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Abstract

Background: China has always been one of the countries with the most serious Tuberculosis epidemic in the
world. Our study was to observe the Spatial-temporal characteristics and the epidemiology of Tuberculosis in China
from 2004 to 2017 with Joinpoint regression analysis, Seasonal Autoregressive integrated moving average (SARIMA)
model, geographic cluster, and multivariate time series model.

Methods: The data of TB from January 2004 to December 2017 were obtained from the notifiable infectious disease
reporting system supplied by the Chinese Center for Disease Control and Prevention. The incidence trend of TB was
observed by the Joinpoint regression analysis. The Seasonal autoregressive integrated moving average (SARIMA) model
was used to predict the monthly incidence. Geographic clusters was employed to analyze the spatial autocorrelation.
The relative importance component of TB was detected by the multivariate time series model.

Results: We included 13,991,850 TB cases from January 2004 to December 2017, with a yearly average morbidity of
999417 cases. The final selected model was the 0 Joinpoint model (P=0.0001) with an annual average percent change
(AAPQ) of —33 (95% Cl: —4.3 to — 2.2, P<0.001). A seasonality was observed across the 14 years, and the seasonal
peaks were in January and March every year. The best SARIMA model was (0, 1, 1) X (0, 1, 1)1, which can be written as
(1-B) (1-B"%) X, = (1-0.42349B) (1-043338B'?) &, with a minimum AIC (880.5) and SBC (886:4). The predicted value and
the original incidence data of 2017 were well matched. The MSE, RMSE, MAE, and MAPE of the modelling performance
were 201.76, 14.2, 84 and 0.06, respectively. The provinces with a high incidence were located in the northwest
(Xinjiang, Tibet) and south (Guangxi, Guizhou, Hainan) of China. The hotspot of TB transmission was mainly located at
southern region of China from 2004 to 2008, including Hainan, Guangxi, Guizhou, and Chongging, which disappeared
in the later years. The autoregressive component had a leading role in the incidence of TB which accounted for 81.5-
84.5% of the patients on average. The endemic component was about twice as large in the western provinces as the
(Continued on next page)
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enhance the early protective implementation.

average while the spatial-temporal component was less important there. Most of the high incidences (> 70 cases per
100,000) were influenced by the autoregressive component for the past 14 years.

Conclusion: In a word, China still has a high TB incidence. However, the incidence rate of TB was significantly
decreasing from 2004 to 2017 in China. Seasonal peaks were in January and March every year. Obvious
geographical clusters were observed in Tibet and Xinjiang Province. The relative importance component of TB
driving transmission was distinguished from the multivariate time series model. For every provinces over the
past 14 years, the autoregressive component played a leading role in the incidence of TB which need us to

Keywords: Tuberculosis, Spatial-temporal, Epidemiology, Multivariate time series model

Background

Tuberculosis (TB) continues to challenge the inter-
national community. It is estimated that there are about
1.7 billion people with potential TB infection, accounting
for 23% of the world’s population, are at risk of develop-
ing TB disease during their lifetime [1]. Moreover, the
global burden was estimated by the World Health
Organization (WHO) at 10.0 million incident cases in
2017. It is also one of the top 10 causes of death which
caused an estimated 1.6 million deaths in 2017, and has
killed more people than other infectious diseases in the
past few decades [1, 2].

China has always been one of the countries with the
most serious Tuberculosis epidemic in the world [3-6].
There were 866,000 patients with infection of TB in
China, 2018 [7]. Due to the continuous attention to
public health and increasing investment in resources,
China’s Tuberculosis epidemic has significantly im-
proved in recent years. However, due to the large num-
ber of people infected with TB, the epidemic situation of
Tuberculosis is still not optimistic, so further long-term
research on the incidence of it in China is needed.

