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Objectives: EGFR testing is a mandatory step before targeted therapy for non-small cell
lung cancer patients. Combining some quantifiable features to establish a predictive
model of EGFR expression status, break the limitations of tissue biopsy.

Materials and Methods: We retrospectively analyzed 1074 patients of non-small cell
lung cancer with complete reports of EGFR gene testing. Then manually segmented VOI,
captured the clinicopathological features, analyzed traditional radiology features, and
extracted radiomic, and deep learning features. The cases were randomly divided into
training and test set. We carried out feature screening; then applied the light GBM
algorithm, Resnet-101 algorithm, logistic regression to develop sole models, and fused
models to predict EGFR mutation conditions. The efficiency of models was evaluated by
ROC and PRC curves.

Results: We successfully established Modelclinical, Modelradiomic, ModelCNN (based on
clinical-radiology, radiomic and deep learning features respectively), Modelradiomic+clinical

(combining clinical-radiology and radiomic features), and ModelCNN+radiomic+clinical

(combining clinical-radiology, radiomic, and deep learning features). Among the
prediction models, ModelCNN+radiomic+clinical showed the highest performance, followed
by ModelCNN, and then Modelradiomic+clinical. All three models were able to accurately
predict EGFR mutation with AUC values of 0.751, 0.738, and 0.684, respectively. There
was no significant difference in the AUC values between ModelCNN+radiomic+clinical and
ModelCNN. Further analysis showed that ModelCNN+radiomic+clinical effectively improved the
efficacy of Modelradiomic+clinical and showed better efficacy than ModelCNN. The inclusion of
clinical-radiology features did not effectively improve the efficacy of Modelradiomic.

Conclusions: Either deep learning or radiomic signature-based models can provide a
fairly accurate non-invasive prediction of EGFR expression status. The model combined
both features effectively enhanced the performance of radiomic models and provided
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marginal enhancement to deep learning models. Collectively, fusion models offer a novel
and more reliable way of providing the efficacy of currently developed prediction models,
and have far-reaching potential for the optimization of noninvasive EGFR mutation status
prediction methods.
Keywords: NSCLC, EGFR, tomography, radiogenomics, deep learning, machine learning
INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths, with
incidence and mortality rates of approximately 11.4% and 18%,
respectively, and is the second-highest incidence rate in the
world (1). Non-small cell lung cancer is the main pathological
form and accounts for approximately 80-90% of all lung cancers
(2). Targeted therapy has become one of the first-line standard
treatments for non-small cell lung cancer patients; because this
form of treatment can effectively improve their prognosis,
prolong the PFS and OS, compared with traditional means of
treatment, like chemotherapy (3–6). In patients with non-small
cell lung cancer, EGFR is responsible for approximately 10-20%
of all and is the most predominant driver mutations target for
targeted therapy (7). As a consequence, EGFR-TKI therapy plays
a pivotal role in the targeted therapy of patients with non-small
cell lung cancer.

Prior to EGFR-TKI treatment, it is essential to perform EGFR
genetic testing to clarify the presence of EGFR mutations. There
are several methods that can be used to detect EGFR mutations,
including tissue biopsy, liquid biopsy, and radiogenomics.

Histopathological biopsy has been the gold standard in terms
of high sensitivity and specificity in clinical disease and genetic
diagnosis. However, it still has the following restrictions: 1. High
sample size threshold, requiring at least 20% of tumor cells in the
sample to be detectable (8). 2. As the tumor genotype itself
possesses heterogeneity (9–11), while part of the samples are
taken from puncture biopsies, so there is a risk of sampling bias,
which means that the gene mutation status detection result may
not correspond to the authentic condition and is not
representative of the whole gene expression profile of the
cancer spot. 3. Because of heterogeneity of neoplastic cell
genetic status, disease progression or drug resistance
commonly occurs in terminal period of the disease, so that re-
biopsy is necessitated to evaluate the disease and clarify if a drug
resistant mutation such as T790M (12) has evolved to instruct
subsequent treatment, yet the biopsy is an invasive operation
with complications including pneumothorax and bleeding, and
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often not feasible due to the patient’s physiological issues in
terminal course of the disease, thus blocking the personalized
health maintenance strategy. 4. More expensive, with higher
standards of material storage and instrumentation, which is not
conducive to applying and promoting in certain impoverished
and remote areas.

