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Methylphenidate and desipramine combined treatment
improves PTSD symptomatology in a rat model
S Aga-Mizrachi1, A Cymerblit-Sabba1, O Gurman2, A Balan2, G Shwam2, R Deshe2, L Miller2, N Gorodetsky2, N Heinrich2, O Tzezana2,
S Zubedat1, D Grinstein1 and A Avital1,2

Antidepressant medication constitutes the first line pharmacological treatment for posttraumatic stress disorder (PTSD), however,
because many patients display no beneficial drug effects it has been suggested that combinations of antidepressants with
additional drugs may be necessary. The defining symptoms of PTSD include re-experiencing, avoidance and hyperarousal. In
addition, PTSD patients were shown to become easily distracted and often suffer from poor concentration together with indications
of comorbidity with attention-deficit hyperactivity disorder (ADHD). Methylphenidate (MPH) is the most common and effective
drug treatment for ADHD, thus we aimed to investigate the effects of MPH treatment, by itself or in combination with the
antidepressants fluoxetine (FLU) or desipramine (DES). We modified an animal model of PTSD by exposing rats to chronic stress and
evaluating the subsequent development of behavioral PTSD-like symptoms, as well as the effects on proinflammatory cytokines,
which were implicated in PTSD. We report that while FLU or DES had a beneficial effect on avoidance and hyperarousal symptoms,
MPH improved all three symptoms. Moreover, the combination of MPH with DES produced the most dramatic beneficial effects.
Serum levels of interleukin-1β (IL-1β) and IL-6 were elevated in the PTSD-like group compared with the control group, and were
decreased by MPH, FLU, DES or the combination drug treatments, with the combination of DES+MPH producing the most complete
rescue of the inflammatory response. Considering the versatile symptoms of PTSD, our results suggest a new combined treatment
for PTSD comprising the antidepressant DES and the psychostimulant MPH.
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INTRODUCTION
Posttraumatic stress disorder (PTSD) is a chronic anxiety disorder
that follows an exposure to traumatic events. DSM-V defines PTSD
by the coexistence of three clusters of symptoms: re-experiencing,
avoidance and hyperarousal, persisting for at least 1 month.1

Traumatic PTSD-inducing events in adults may be acute or
chronic,2,3 although children and adolescents suffering from PTSD
were usually found to be exposed to chronic traumas (physical/
sexual abuse).4,5 Nevertheless, PTSD develops in only a minority of
trauma-exposed survivors.6

There are a number of suggested PTSD animal models that
incorporate various stress paradigms, including exposure to
inescapable electric shocks, predator/predator-odor stress or
‘single prolonged stress' paradigm (reviewed in Stam7). While
most models focused on acute stress,8–10 few implemented
continuous and predictable chronic stress.11,12 Furthermore,
timing of the exposure to stress during individuals’ developmental
trajectory was found to have a crucial role in determining its long-
term effects, as we previously reported.13,14 Similar to humans,
there is a marked heterogeneity in the response of animals to
stress. However, most studies using PTSD animal models refer to
the entire stress-exposed group as a uniform PTSD population,
although some reports showed that individual differentiation
improved the animal models' face validity.8,15,16

The most commonly used medications for PTSD are antide-
pressants, which relieve symptoms of depression and anxiety.
Selective serotonin reuptake inhibitors (for example, fluoxetine)

are typically the first line treatment, and are often prescribed
interchangeably for the treatment of PTSD. Tricyclic antidepres-
sants (for example, desipramine) or monoamine oxidase inhibitors
are generally reserved as second- and third-line strategies due to
tolerability issues.17

Unfortunately, many PTSD patients fail to adequately respond
to the existing pharmacological treatments,18 with only ~ 60%
patients responding to treatment and approximately 20–30% who
achieve full remission.19 Thus, it seems that the available
pharmacotherapies do not offer a sufficient solution for PTSD
patients and there is a major need for novel treatment strategies.
Indeed, the heterogeneity of symptom clusters in PTSD as well

as the complex psychiatric comorbidities (for example, with
depression or substance abuse) further support the notion that
combinations of medications may be needed. Therefore, the
mainstay of effective treatment for PTSD and its complex
psychiatric comorbidities is a combination of treatments (for
review see ref. 20).
Human studies suggest that PTSD patients are easily distracted

and show poor concentration.21,22 Indeed, comorbidity between
PTSD and attention-deficit/ hyperactivity disorder (ADHD) has
been reported.23,24