Currently, China has conducted five national epi-
demiological investigations to find the epidemiological
characteristics of Tuberculosis. However, the spatiotem-
poral distributions of Tuberculosis cannot be evaluated
continuously, and the survey was unable to measure
other important indicators of the severity of the epi-
demic. The mathematical models may help us better
understand the epidemiological characteristics of Tuber-
culosis. Some of the studies mainly focused on the
seasonality impact on the transmission of Tuberculosis
[5, 8, 9], while others focused on the spatial distributions
[10, 11]. There is no model that assesses the spatiotem-
poral characteristics and the epidemiology of Tuberculosis
among the whole population in China over 14 years.

The aim of this study was to observe the Spatial-
temporal characteristics and the epidemiology of Tuber-
culosis in China from 2004 to 2017. The incidence trend
of the TB was observed by the Joinpoint regression
analysis. The Seasonal autoregressive integrated moving

average (SARIMA) model was used to predict the
monthly incidence. Geographic clusters was employed to
analyze the spatial autocorrelation. The relative import-
ance component of TB was detected by the multivariate
time series model. These models additively divided TB
risks into spatiotemporal, autoregressive, and endemic
components.

Methods

The data collection

Tuberculosis incidence data were extracted from the
Chinese Center for Disease Control and Prevention
(http://www.phsciencedata.cn/Share/edtShareNew.jsp?id=
39208) in 31 provinces of China from 2004 to 2017. The
data were aggregated to 168 monthly counts across the 14
years. Population data came from the website of the statis-
tical yearbook of the National Bureau of Statistics (http://
www.stats.gov.cn/tjsj/ndsj/). The population size was easy
to find in the website, and it represented the average
population each year.

Joinpoint regression

From 2004 to 2017, the continuous change of the TB in-
cidence trend was analyzed using Joinpoint software.
The grid search method was applied to find significant
trends, and multiple permutation tests were applied to
detect the Joinpoint points for each trend [12-14]. The
overall time trend was calculated by the annual average
rate of change (AAPC). If the final model was 0 Join-
point model, the average percent change (APC) was
considered equal to AAPC. We used the Joinpoint re-
gression model to find the long-term trend of the TB
incidence.

Time-series estimation

The SARIMA model was used to predict the future
trends in many disease incidences [13, 15-17]. In our
study, A SARIMA model was applied to predict the inci-
dence of TB epidemics in China. The SARIMA model
can be written as the form of (p, d, q) (P, D, Q) [s],
which P, D, and Q indicate seasonal SAR terms, seasonal
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differencing, and seasonal SMA terms, respectively; p, d,
and q indicate non-seasonal AR terms, non-seasonal
differencing, and non-seasonal MA, respectively; s indi-
cated the seasonal period (s = 12 in our study).

The construction of the SARIMA model can be di-
vided into the following steps. First, an augmented
Dickey-Fuller (ADF) test was performed to test the sta-
tionary status of time series. Second, model parameters
(p, d, ¢, P, D, and Q) were determined by autocorrel-
ation function (ACF) plot, partial autocorrelation func-
tion (PACF) plot, and inverse autocorrelation function
(IACF) plot. An alternative SARIMA model was
constructed by transforming the parameters of model.
Lastly, the Akaike information criterion (AIC) and
Schwartz Bayesian Criterion (SBC) were used to deter-
mine the fitness of different SARIMA models. An opti-
mal model was considered to have the lowest AIC and
SBC values, and the residuals of the final model were
tested by the Box-Ljung test to know whether they were
time independent. The mean square error (MSE), mean
absolute percentage error (MAPE), mean absolute error
(MAE), and root mean square error (RMSE) were used
to see the predictive validity of the models. We use year
2004-2016 to construct the SARIMA model, and year
2017 to testify the forecast of the model. The SARIMA
model is used to forecast the short-term incidence of TB
to testify the accuracy of model. We also decompose the
monthly data into the overall trend, seasonal trend, and
random noise with a goal to identify the truly long-term
trend.