Liquid biopsy refers to the extraction of tumor gene-carrying
agents from body fluids, such as Circulating tumor-derived
DNA, cell-free DNA, etc., for detecting the relevant genetic
alterations, and it has the merits of real-time detection and
minor invasion, however, due to the existence of tumor spatial
heterogeneity, it may not be capable of accurate localization or
representing the true mutation level in the whole tumor; besides,
in the early stage, there are often no circulating tumor cells in
body fluids, and their concentration is susceptible to influence,
resulting in an insufficient sample size. Presently, cell-free DNA
is the only liquid biopsy marker recommended for insufficient
volume of pathology biopsies or to monitor the presence of
EGFR T790M mutations with disease progression or drug
resistance (13, 14). Moreover, a recent study (15) indicates that
the sensitivity and specificity of this technique are poor and that
the practical use of this method remains controversial.

Hence enabling a holistic and comprehensive analysis of the
lesion by surmounting the obstacle posed by genetic
heterogeneity is now a much desirable claim.

Regarding the aforementioned downsides of tissue biopsy
pathology and liquid biopsy, researchers have exploited the
advancing artificial intelligence to provide a technology with
promising clinical applicability - radiogenomics (16–19). It is a
group of imaging biomarkers that can offset the constraints of
tissue biopsies and liquid biopsies by effectively and non-
invasively projecting the mutational status of genes such as
EGFR and ALK via artificial intelligence methodology,
enabling high-throughput molecular biological information, as
tumor heterogeneity and genotype, which is not visible to the
naked eye, and converting them into digital signals (deep
learning features or radiomics features), quantifying and
characterizing them to facilitate disease diagnosis as well as
monitoring and guiding targeted therapy decision-making.
Several researchers have reported that radiogenomics
represents a promising application for EGFR gene detection.
Both deep learning models (20, 21) and radiomic models (22–24)
have been shown to be more precise in predicting the mutational
status of EGFR. However, most studies have applied deep
learning and radiomic features in an independent manner; far
fewer studies have attempted to combine these two features. A
previous study reported the successful creation of an EGFR
mutation prediction model based on the fusion of these two
February 2022 | Volume 12 | Article 772770
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features (25). However, this study only included patients with
solid lung adenocarcinoma. Furthermore, some of the images
used were thick; this may have led to the loss of valuable features.
Moreover, the EGFR mutation sites described in this previous
study only contained exons 19 and 21. This is a concern because
the ground-glass component within a cancer site maybe can
provide more heterogeneous information than the solid
component (26).

In the present study, we aimed to investigate and validate
whether a prediction model incorporating deep learning features
and radiomic features can improve the performance of the
current mainstream models for the non-invasive prediction of
EGFR mutations. To expand the application of radiomic features
and deep learning features for non-invasive gene detection, we
recruited a large number of patients with ground glass non-small
cell lung cancers and used thin-layer images to avoid or
minimize the loss of effective features.
MATERIALS AND METHODS

Figure 1 shows a schemat ic for how the models
were constructed.