Treatment with the psychostimulant methylphenidate (MPH;
Ritalin), a dopamine (DA) and norepinephrine transporters
inhibitor, is generally effective in reducing symptoms associated
with ADHD.25–28 However, to our knowledge, only few case
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reports of PTSD patients treated with psychostimulants are
available.29,30

The excess of inflammatory actions of the immune system in
individuals with chronic PTSD was recently suggested.31 Specifi-
cally, increased interleukin-1β (IL-1β), a proinflammatory cytokine,
was observed in combat veterans32 and panic disorder patients.33

IL-1β was also found to be involved in memory formation and
consolidation, thus relevant for the understanding of pathological
retention of unpleasant traumatic memories in PTSD.34,35 Likewise,
IL-6 was also found to be increased in the serum36,37 and
cerebrospinal fluid of PTSD patients.38

Thus, we aimed to examine the effects of MPH treatment on our
modified PTSD animal model, in which we introduced chronic
stress in an unpredictable schedule along the pubescence period.
Specifically, we tested MPH treatment combined with or without
the common (that is, the selective serotonin reuptake inhibitor
drug fluoxetine) or the less common (that is, the norepinephrine
reuptake inhibitor desipramine) treatments for PTSD-like symp-
toms. In addition, we examined the possible involvement of IL-1β
and IL-6 in the PTSD pathogenesis and MPH treatment.

MATERIALS AND METHODS
Animals
Male Wistar rats were purchased from Harlan (Jerusalem, Israel) at
postnatal day (PND) 30 and were housed at the institutional animal
facility. Following 5 days of acclimation, rats were randomly assigned to
control (n= 20) or stress (n=96) groups. Room temperature was
maintained at 23± 1 °C with ~ 67% humidity, on a 12:12 day/night cycle
(lights on at 0600 hours) and ad libitum food and water access was
allowed. All behavioral tests and manipulations were held between 0700
and 1700 hours. This study was carried out in strict accordance with the
recommendations of the Guide for the Care and Use of Laboratory Animals
of the National Institutes of Health.
All experimental procedures extended over 13 weeks as illustrated in

Figure 1a.

Stress procedure and PTSD model
Stress procedure was performed in unpredictable schedule (varying day
and hour of exposure), twice a day, (with inter-exposure interval of 1 h),
4 days a week, over 2 weeks during the pubescence period (PND 35–49).
Rats were placed in a fear-conditioning arena with transparent walls and

grid floor ('context'). After a 10-s cue (5 Hz, 85 dB clicker tone), rats were
exposed to a foot-shock (2 s, 0.8 mA shock) and remained in the chamber
for additional 60 s before they were returned to their home cages.
The control rats underwent the same procedure, but without receiving

a shock.

PTSD-like animal definition. To mimic the time period between the
traumatic event onset and the emergence of PTSD symptoms, 4 weeks
following the exposure to stress (PND 77) all rats were tested behaviorally
for identification of behavioral measures that depict the core symptoms of
PTSD: (I) Re-experiencing was modeled by fear conditioning test. Rats were
re-exposed to the cue and/or context of the original stress manipulation
and their freezing duration was measured. (II) Hyperarousal was modeled
by hypervigilance, as measured in the startle response test. (III) Avoidance
was modeled by loss of interest and social withdrawal, expressed in
reduced exploration in the open field test and social interaction. The
comparison between the control and the stress groups is shown in
Supplementary Figure S1.
We utilized the median of each behavioral test as an inclusion border

defining PTSD-like rats. However, to reflect the normal distribution
characteristics of our data and to avoid an arbitrary criterion such as the
median, we further examined the normal distributions of the various
behavioral tests. On the basis of the skewness and kurtosis of the various
normal distributions, an inclusion border of mean+0.25 s.d. has emerged.
The comparison between the stress and the control groups according to
these criteria has yielded the same pattern of results, as the median split.
The definition of PTSD-like animals are described schematically in

Figure 1b. Only rats that exceeded the mean+0.25 s.d. border, in at least
two out of three symptoms (46 out of 96 tested rats) were considered as
PTSD-like group. The latter showed significant effects in all symptoms
compared with the control group (see Supplementary Figure S2).
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Figure 1. (a) Procedures timeline. (b) A schematic description of PTSD-like rat definition. PTSD, posttraumatic stress disorder.
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Pharmacological treatments
Pharmacological treatments were applied (intraperitoneally) daily (PND
91–127) 9 weeks after the exposure to stress. PTSD-like rats were randomly
assigned to the different pharmacological treatment groups; methylphe-
nidate (MPH; n= 6), fluoxetine (FLU; n= 6), FLU+MPH (n=9), desipramine
(DES; n= 7), DES+MPH (n=9) or placebo (injected with saline; n= 9).
Control rats (n= 20) were injected with saline.

