel., myelocytes; MO/MΦ, monocytes/macrophages; Mes. cells, mesenchymal cells; HSPC,
hematopoietic stem and progenitor cells; T-h cells, T-helper cells; CTLs; cytotoxic T-lymphocytes; Mixed, hematopoietic
mixed cell population. (b), A-tSNE plot of 35,700 single cells highlighted by samples with high (left, BM 1.1, BM 3.1)
and no/low (right, BM 1.2, BM 1.3, BM 2.1, BM 2.2, BM 2.3, BM 4.1) tumor cell infiltration and colored by cell type.
Dimensionality reduction was performed by A-tSNE (approximated and user steerable t-distributed Stochastic Neighbor
Embedding) and subsequent clustering by GMS (Gaussian Mean Shift) in Cytosplore. (c), FISH analysis with chromosome
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17q-specific probe on MELC-preprocessed sample BM 1.1, collected from a patient with 17q gain. Nucleus segmentation
mask (left, top) pseudo-colored according to cell type and based on propidium iodide image (right, bottom) acquired during
MELC. Six copies of 17q (red) were detected on DTCs (D, orange) and 2 on myelocytes (M, brown). The 17p reference
probe did not yield interpretable results due to preprocessing of the sample by MELC. Nuclei were counterstained with
DAPI (blue). (d), RNA-seq analysis of MACS separated GD2 negative bone marrow MNC fraction of DTC-infiltrated (n =
17) and non-infiltrated (n = 21) bone marrow. Top 20 significantly (p.adj < 0.05; p.adj = BH-adjusted p-value) positively
enriched (NES > 0; NES = normalized enrichment score) gene sets from GOBPs (GO-biological processes), hallmark
and KEGG gene set collections as determined by GSEA (gene set enrichment analysis) (Table S11) performed on log2FC
ranked gene list are shown for bulk RNAseq data of the MNC fraction from tumor-infiltrated vs. non-infiltrated bone
marrow. Count—core_enrichment size; GeneRatio—core_enrichment size divided by setSize. (e), six genes implicated in
inflammation, immuno-suppression and neutrophil attraction from the top 50 significantly (p.adj < 0.05 and log2FC > 1;
p.adj = BH-adjusted p-value) upregulated genes (Table S10) in bulk RNAseq data of the MNC fraction from tumor-infiltrated
vs. non-infiltrated bone marrow. Regularized log2, regularized logarithm (rlog) transformed counts normalized with
respect to library size; U, unstranded; SR, stranded protocol. (f), Single-sample gene set enrichment analysis (ssGSEA)
of selected gene sets for bone marrow-derived cell types (MSigDB—C8: HAY_BONE_MARROW_) in bulk RNAseq data
of the MNC fraction from tumor-infiltrated vs. non-infiltrated bone marrow. Enrichment score—normalized enrichment
score as calculated by GSVA ssgsea algorithm, p-values—calculated using unpaired two-samples Wilcoxon test (R function
wilcox.test()).

In line with this, among the top 50 up-regulated genes, surface bound and secreted
mediators of inflammation, e.g., IL1A and IL1B, monocyte and neutrophil chemotaxis, e.g.,
CXCL2 and CXCL3, but also genes indicative of immune-suppressive reactions, i.e., ARG2
and CD274 (PD-L1) were present (Figure 5e). We further interrogated cell type composition
and found hematopoietic stem, myeloid and lymphoid progenitor populations decreased,
whereas CD8+ T-cells, dendritic cell progenitors and immature neutrophils were enriched
in tumor-infiltrated bone marrows (Figure 5f).

In summary, we demonstrate in two independent datasets, by a combined MELC
plus DeepFLEX-based single-cell imaging and by a transcriptomic approach, that tumor
cell metastasis in the bone marrow is associated with alterations in the microenvironment,
specifically chemotactic cytokines and inflammatory response along with changes in the
cellular composition. Most prominently, a population of immature myeloid/neutrophil
cells was exclusively present in tumor-infiltrated bone marrow in our sample set.