Spatial autocorrelation analysis

Spatial analysis was used to identify the clustering re-
gions and observe geographic variation [18, 19]. Global
Moran’s I of reported TB cases was computed to detect
the spatial clustering pattern. A Moran’s I value is
between — 1 and 1, whereas the value near 1 means posi-
tive spatial autocorrelation, the value near -1 means
negative spatial autocorrelation, and 0 means random
distribution. Local Moran’s Index was calculated and a
hotspot analysis was performed to determine the loca-
tion of clusters. Local Moran’s Index was applied to de-
termine the spatial autocorrelation, which detects some
spatial clusters with similar adjacent features and excep-
tion values. When the incidences rate had similar low
values or high values, these areas were deemed as having
positive autocorrelation (low-low or high-high autocorrel-
ation). If not, they were defined as having a negative auto-
correlation (low-high or high-low autocorrelation) [10].

The multivariate time series model

A multivariate time-series model for disease counts Y
during periods t=1, T from units i =1, I was first estab-
lished by Held et al [20] and was extended and applied
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in some papers [21-23]. The Y;, denoted the number of
TB cases which were considered to be a negative
binomial distribution Yit|Y;,.; ~ NegBin (uy, ), with an
additively decomposed mean:

Ui = viceie + Aie Yie1 + Py E w;iY =1,

j=i

Where ¢ is an over-dispersed parameter that the
conditional variance of Y, is g, (1 + Wuy). Lyey is the
endemic component, and the autoregressive component
MitYie1 reflects the patient numbers at previous time.
The spatiotemporal component ¢; Xj=iwjiYj, t-1
reflects the transmission among different units. Each
parameter vy, A, and ¢y follow the form of log-linear:

s
log(vy) = a®¥) + b + Z{y sin(wst) 4+ & cos(wst)},

s=1
log(L;) = a™ + bW,
log(¢;) = a'® + b,

Where o, a® and o«® are intercepts and b,Y, bW
and b;”’ are random effects accounting for heterogeneity
among different regions. The endemic v; contains a
sinusoidal frequency wave (w, = 211/12 for monthly data),
and S is the seasonal parameters. The population
fraction e; can be used as a multiplicative offset for the
regional specific measure for the incidence of infectious
disease.

The weights w;; describe the transmission from district
j to district I. Considering that most regions are very
large, higher-order neighbourhood are not that relevant
as we only constructed our model with first-order neigh-
bourhood. The score rule of the Dawid-Sebastiani score
(“dss”) was applied to identify the optimal model with
random effects. The optimal model corresponds to lower
scores with better predictions [22, 24]. All the multivari-
ate time analysis used the R package Surveillance.

Statistical analysis

The incidence trend of TB from 2004 to 2017 was
observed by the Joinpoint software (version 4.7.0.0). The
Seasonal autoregressive integrated moving average
(SARIMA) model was used to predict the monthly inci-
dence of TB by SAS9.4 (SAS Institute Inc., Cary, NC).
Geographic clusters was employed to analyze the spatial
autocorrelation with ArcGIS software (version 10.2, ESRI
Inc,; Redlands, CA, USA). The relative importance com-
ponent of TB was detected by the multivariate time
series model with R software (version 3.6.0, package =
surveillance). P value <0.05 was considered as statisti-
cally significant for all the tests.
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Results

Time trends, seasonal characteristics of the TB incidence
We included 13,991,850 TB cases from January 2004 to
December 2017, with a yearly average morbidity of 999,
417 cases. A fluctuant reduction was seen from 74.57
(/100,000) cases in 2004 to 60.08 (100,000) cases in
2017, with the highest incidence of 96.30 (100,000) cases
in 2005. The final model was the 0 Joinpoint model (P =
0.18). The annual average percent change (AAPC) was
-3.3 (95% CI: -4.3 to -2.2, P<0.001) from 2004 to
2017, indicating a downward trend in the TB incidence
(Fig. 1).

The occurrence of TB with obvious seasonality was
observed in the past 14 years (Fig. 2), and the seasonal
cycle kept on fluctuating within 12 months. There were
two incidence peaks in January and March every year,
with a burst From December of the previous year to
January of the following year.