Treatment doses. MPH: 2.7 mg kg− 1 body weight (Sigma-Aldrich, St Louis,
MO, USA);39 FLU: 10 mg kg− 1 body weight (Teva Pharmaceutical Industrial
Ltd, Petah-Tikva, Israel);40,41 DES: 10 mg kg− 1 body weight (Sigma-
Aldrich);41 FLU+MPH or DES+MPH: single injection of the mixture (same
doses). All drugs were dissolved in a sterile saline solution. Rats were
pharmacologically (as well as saline) treated 1 h before the behavioral
testing (PND 112–127), to maintain the pharmacological effects also during
the tests period, and to avoid clearance from the central nervous system.
The alleged stressful effects of intraperitoneal injection were controlled by
the saline-injected group.

Behavioral tests
Post treatment, the behavioral tests below were conducted in the order
they appear.

Sucrose preference test
The sucrose preference test (modified from ref. 42) is a two-bottle choice
paradigm aimed to evaluate anhedonia. Animals were given free access to
two bottles containing water and ascending concentrations of sucrose
(0.125, 0.25, 0.5 and 1%) for 1 day per concentration. Intake of water or a
sucrose solution was measured by weighing the two bottles before placing
them in the cages and after 24 h. To avoid side preference, each day the
position of the two bottles in the cage was switched randomly. Sucrose
preference was calculated as percentage of sucrose intake from total liquid
intake.

Open field test
The open field is made of a black lusterless Perspex box (100 L × 100-
W× 40 H, cm). Rats were placed in the corner of the open field (facing the
wall). Their behavior (that is, locomotor activity and freezing) was
videotaped for 5 min by a CC TV Panasonic camera with post-recording
analysis performed using Ethovision XT software (Noldus, Wageningen,
The Netherlands).

Social interaction
The social interaction test is conducted in an arena (100 L × 100W×40 H,
cm) made of black lusterless Perspex. Rats were acclimated to the arena,
individually, for 5 min in two subsequent days. On the test day (3rd day),
rats from different home cages (but from the same experimental group)
were placed for 5 min in the arena and the social interaction was
videotaped with post-recording analysis. We measured the ‘no interaction’
as the time in which the distance between the animals exceeded 50 cm.

Fear conditioning
The fear-conditioning arena (dimension: 45 L × 24W×40 H, cm) is made of
Plexiglas in different contexts (black or transparent), surrounded with a
beam-break frame with an eight lux light. The system is placed in a sound-
proof ventilated box (70 L × 40W×50 H, cm; Campden, UK). The arena
floor consists of 12 grids (6 mm diameter), 12 mm apart. On the first day, in
the ‘cue condition’, rats were placed in a novel context (black arena
without grid) then they were introduced to a 10-s cue (5 Hz, 85 dB clicker
tone), and their immobility behavior was measured during a 3-min trial. On
the next day, in the ‘context condition’, rats were exposed to the original
context (transparent arena with grid) and their immobility behavior was
measured during a 3-min trial. In the ‘cue+context condition’, rats were
exposed to the original context (transparent arena with grid) and were
introduced to the original 10-s cue (5 Hz, 85 dB clicker tone) followed by a
3-min immobility measurement. The performance was calculated by the
Kinder Scientific software (Campden, UK).

Pre-pulse inhibition and startle response
Tests are held in a ventilated sound-proof box (Campden instruments, UK).
The test protocol was carried out according to our previous study.39

Forced swim test (porsolt test)
Porsolt et al.43 behavioral categories, defined floating as a lack of motion of
the whole body while performing only small movements necessary to
keep the animal's head above the water. Floating is considered as
depression-like behavior.
On the pre-test day, animals were placed individually in a Plexiglas

cylinder (transparent acrylic, 60 cm height, 30 cm diameter) filled with
water (temperature: 23–25 °C; depth: 40 cm). After 15min, rats were
removed from the water, dried and returned to their home cages. On the
test day, rats were placed in the same cylinder for 5 min and videotaped
with post-recording analysis.