4. Discussion

Herein, we provide first insights into the single-cell landscape of human bone marrow
metastases including variations among DTCs as well as cells of the mesenchymal and
hematopoietic compartment. The bone marrow, as part of the immune system, constitutes
a niche comprised of multiple immune cell subpopulations [75], shown to be involved in
cancer progression [89]. As a key regulator of hematopoietic and mesenchymal stem cell
function, the niche may facilitate quiescence and drug-resistance [90], impairing current
therapeutic approaches. Single-cell multi-modal analysis of healthy human bone marrow
recently identified the major bone marrow mononuclear populations [74]. However, the
single-cell atlas of malignant human bone marrow has so far only been described in
leukemia [91,92], where the bone marrow is not considered a metastatic, but rather an
originating site.

Within the bone marrow microenvironment, we observed alterations in the hematopoi-
etic and mesenchymal cell compartment, which was dependent on tumor cell infiltration
indicating that DTCs shape the metastatic niche. In support of this notion, leukemia cells
are likewise known to reprogram the bone marrow niche in order to instigate changes that
promote their progression [93]. Interestingly, we identified considerably fewer progenitor
and other immature hematopoietic cells by multiplex imaging and transcriptomic profiling,
in highly tumor infiltrated samples, which solidifies previous findings, suggesting that
tumor invasion reduces the support for primitive hematopoietic stem and progenitor cells
in the metastatic niche [94]. Furthermore, we found myelocytes/immature neutrophils
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based on protein marker expression, morphological features and transcriptome signatures
only in samples with DTC infiltration. It is tempting to speculate that these may constitute
a granulocytic myeloid-derived suppressor cell (G-MDSCs) type [95] or more specifically a
tumor-associated neutrophil cell type, which is known to have tumor-promoting functions
in several types of cancers [96]. In support of this notion, we observed increased neutrophil
chemotaxis and migration signatures including upregulation of genes encoding CXCR2
ligands, which were shown to recruit neutrophils for immunosuppression and hence sup-
port of disseminated tumors cells in pre-metastatic niches [96–98]. It is not clear however,
whether these cells might be recruited and reprogrammed from peripheral myeloid cells or
whether they might be derived from bone marrow intrinsic progenitors.

Among DTCs, we showed a high level of diversity reflected by heterogeneous cell
morphologies as well as protein expression profiles and fractionation into phenotypically
diverse DTC sub-clusters. Notably, half of the cells belonged to one major DTC sub-cluster,
which represented a dominant phenotype in both of the two highly tumor-infiltrated bone
marrow samples. This phenotype dominance was also observed in a previous study [99] on
breast cancer, where in almost half of the analyzed cohort, 50% of all tumor cells belonged
to a single tumor cluster, and might reflect clonal expansion, intrinsic plasticity or result
from tumor-microenvironment interaction.

A subset of DTCs exhibited a high expression of FAIM2, an inhibitory protein in
the Fas-apoptotic pathway, which we included into the 20-plex panel upon data min-
ing of a previously generated neuroblastoma RNA-seq and proteomics dataset. FAIM2
was described as a therapeutic target in small cell lung cancer [85] and as a predictive
marker of poor outcome in breast cancer patients [86]. Herein, we propose FAIM2 as a
complementary marker to depict a broader spectrum of DTC heterogeneity, as it marked
a subpopulation of DTCs and showed a lower correlation with the other analyzed DTC
markers than the latter with each other. A deeper investigation of DTC sub-classes in larger
patient cohorts may yield targets for neuroblastoma therapy. As neuroblastoma displays
substantial genetic heterogeneity, most prominently heterogeneous amplification of the
oncogenic driver MYCN [5,100], and since FAIM2 expression was associated with MYCN-
amplification status in tumors, but not DTCs, it will be important to evaluate the correlation
of genetic and phenotypic heterogeneity. Especially as in response to chemotherapy or
molecules inducing neuronal differentiation, such as retinoic acid or neurotrophins, tumor
cells can overcome MYCN-driven differentiation blocks, undergo apoptosis or cellular
senescence [37,101–104]. Moreover, our findings represent a valuable source of information
for the design of therapeutic approaches depending on the distribution of target molecules
on cancer cells, such as immunotherapies [105], and can hence contribute towards better
patient stratification in neuroblastoma.