The null hypothesis of white noise was strongly rejected
with the results of the white noise test (x> = 131.98, DF =
6, P <0.0001), which can extract some useful information
from the time series. Although the null hypothesis was
significant (Tau=-391, P=0.003, lag=1) for the
augmented Dickey-Fuller (ADF) test, we should make a
seasonal difference taking account of the fluctuation of
the incidence figure. We performed a seasonal differen-
cing to make sure that the transformed TB incidence was
stationary (Tau=-7.6, P <0.0001, lag=1) to better con-
struct the SARIMA model (Fig. 3). Based on the figures of
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PACF, ACF, and IACF, the best ARIMA model was (0, 1,
1) X (0, 1, 1);, which can be written as (1-B) (1-B'?) X, =
(1-0.42349B) (1-0.43338B'%) &, with a minimum AIC
(880.5) and SBC (886.4). There was no significant correl-
ation between residuals (lag=6, x*=3.65, DF=3, P=
0.45), and the residual was a white noise. We then did an
incidence forecast of 2017 shown in Fig. 2, the predicted
and actual incidence were shown in Table 1. The
predicted value and the original incidence data of 2017
were well matched. The mean square error (MSE), mean
absolute percentage error (MAPE), root mean square
error (RMSE), and mean absolute error (MAE) of the
modelling performance were 201.76, 0.06, 14.2, and 8.4
respectively. The time series can divide into three compo-
nents: seasonal effect, trend curve, and irregular noise.
The seasonal effect refers to the fluctuations of the trend
that is reproduced in a similar way every year, the trend
curve is the long-term movement of the time series, and
the irregular noise is the surplus component after trend
curve and seasonal effect are removed. After eliminating
the influence of seasonal effect and irregular noise on TB,
the incidence curve of TB became smoother (Fig. 2), and
it was found that the trend of the incidence from 2004 to
2016 was gradually decreasing.

Spatial clustering distribution and geographic
characteristics

The TB cases were reported in every province of China
from 2004 to 2017, with the lowest incidence of 19.52(/
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* Indicates that the Annual Percent Change (APC) is significantly different from zero at the alpha = 0.05 level.
Final Selected Model: 0 Joinpoints.

Fig. 1 Trend of TB incidence rate from 2004 to 2017 shown by the Joinpoint software. The red squares denote the incidence of each year and
the blue line is the slope of the annual percent change (APC)
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100,000) in Hebei Province (2015) to the highest inci-
dence of 204.45(/100,000) in Xinjiang Province (2005).
Xinjiang Province was the most prevalent province of
Tuberculosis in China from 2004 to 2017, and the inci-
dence of Tibet was in a high level since 2012 (Fig. 4).
The provinces with a high incidence were located in the
northwest (Xinjiang, Tibet) and south (Guangxi,
Guizhou, Hainan) of China.

Based on the global autocorrelation analysis, the distri-
bution of TB was spatially correlated from 2004 to 2017
(Table 2). The Moran’s index range from 0.28 to 0.36,
and had the highest index in 2011(Moran’s index = 0.36,
Z-score =5.51, P<0.001). According to the local Mor-
an’s I autocorrelation results, it was found that there
were totally 35 high-high clusters and 1 high-low cluster
from 2004 to 2017 (Table 3), with 4, 3, 3, 3, 5, 2, 2, 2, 2,
2,2, 2,2, and 2 clusters each year. The hotspot of TB
transmission was mainly located at southern region of
China from 2004 to 2008, including Hainan, Guangxi,
Guizhou, and Chongqing, which disappeared in the later
years. It should be noted that the center of the high-high
clusters moved from the East to the Northwest (Xinjiang

and Tibet) after 2008, and Tibet was a high-low cluster
in 2008 (Fig. 5).

Multivariate time series analysis

Two models following negative binomial distribution
and the Poisson distribution constructed by the monthly
data from 2004 to 2017were built in the first step, and
the AIC of the two models were 72,247.32 and 260,
511.37, which meant the better distribution of the model
would be the negative binomial distribution. Second, we
included the random effects of the model, and found
that the random effects model (0.20) introduced by DSS
rule was better than the negative binomial distribution
model (2.06). Considering that most regions are very
large, higher-order neighbourhood are not that relevant
when we only construct the model with first-order
neighbourhood.