Cytokines measurement
Twenty-four hours following the behavioral tests, rats were decapitated.
Blood samples were centrifuged (2000 g at 4 °C for 20min), serum was
collected and stored at − 80 °C until assayed. Serum IL-1β and IL-6 levels
were assessed using commercial ELISA kits (R&D Systems, Abingdon, UK)
according to the manufacturer’s instructions.

Statistical analysis
For each behavioral measure, skewness and kurtosis were calculated to
verify normal distribution with similar characteristics, which yielded a
mean+0.25 s.d. border for defining PTSD-like rat.
Data were analyzed for statistical significance using two-way analysis of

variance (ANOVA) for mixed design, with group as between-subject's factor
and fear conditioning conditions/sucrose concentration/PPI pre-intensity,
as within-subject's factor. For analyzing differences between two groups
we used Student's t-test for independent samples. Differences between
the various pharmacological treatments tested by one-way ANOVA,
followed by post hoc Tukey tests. We have calculated a Z-score
[(X−meanX) × s.d.− 1] comprising all behavioral measures (based on mean
and s.d. of each measure, in each group) to enable the comparison
between different measures that depict PTSD-like symptoms A result was
significant when Po0.05. All tests were calculated as two-tailed with SPSS
V17.0 (Chicago, IL, USA). Results are presented as means± s.e.m.

RESULTS
Effects of drug treatments on the re-experiencing symptom
In the fear-conditioning test, a significant effect was found for
group (F(6,57) = 13.01, Po0.0001) in the context condition
(Figure 2a). Saline-injected PTSD-like rats exhibited higher
immobility duration compared with the control group. Compared
with the saline-injected PTSD-like rats, MPH-treated rats, showed
decreased immobility duration. No significant effect was found
following FLU treatment, whereas following DES immobility,
duration was increased. Surprisingly, the combined treatment of
DES+MPH led to a significant decrease in immobility duration. No
significant effect was found in both cue and cue+context
conditions between the control and the PTSD groups.

Effects of drug treatments on the hyperarousal symptom
In the startle response a significant effect was found (F
(6,57) = 22.73, Po0.0001; Figure 2b). Saline-injected PTSD-like rats
showed a significantly higher startle response compared with the
controls. Compared with the saline-injected PTSD-like rats, MPH-
treated rats did not demonstrate any change in the startle
response compared with the PTSD group. A significant decrease
was found following FLU treatment whereas treatment with both
FLU and MPH did not alter the startle response. However, DES
treatment (with or without MPH) led to a significantly decreased
startle response.
In the pre-pulse inhibition (PPI) test (Figure 2c), a two-way

ANOVA for mixed design, with group as between-subject factor
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and pre-intensity as within-subjects, repeated-measures factor,
significant effects were found for pre-intensities (F(6,52) = 114.3,
Po0.0001), group (F(6,57) = 6.12, Po0.0001) and group×pre-
intensities interaction (F(36, 302) = 1.63, Po0.016). Starting at a
pre-intensity of 65 dB and onward, PTSD-like rats exhibited lower
PPI performance compared with controls (65 dB, 69 dB, 73 dB,
78 dB, 85 dB). MPH-treated rats demonstrated a recovery in PPI
performance. Interestingly, although treatment with FLU had no
significant effect, treatment with DES (with or without MPH)
resulted in the highest PPI performance.

Effects of drug treatments on the avoidance symptom
In the open field test, a significant effect in locomotor activity was
found (F(6,59) = 31.22, Po0.0001, Figure 3a). Saline-injected PTSD-
like rats showed significantly lower locomotor activity compared
with the control group. Compared with the saline-injected PTSD-
like rats, MPH treatment abolished this decrease (MPH versus
PTSD), whereas, surprisingly, FLU, FLU+MPH or DES administration
worsened the locomotor activity levels, DES+MPH treatment
resulted in a significant recovery of the locomotor activity. A
significant effect was also found with respect to freezing duration
in the open field test (F(6,59) = 26.51, Po0.0001; Figure 3b).
Saline-injected PTSD-like rats showed a longer freezing duration
compared with the control group. Compared with the saline-
injected, PTSD-like rats MPH treatment reduced the freezing