Population and Clinicopathological Data
Before initiating the research, we derived the AUC value of the
radiogenomic model from that of several previous studies, which
was about 0.70-0.95, and made a sample size estimation based on
this data, which resulted in a predicted maximum number of 104
people needed. Later, after reminded by deep learning experts,
and given the demand for large data samples for deep learning, it
was decided to extend the sample on the pre-estimated sample
size. We ultimately retrospectively recruited patients with
pathologically confirmed primary non-small cell lung cancer
between 4th June 2019 and 21st January 2021 at the Huadong
Frontiers in Oncology | www.frontiersin.org 3
Hospital, Fudan University, Shanghai, China. All patients were
screened according to strict inclusion and exclusion criteria; this
process led to the inclusion of 1074 eligible patients. The
inclusion criteria were as follows: (1) detailed EGFR gene test
reports were available, (2) the interval between chest CT
examination and surgery was within 1 month, and (3)
pathological samples were obtained from surgically resected
specimens. The exclusion criteria were as follows: (1) image
layer thickness greater than 1.5 mm, (2) images with severe
motion artifacts or conditions such as pleural effusion or
obstructive pneumonia that may affect detailed observation,
(3) preoperative history of tumors or a history of lung surgery,
and (4) an inability to convert image format or extract features
for unknown reasons. For each patient, we collated a complete
range of clinicopathological data, including age, gender,
smoking history, invasive degree, and EGFR mutation status.
The basic principle of the training/test split is to maintain a
general fraction of positive samples in each subset. We used the
train_ test_ split function in Scitkit-learn 0.24.2 to perform a
random selection of training/test data while maintaining
roughly the same proportion of positives/negatives in both
subsets, and to guarantee reproducibility, we kept the seed of
the random number generator fixed at 42, which is a prevalent
alternative among deep learning researchers. All cases were
randomly divided into a training set (770 cases) and a test set
(304 cases).

CT Instrument and Parameters
All patients were scanned with a GE Discovery CT750HD or
LightSpeed VCT or Somatom Sensation 16 CT system, operating
with the following parameters: tube voltage: 120 kV; tube
current: 200 mA; reconstruction algorithm: STND/medium
sharp; and layer thickness: 1.00/1.25/1.5 mm. Three apparatus
distribution for Discovery: VCT: Somatom (training set-
340:184:246; test set-135:83:86) The scan phase was set to the
FIGURE 1 | Schematic for the models’ construction. CT, Computed Tomography; VOI, Volume Region of Interest; Light GBM, Light Gradient Boosting Machine;
Res-Net, Residual Network; Modelclinical incorporated clinical-radiology features, Modelradiomic incorporated radiomic features, Modelradiomic+clinical combined
clinical-radiology and radiomic features, ModelCNN incorporated deep learning features, and ModelCNN+radiomic+clinical combined clinical-radiology, radiomic, and
deep learning features.
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deep inspiratory phase and the patient was scanned in the supine
position. Images were acquired in the DICOM format. Further
details of the parameters used for CT are shown in
Supplementary Table 1.

Histopathology and the Diagnosis of
EGFR Status
The histopathological type of non-small cell lung cancer was
identified by our diagnostic pathologists for secondary diagnosis
using the 2011 international and multidisciplinary classification
guidelines proposed by the International Association for the
Study of Lung Cancer/American Thoracic Society/European
Respiratory Society (27) and the World Health Organization
(WHO) 2015 guidelines for lung cancer classification (28). The
mutation status of EGFR exons 18, 19, 20 and 21 (which are
associated with drug targets) was detected using a real-time
fluorescent PCR-based amplification refractory mutation
system and a human EGFR gene mutation real-time reverse
transcription-polymerase chain reaction diagnostic kit
(AmoyDx, Xiamen, China).

VOI Segmentation and Radiology Features
First, the pixels in the raw DICOM images were uniformly
transformed to a layer thickness of 1 mm. Then, the VOI of
the cancer was manually segmented by a junior diagnostician
(Reader 1) using the open-source software 3D-slicer (https://
www.slicer.org/) ensuring that large blood vessels and fibrous
connective tissue was avoided during contouring. A secondary
manual correction was performed by a senior physician (Reader
2). Another senior diagnostician (Reader 3) analyzed and
recorded the CT radiology features of the tumor while
remaining blinded to the EGFR mutation status and
pathological subtypes. Reader 3 recorded a range of data,
including location, cancer density, border, vacuole sign, air
bronchogram sign, spiculation sign, lobulation sign, halo sign,
vascular alteration, pleural indentation, and umbilicated
indentation. In case of disagreement, a second evaluation was
performed by another senior diagnostician (Reader 4); the results
were recorded after discussion and agreement. All images were
observed with a window position of -500 HU and a window
width of 1500 HU. In the following features description, for
the sake of brevity, we merge the radiology features with the
clinical features, and use the description of the clinical
features uniformly.