In order to classify the spatial-temporal effect of the
TB, the relative importance of the model components by
province, with an average of 14 years is shown in Fig. 6.
The autoregressive component had a leading role in the
incidence of TB which accounted for 81.5-84.5% of the
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patients across all provinces on average (Fig. 6b). The
endemic component was about twice as large in the
western provinces as the average while the spatial-
temporal component was less important there (Fig. 6a/
¢). It should be noted that some economic circles, such
as the Yangtze River Delta economic circle (Zhejiang,
Jiangsu, and shanghai), Pear] River Delta economic circle

Table 1 Actual and forecast data base on the SARIMA model of

2017 in China

Time Actual data Forecast 95% Cl

2017-01 55.55 592274 48.993 694617
2017-02 52.77431 52.2003 40387 64.0136
2017-03 56.12181 59.8545 46.6497 73.0593
2017-04 53.10116 55.6036 41.1406 70.0667
2017-05 55.25359 54.9492 39.3289 70.5695
2017-06 5224164 51.6317 34.9343 683292
2017-07 50.66754 50.1129 324037 67.8222
2017-08 51.08064 50.2320 31.5657 68.3983
2017-09 45.82495 46.2891 267124 65.8657
2017-10 45.77132 46.8417 263953 67.2882
2017-11 4410445 43.1599 21.8792 64.4406
2017-12 42.79198 41.0710 18.9875 63.1545

(Guangxi and Guangdong), Bohai Economic Rim (Hebei,
Tianjin, Beijing, and Shanxi) and Hanjiang ecological
economic belt (Henan and Hubei), had higher propor-
tions of the spatial-temporal component (especially in
Beijing), whereas there was very little spatial correlation
in the western provinces.

An intuitive method to quantify the relative contribu-
tions of the high incidence regions (> 70 cases per 100,
000 persons over 14 years) of the three components is
provided by Fig. 7. In general, most of the high inci-
dences were mainly affected by the autoregressive com-
ponent for the past 14 years. There was clear seasonality
with two incidence peaks in January and March every
year, with a burst From December of the previous year
to January of the following year. Guangxi, Heilongjiang,
Hubei, Guangdong and Hainan were partly affected by
the spatial-temporal component, while the rest of the
high incidence provinces had nearly no associations with
the spatial-temporal effect.

Discussion

According to our research, there were 13,991,850 TB cases
from January 2004 to December 2017, with a yearly average
morbidity of 999,417 cases which was a huge burden for
the public health of China. Understanding the epidemiology
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Table 2 The global spatial autocorrelation of TB in China from
2004 to 2017

Year Moran'’s Index Moran's Z-score P-value
2004 033 5.09 <0.001
2005 035 545 <0.001
2006 033 521 <0.001
2007 034 536 <0.001
2008 029 4.64 <0.001
2009 031 499 <0.001
2010 0.34 536 <0.001
2011 036 551 <0.001
2012 032 5.06 <0.001
2013 032 5.11 <0.001
2014 032 5.07 <0.001
2015 0.30 4.79 <0.001
2016 028 451 <0.001
2017 028 454 <0.001

patterns of TB may help China to reduce the number of
TB cases which ranked second in 2017 according to the
WHO report [1]. The incidence of TB from 74.58 (/100,
000) cases in 2004 to 60.08 (/100,000) cases in 2017 which
was a 19.4% reduction of TB incidence. The annual average
percent change (AAPC) was - 3.3, which is better than the
world average of 2% [1]. The reason for the decline of TB
incidence is the rising GDP (Gross Domestic Product)
(China ranked second in 2019), high urbanization, and the
widespread modern control strategy. Previous studies
demonstrated that the TB incidence of China decreased
with the rising of GDP and better healthy treatment and
management [25, 26], which was also found in other
countries [27, 28].