duration whereas FLU, FLU+MPH or DES did not. A tendency for
improvement was observed in rats treated with DES+MPH. In the
social interaction test a significant effect was found (F
(6,38) = 29.52, Po0.0001; Figure 3c), with saline-injected PTSD-
like rats spending more time without interaction compared with
the control group. Compared with the saline-injected PTSD-like
rats MPH, FLU+MPH, DES and DES+MPH treatments significantly
improved social interaction. Moreover, DES+MPH-treated rats
showed superior social interaction compared with rats treated
with MPH, FLU+MPH and DES.
In the sucrose preference test (Figure 3d), a two-way ANOVA

revealed significant effects for sucrose concentration (F
(4,37) = 499.81, Po0.0001), group (F(6,40) = 30.15, Po0.0001)
and group× sucrose-concentration interaction (F(24, 142) = 6.54,
Po0.0001). At sucrose concentrations of 0.5 and 1%, saline-
injected PTSD-like rats showed anhedonia compared with the
control group, whereas there was no difference in their body
weight (data not shown). MPH treatment had no significant effect
on sucrose preference. FLU treatment increased the sucrose
preference only at 1%, while DES (with or without MPH) rescued
sucrose preference in both 0.5 and 1% concentrations.
Measuring total liquid consumption (Figure 3e), significant

effects were found for sucrose concentration (F(4,34) = 45.28,
Po0.0001), group (F(6,37) = 130.67, Po0.0001), and group×
sucrose concentration interaction (F(24, 130) = 7.25, Po0.0001).
Saline-injected PTSD-like rats showed significantly lower total
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Figure 2. Pharmacological treatments' effect on re-experiencing and hyperarousal symptoms. (a) Re-experiencing in fear conditioning test
(context condition). MPH or DES+MPH PTSD-treated rats showed lower immobility duration compared with the saline-injected PTSD group;
*Po0.018, **Po0.013, ***Po0.001. (b) Hyperarousal in startle response. FLU, DES or DES+MPH treatments significantly decreased startle
response compared with the PTSD group;*Po0.0001. (c) Hyperarousal in PPI test. MPH, DES or DES+MPH treatments significantly improved
PPI impairment observed in the PTSD group; *Po0.012. Values represent mean± s.e.m. DES, desipramine; FLU, fluoxetine; MPH,
methylphenidate; PPI, pre-pulse inhibition; PTSD, posttraumatic stress disorder.
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liquid consumption compared with the control group, along all
sucrose concentrations. Compared with the saline-injected PTSD
group MPH, FLU and FLU+MPH treatments had no significant
effect, whereas treatment with DES (with or without MPH)
significantly increased the total consumption, along all concentra-
tions. Surprisingly, DES+MPH completely rescued liquid consump-
tion back to the control level.
Finally, in the Porsolt test (Figure 3f) a significant effect was

found in floating duration (F(6,55) = 29.2, Po0.0001). Specifically,
saline-injected PTSD-like rats significantly spent more time
floating compared with the control group. Interestingly, compared
with the saline-injected PTSD-like group, a significant decrease in
floating duration was observed following all treatments,
except DES.

Combined treatment with MPH and DES improved all three
symptoms
To compare the overall effectiveness of the various treatments
(summarized in Supplementary Table S1), we have calculated a
standardized score comprising all behavioral measures (Figure 4).
Marked impairment was observed in the saline-injected PTSD-like
group (Z=− 1.69) compared with the control group (Z= 0). A slight
improvement was observed following FLU (Z=− 1.61) or FLU
+MPH (Z =− 1.48) treatment, while the MPH or DES treatment
yielded a significant improvement (Z=− 0.7 and Z=− 0.81,
respectively). The combined treatment of DES and MPH showed
an additive effect and led to the highest recovery score (Z=+0.76).
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or DES+MPH treatments, compared with the saline-injected PTSD group; *Po0.011, **Po0.002, ***Po0.0001. (b) Freezing duration in the OF
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Effects of stress and drug treatments on proinflammatory
cytokines
For serum level of IL-1β, a one-way ANOVA revealed a significant
effect for group (F(6,38) = 29.77, Po0.0001; Figure 5a). A
significantly higher IL-1β serum level was found in saline-
injected PTSD-like rats compared with the controls. All of the