Neuroblastoma heterogeneity has been investigated before by scRNA-seq of primary
tumor samples, which were mostly composed of sympathoblast-like phenotypes and to
a lesser extent of chromaffin-like and bridge cells, accounting for the embryonal trunk
neural crest derived origin of neuroblastoma. However, there is a controversy about
whether mesenchymal- or Schwann cell precursor like neuroblastoma cells exist and if so,
whether those are more resistant to chemotherapy in vivo [19,20,25–29]. We previously
showed that mesenchymal characteristics can be adopted upon therapy-induced tumor cell
senescence [102,106]. In the present study, DTCs collected at different time points in the
disease course mainly expressed markers of the sympathoblast lineage, such as GD2 [28],
but did not show a mesenchymal phenotype based on the expression of the mesenchymal
markers, CD29 and Vimentin. This might be explained by the limited sample as well as
panel size or the fact that mesenchymal type neuroblastoma cell identity has previously
been defined by master transcription factors active in gene regulatory networks. Thus,
future research will require the identification of robust imaging-based markers to reliably
assign neuroblastoma cells to these classes.

Our findings were based on a multi-omics approach including single-cell analyses of
MELC multiplex imaging data, enabled by the pipeline DeepFLEX, which we developed
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based on the integration of methods for image processing [39,40], deep learning-based
segmentation [41,42], normalization [43] and single-cell analysis [46]. Current multiplex
cytometry techniques comprise flow cytometry, imaging based cytometry, such as multi-
epitope ligand cartography (MELC) and imaging mass cytometry (IMC), and hybrid
technologies. While flow cytometry methods offer a bigger dynamic range of signal de-
tection, morphological features are limited to cellular size and an indirect measure for
granularity. Moreover, signal localization to sub-cellular compartments cannot be deter-
mined. We show that our imaging-based approach allows the analysis of cell and nuclear
morphology-related features (size, roundness, solidity, perimeter) as well as the exact
localization of biomarkers to e.g., the nucleus, cytoplasm and membrane, and demonstrate
the relevance of those parameters for cell identity. Our approach also allows re-probing of
cells for other biomarkers, e.g., genetic alterations by iFISH, which is particularly important
for the unequivocal detection of tumor cells.

DeepFLEX uses deep convolutional neural networks for nuclear and cell segmenta-
tion, which has been proven effective even for highly complex samples, showing nuclei
of diverse morphologies and sizes, tight cell aggregations and overlapping cells [41,42].
DeepFLEX also tackles confounding factors of targeted imaging technologies such as un-
specific binding and autofluorescence and combines deep-learning based cell and nucleus
segmentation, which allow accurate single-cell assessment. The demonstrated application
of DeepFLEX on MELC imaging data serves as a blueprint for further single-cell analyses
by multiplex imaging methods beyond MELC, facing similar challenges.

In our study we have chosen to investigate bone marrow aspirates. In contrast
to trephine biopsies, bone marrow aspirates are more easily accessible, as collection is
less invasive, cells are native, RNA is of high quality and proteins readily accessible by
antibody staining without the need of harsh chemical treatment. A limitation of bone
marrow aspirates is the loss of spatial context and potential bias in the cell composition as
compared to the bone biopsy, since firmly attached cell types might not be released during
aspiration. However, it has been previously demonstrated that bone marrow aspirates are
suitable to retrieve and detect tumor cells for highly sensitive minimal residual disease
detection and to profile molecular changes in tumor and non-tumor cells [4,18,34].

In conclusion, this study offers a first view into the single-cell landscape of human
bone marrow metastases, which is substantially remodeled upon tumor cell invasion. This
might motivate further investigations in other solid cancers with bone marrow involvement
and warrant the investigation of spatio-temporal changes in tumor cell heterogeneity and
microenvironment and their clinical relevance.
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of antibodies against DTC-related biomarkers on neuroblastoma cell lines (NBCL) spiked into
bone marrow derived mononuclear cells (BM-MNCs) or peripheral blood-derived mononuclear
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Figure S6: Cluster specificity and stability using all features, Figure S7: Cluster specificity and
stability using mean of the 20% highest pixel intensities (M20) to represent marker intensity and
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