Consistent with previous research [9], we found two
peaks in January and March every year for TB incidence
in China, with close numbers in these two peaks. The
low number of confirmed cases in February may prob-
ably attribute to the Chinese traditional Spring Festival
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Table 3 The local spatial autocorrelation of TB in China from 2004 to 2017

Year Area LMi Index LMi P-value Correlation type Incidence
Z/-score (/100,000)

2004 Guangxi 0.00001 2.82 0.005 High-High Cluster 119.62
2004 Hainan 0.000007 269 0.007 High-High Cluster 123.21
2004 Guizhou 0.00001 3.08 0.002 High-High Cluster 122.23
2004 Chongging 0.000009 254 0.01 High-High Cluster 12749
2005 Guangxi 0.00001 2.77 0.006 High-High Cluster 14567
2005 Guizhou 0.00001 3.19 0.001 High-High Cluster 157.35
2005 Chongging 0.000009 257 0.01 High-High Cluster 151.51
2006 Guangxi 0.000009 253 0.01 High-High Cluster 127.23
2006 Hainan 0.000006 240 0.02 High-High Cluster 140.54
2006 Guizhou 0.00001 2.86 0.004 High-High Cluster 146.21
2007 Guangxi 0.00001 272 0.007 High-High Cluster 129.84
2007 Hainan 0.000007 2.54 0.01 High-High Cluster 143.63
2007 Guizhou 0.00001 342 0.001 High-High Cluster 169.92
2008 Guangxi 0.00001 2.79 0.005 High-High Cluster 13141
2008 Hainan 0.000006 247 0.01 High-High Cluster 139.16
2008 Guizhou 0.00001 347 0.0005 High-High Cluster 183.0
2008 Chongqing 0.000007 201 0.04 High-High Cluster 127.61
2008 Xinjiang —0.000001 -2.02 0.04 High-Low Cluster 202.93
2009 Xinjiang 0.000002 240 0.0007 High-High Cluster 183.35
2009 Tibet 0.000002 2.28 0.02 High-High Cluster 1183
2010 Xinjiang 0.000003 4.56 0.0001 High-High Cluster 164.46
2010 Tibet 0.000004 3.16 0.002 High-High Cluster 11834
2011 Xinjiang 0.000003 4.87 0.00001 High-High Cluster 157.83
2011 Tibet 0.000004 3.79 0.0002 High-High Cluster 123.03
2012 Xinjiang 0.000004 6.18 < 0.00001 High-High Cluster 181.17
2012 Tibet 0.000006 545 < 0.00001 High-High Cluster 135.18
2013 Xinjiang 0.000004 6.61 < 0.00001 High-High Cluster 172.73
2013 Tibet 0.000006 579 <0.00001 High-High Cluster 138.12
2014 Xinjiang 0.000005 7.54 < 0.00001 High-High Cluster 176.0
2014 Tibet 0.000007 6.32 < 0.00001 High-High Cluster 147.99
2015 Xinjiang 0.000004 6.66 <0.00001 High-High Cluster 184.53
2015 Tibet 0.000007 6.56 <0.00001 High-High Cluster 140.20
2016 Xinjiang 0.000005 7.95 < 0.00001 High-High Cluster 185.66
2016 Tibet 0.000009 8.14 <0.00001 High-High Cluster 15437
2017 Xinjiang 0.000005 841 < 0.00001 High-High Cluster 202.59
2017 Tibet 0.000009 843 < 0.00001 High-High Cluster 154.77

holiday. The average time from disease onset to confirm-
ation of the diagnosis was 72 days when some infected
persons develop active Tuberculosis, and patients were
most likely to be diagnosed 2—3 months after symptom
onset [8]. So, we should enhance patient control and the
prevention of susceptible population in the autumn and
winter, and the detection of TB in spring.