drug-treated group displayed significant decreases in IL-1β levels
compared with the saline-injected PTSD group, with the MPH
treatment producing only a moderate decrease, and the FLU
+MPH treatment producing the most dramatic decrease, reducing
IL-1β serum concentration to an undetectable level. Both FLU and
DES+MPH have recovered IL-1β back to the control level.
For serum level of IL-6, a one-way ANOVA revealed a significant

effect for group (F(6,40) = 16.02, Po0.0001; Figure 5b). Similarly to
the effects on IL-1β, a significantly higher IL-6 serum level was
found in saline-treated PTSD-like rats compared with the controls.
All treatments (MPH, FLU, FLU+MPH, DES+MPH), excluding DES,
significantly decreased IL-6 level compared with the saline-
injected PTSD group. The treatment with MPH and DES+MPH
was particularly effective, reducing IL-6 serum levels back to the
control levels.

DISCUSSION
As PTSD is a complex disorder, which often displays comorbidity
with other disorders (for example, depression, alcohol and drug
abuse, ADHD), patients may have a great diversity of
symptoms.24,44,45 Given the evidence of PTSD and ADHD
comorbidity,23,24 we treated PTSD-like rats with MPH, combined
with or without the antidepressants FLU or DES.
In the re-experiencing symptom, we found that the context

served as the most significant stimulus compared with cue and
cue+context conditions. Grossberg46 introduced the stability-
plasticity dilemma: the need to keep old memories stable versus
the will to maintain enough plasticity to learn new things. This
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preferentiality of the context over cue may reflect the 'stable'
versus the 'plasticity' choice. MPH, with or without DES, had a
beneficial effect on the re-experiencing symptom. In support of
our finding, human studies showed that MPH has a positive
impact on emotional processes in adult ADHD patients.47 In
addition, animal studies reported a reduction in immobility in the
fear-conditioning test, following MPH administration.48,49

In the hyperarousal cluster, we found that FLU, DES or DES
+MPH treatments yielded a valuable improvement in the startle
response. As the mono treatment with MPH did not result in any
change, we assume the effectiveness of the combined treatment
of DES+MPH, in this case is due to the anxiolytic effect of DES. In
addition, we tested PPI performance, which is conceptualized as a
sensorimotor gating mechanism that serves a critical inhibitory
action for sensory, cognitive and motor output processing.50,51

Deficits in PPI were reported in PTSD patients, although they are
inconclusive, suggesting abnormalities in information processing
mechanisms relevant to sensory or sensorimotor gating.52 PTSD
rats exhibited poor PPI level, maintained long after the exposure
to the original stress. We found an improved PPI following all
treatments except for FLU+MPH. Superior inhibition was observed
in the PTSD-like rats treated with DES or DES+MPH. The beneficial
effect of MPH on PPI related tests was previously reported in
ADHD patients.53 However, to the best of our knowledge, we are
the first to report an improvement following DES treatment.
In the avoidance cluster we applied various behavioral

measures, including activity in the open field, social interaction,
sucrose preference and porsolt test. Overall, the combined
treatment of DES+MPH led to the most beneficial effect.
Particularly, in the open field test, the positive effect may be
attributed to MPH which was previously reported to increase rats'
activity.40,54 In the social interaction test, superior performance
was found following DES+MPH treatment, presumably attributed
to the positive effect of both. Previous studies reported an
increase in social interaction following DES administration.55 We
postulate that the observed MPH beneficial effect on social
interaction is mediated by its capability to reduce symptoms such
as impulsivity25 and aggression.56 In the sucrose preference test,
the antidepressants FLU or DES led to heighten preference, as
expected. Although MPH as a mono treatment did not affect rats'
preference, as was previously shown,57 the combined treatment of
DES+MPH resulted in a valuable improvement. In the forced swim
test, once again we observed the highly beneficial effect of the
combined treatment of DES+MPH, which may be attributed to the
effect of MPH. Though DES did not affect floating duration, it
facilitated the beneficial effect of MPH.
Research into the underlying neurobiology of PTSD has focused

mainly on dysregulation of norepinephrine, serotonin and
glutamate. However, accumulated data suggest the relevant role
of DA in the pathogenesis of PTSD.58–60 There is also evidence of
genetic alterations in the expression of DA transporter59 and DA
receptor60,61 in PTSD patients. Moreover, chronic stress has been
shown to alter the function of the nucleus accumbens, portions of
the prefrontal cortex and the anterior cingulate cortex, which have
been associated with the pathophysiology of PTSD.62,63 Specifi-
cally, prefrontal cortex which is involved in problem solving,
learning and complex stimulus discriminations has been shown to
be less activated in PTSD patients. Anterior cingulate cortex, which
is involved in emotional and cognitive components integration,
has also been shown to be less activated.64