Analysis of Radiomic Features
The outlined VOIs were placed into Pyradiomics (29) (version
3.0 software) to extract radiomic features. Pyradiomics is an
open-source python package for extracting radiomic features
from medical imaging.

Reproducibility Analysis
To assess the reproducibility and stability of the radiomic
features, 60 patients were randomly selected by the
diagnostician (Reader 1) for secondary manual segmentation
of the tumor VOI after one month. The radiomic features were
Frontiers in Oncology | www.frontiersin.org 4
extracted and subjected to ICC analysis; features with an ICC
index≥0.95 were selected for subsequent model construction.

Clinical and Radiomic Models
To further identify redundant features and improve the
performance of the radiomic model, we re-screened the initial
radiomic features by considering mutual information between
each feature and the mutation status of the EGFR gene. The
mutual information between two random variables is a non-
negative value that measures the dependence between the two
variables (30). This function relies on a non-parametric approach
based on entropy estimation from K-nearest neighbor distances
and can be used for the univariate selection of features.
Ultimately, we filtered the top 10% of features with the highest
mutual information in the training set to develop the model.
Then, we retained the same 10% of features in the test set to
evaluate model performance. Based on the screened radiomic
features and clinical features, we established Modelradiomic and a
fusion model (Modelradiomic+clinical) using the Light GBM
algorithm (31). To avoid overfitt ing, during model
construction, we adjusted several hyperparameters, including
learning rate, data down-sampling ratio, feature down-
sampling ratio, and L1/L2 regularization strength. The learning
rate was tuned before the steady convergence of the training and
validation losses of the model was observed. Intensity of
overfitting prevention enhances when we decrease the data
down-sampling rate, feature down-sampling rate, or augment
the L1/L2 regularization strength.

Deep Learning Model
Both the original CT images and the mask of the VOI were
resampled to a space-occupying 1 mm × 1 mm × 1 mm. Next, we
counted the spanning distribution of the cancer in three
dimensions, and selected 64 mm × 64 mm × 64 mm as the
input size for deep learning to ensure that the cropped input size
could cover the extent of all lung nodules. The HU values of this
patch were processed using the clip of the lung window [(-1000,
400)] and subjected to the minimum-maximum normalization
process. Next, the resultant data were imported into the Ampyx
3D ResNet101 network to facilitate the creation of ModelCNN, a
model that featured only deep learning features. 3D ResNet101
(32) is a well-characterized and broad applicable neural network
in the field of deep learning, and remains considered as a strong
comparative baseline in computational vision research.
Compared to its successor, its network is relatively simplistic,
which further alleviates overfitting and thus enables a more
robust model ultimately. The model was optimized with
AdamW (33) with a maximum learning rate of 0.001. We also
used a cosine annealing schedule (34) to gradually reduce the
model to 10-6 within 500 epochs. To further suppress overfitting
and enhance the robustness of the model, we performed data
augmentation using random rotation, random flip, and mix-up
(35) with an a of 0.2. Since the objective of this study was not to
innovate new neural network structures, the hyperparameters of
this ResNet101 model were adjusted following the configuration
given in the Torch Vision Python package.
February 2022 | Volume 12 | Article 772770
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Fusion of Clinical-Radiomic-Deep
Learning Features Model
Since the deep learning features and clinical/radiomic features are
totally different in terms of both data distribution and expressed
meaning, and the number of filtered clinical/radiomic features is
larger than that of deep learning features, the weight of clinical/
radiomic features tends to be greater if the features are simply
combined, and themodel performance is poor. Therefore, we finally
opted to model the prediction probability of ModelCNN and that of
Modelradiomic+clinical, and constructed a metamodel ModelCNN
+radiomic+clinical using logistic regression. Essentially, we perform 5-
fold cross-validation on the ModelCNN and the Modelradiomic+clinical

respectively in the training set, and build a logistic regression
ModelCNN+radiomic+clinical by weighting the probabilities calculated
from the two models.