For a long time, the hotspots were distributed in the
northwest areas such as Xinjiang Province and Tibet.
Xinjiang Province has been at a high incidence level in
the 14 years, while the incidence in Tibet increased since
2012. Except for 2004, 2010, and 2014, Guizhou
Province has been at a high incidence level in the later
11 years. Some provinces such as Hainan, Guangxi, and
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Fig. 5 Maps of the local autocorrelation analysis of the incidence rate of TB in China, 2004-2017 by the local Moran'’s I. Maps were created by
ArcGlIS software (version 10.1, ESRI Inc; Redlands, CA, USA). The HH is the high-high spatial autocorrelation, the HL is the high-low spatial
autocorrelation, the LH is the low-high spatial autocorrelation, and the LL is the low-low spatial autocorrelation
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Chongqing were at a high incidence level before 2009,
but have been at a low level since 2009. More attention
is needed in these high incidence areas, especially in
Xinjiang, Tibet and Guizhou, which may need more
financial assistance. It should be noted that some High-
High spatial autocorrelation including Hainan, Guizhou,
Guangxi, and Chongqing Province have disappeared
since 2009, while Xinjiang Province and Tibet have

become new H-H regional areas since 2009. The possible
explanation is the unbalanced economic development in
these areas [29]. Some studies [30—32] have demonstrated
that there has positive correlations between the poverty
level of regions, families or individuals and the incidence
of Tuberculosis.

At the average level of the province component over
the 14 years, autoregressive components dominated all
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Fig. 6 The three components of TB on average of fourteen years in the multivariate time series model. This map was created by R software
(version 3.3.1, http//www.r-project.org/). The colors represented the value of the proportion of the three components at the province level
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the provinces which can explain 81.5-84.5% of the inci-
dence, while the spatiotemporal component was mainly
located in the well-developed provinces. For some prov-
inces such as Beijing, Jiangsu and other well-developed
economic provinces which were partly affected by the
spatiotemporal component, it is recommended to
monitor TB infection of the floating population form the
neighbouring areas. For example, individuals who work

in Beijing but become infected with TB in their home-
towns should stay at home before anti-Tuberculosis
treatment and maintain the treatment for a couple of
weeks, avoiding going to public places or having close
contact with others. We also did an analysis for the
provinces with a high incidence (>70 cases per 100,000
over 14 vyears) of the three components. For the
autoregressive component which dominated all the high
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incidence provinces, early protective implementation 2—
3 months ahead of the peak could help us reduce the
number of TB patients [8]. For the endemic parts, most
infected patients could be explained by living conditions,
ecological and climatological changes, and socioeco-
nomic activities. Active treatment for TB patients and
cutting off the pathway of transmission may be the most
effective way to prevent TB [8, 33]. Another important
method is increasing the public awareness, especially
among old people and children, and enhancing their
physical exercise, immunity, and general hygiene. In
addition, the spatial-temporal component can also affect
the transmission of TB. Guangxi and Guangdong Prov-
inces, which are in the south-east coastal area, were
partly influenced by the spatial-temporal component, in-
dicating that these regions may have imported TB from
adjacent country with high incidence such as Philippines
[34, 35] or the neighbouring province Guizhou. Alarm-
ingly, although there was no clear evidence that Tibet
and Xinjiang had a high value of spatial-temporal com-
ponent, we still need to pay attention to transmission
from India [33, 34] which was ranked first in global TB
patients.

Our study had several limitation. First, the monthly
data from 2004 to 2017 did not collect some risk factors
including socioeconomic status, climatic factors, gender,
age, and human activities. The relationship between the
incidence of TB and these factors was still unknown.
These factors should be included in the future studies in
order to get an accurate multivariate time series model.
Second, we included TB patients reported from the pas-
sive surveillance system which inevitably underestimated
the total number of TB cases. Further researches could
consider the level of reporting, including some subclin-
ical and mild individuals not accessing healthcare. Lastly,
the level of diagnosis in some provinces can lead to an
underestimation of the TB incidence. We should think
over the diagnostic level in the future studies to correct
the incidence.

Conclusion

In conclusion, China still has a high TB incidence. How-
ever, the incidence rate of TB was significantly decreas-
ing from 2004 to 2017 in China. Seasonal peaks were in
January and March every year, with a burst From
December of the previous year to January. Obvious geo-
graphical clusters were observed in Tibet and Xinjiang
Province. The relative importance component of TB
driving transmission was distinguished from the multi-
variate time series model. For every provinces over the
past 14 years, the autoregressive component played a
leading role in the incidence of TB which need us to
enhance the early protective implementation.
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