Psychostimulants, by their relative propensity to enhance DA
activity in brain regions such as the nucleus accumbens and
prefrontal cortex,65,66 seem to have particular value in targeting
the above dysfunctions. However, to our knowledge, only few
case reports of PTSD patients treated with psychostimulants are
available, all showed a highly beneficial effect.29,30

Given the above and the fact that MPH inhibits DA and
norepinephrine transporters, the beneficial effects we observed of

MPH on the PTSD-like symptoms, may be due to increased DA
activity in the nucleus accumbens and prefrontal cortex brain
regions. Nevertheless, we were surprised to find superior effects
when administrating the combined treatment of DES and MPH.
This facilitatory effect of DES, which is known to inhibit
norepinephrine reuptake67 may be explained by the combined
pharmacological effect of both treatments, and strengthen by the
extensive data on the comorbidity between PTSD and ADHD,
which may share a common mechanism.
Apart from the PTSD core symptoms, evidence from human

studies indicate an association between PTSD and worsen
metabolic profile.68,69 Specifically, the prevalence rates of meta-
bolic syndrome are 72% in patients with PTSD.68 Indeed, in our
study, though we did not measure directly the entire metabolic
status, we found an interesting decrease in total liquid consump-
tion in the PTSD group (that was not accompanied by body
weight difference). Once again, a full recovery of liquid consump-
tion was observed following the treatment with DES+MPH.
Current studies also suggest an excess of inflammatory actions

of the immune system in individuals with chronic PTSD.31

Moreover, secretion of cytokines, modulators of the immune
response, was shown to correlate with anxiety, depression and
impaired memory performance.70 Specifically, increased IL-1β and
IL-6 were observed in PTSD patients compared with control
subjects.32,37 Selective serotonin reuptake inhibitor treatment was
shown to significantly reduce IL-1β level,71 whereas, hydrocorti-
sone administration significantly reduced IL-6 level in PTSD
patients.72 Nevertheless, the effect of PTSD treatment on these
cytokines elevation was hardly investigated.
To investigate a possible underlying mechanism to our

behavioral findings, we measured the rats’ IL-1β and IL-6 serum
concentration level. Similar to previous reports,32,33,36,37 we found
a significant increase in serum levels of IL-1β and IL-6 in the PTSD-
like group, compared with the controls. To a different degree, all
of our examined treatments decreased the cytokines level.
Specifically, while MPH treatment led to a moderate decrease in

IL-1β, FLU+MPH or DES treatments led to drastic decrease (lower
than the control). Only FLU and DES+MPH recovered IL-1β to
control level. Measuring IL-6, DES treatment did not affect the
increase observed in the PTSD group. While FLU or FLU+MPH led
to a moderate decrease in IL-6, MPH and DES+MPH recovered IL-6
to control level.
Together, the novel suggested dual treatment of DES+MPH

seems to exert the most beneficial effect on both IL-1β and IL-6
serum levels, by recovering these cytokines level back to the
control group levels.
Previous studies have shown that antidepressants have an anti-

inflammatory effect in diverse disorders. Specifically, either FLU or
DES treatments has shown to decrease the serum level of IL-1β
(refs 73–77) and IL-6.78–82 To the best of our knowledge, our
results are the first to show anti-inflammatory effect of MPH and
especially, the effect of the combined treatment of DES+MPH.
However, there is a need for more studies to establish the exact
mechanisms that are responsible for the immunoregulatory
effects of chronic use of both antidepressants and MPH.
To conclude, our results may offer, with the appropriate

considerations, a new pharmacological approach for PTSD
treatment comprising both the antidepressant desipramine and
the psychostimulant methylphenidate. The suggested duo treat-
ment should further be investigated to address open questions
regarding the pharmacodynamics and chronicity of the treatment.
Yet, our findings may serve as a platform for future human studies.
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