Model Evaluation
Next, the ROC curve, AUC value, and PRC curve were used to
evaluate the predictive performance of each model. To verify
whether the fusion model performs better than the sole model
and whether the improvement in model performance is
statistically significant, the De-long test is applied to compare
the performance variation of each model.

Statistical Analysis
This research was carried out with Python (version 3.8.10).
Modeling of radiomics features, clinical features, and the
concatenation of both was done using Light GBM
(version3.2.1). CNN experiments were conducted using
PyTorch (version1.8.1). The logistic regression model fusing
clinical, radiomic, and deep learning features were provided by
Scitkit-Learn (version0.24.2.). DeLong tests were done in
MedCalc (version20.0009). The sample size was calculated in
PASS 15 (Power: 0.90; Alpha: 0.05; AUC1:0.7; Two-
Sided).Univariate analysis and multivariate logistic analysis
using SPSS (version23.0). The normality distribution of the
continuous variables was verified with the Kolmogorov-
Smirnov test(P<0.001). Continuous variables were analyzed
using Mann-Whitney U test. Categorical variables were
analyzed using chi-square tests or Fisher’s exact test. p-values
less than 0.05 were considered statistically significant.
RESULTS

A total of 1074 eligible non-small cell lung cancer cases were
enrolled in this study, including 527 wild-type EGFR cases and
547 EGFR mutant cases; there were 443 males and 631 females.
Analysis of between-group discrepancy showed that there was no
significant difference in the clinical-radiology characteristics
when compared between the training and test sets, as detailed
in Supplementary Table 2. The distribution of the clinical-
radiology characteristics of EGFR mutant-type and wild-type
cases within the training set is shown in Table 1. Screening of the
training set revealed that six items (gender, age, invasive degree,
cancer density, vacuole sign, and smoking history) were all
Frontiers in Oncology | www.frontiersin.org 5
independent predictors for EGFR mutation. Detailed statistics
of clinical characteristics are shown in Table 2. In contrast,
location, border, air bronchogram sign, spiculation sign,
lobulation sign, halo sign, vascular alteration, pleural
indentation, and umbilicated indentation, could not specifically
identify EGFR mutation. For each case, 1218 radiomic features
were extracted from the VOI; ICC analysis yielded a mean
correlation coefficient of 0.96 ± 0.07. Subsequently, 243
radiomic features with coefficients <0.95 were excluded, and
the top 10% of the radiomic features with the highest mutual
information were identified, and used to build the model. Finally,
six clinical features and 108 radiomic features were used to build
the predictive models. The top 20 radiomic features selected are
shown in Supplementary Table 3.

Next, we successfully built five prediction models: ModelCNN
+radiomic+clinical, ModelCNN, Modelradiomic+clinical, Modelradiomic, and
Modelclinical. The performance of each model was verified in the test
set, as shown in Figure 2. In the test set, themost effective prediction
model, as based on the ROC curve, was ModelCNN+radiomic+clinical

with an AUC of 0.751; this was followed by ModelCNN,
Modelradiomic+clinical, and finally Modelclinical. Our analysis showed
that deep learning models and radiomic models both can predict
EGFR mutations with the best levels of accuracy. ModelCNN+radiomic

+clinical, which featured both deep learning and radiomic features,
showed more effective improvement than the mainstream radiomic
models (Modelradiomic+clinical and Modelradiomic), with p-values of
0.0067 and 0.0063, respectively. Although the Delong Test revealed
that the difference in efficacy between the two models was not
statistically significant, detailed analysis of the ROC and PRC curves
showed that the fusion model (ModelCNN+radiomic+clinical) was
slightly more effective than the deep learning model (ModelCNN).
The Delong Test also showed that the difference in efficacy between
Modelradiomic+clinical and Modelradiomic was also not statistically
significant, and that the addition of clinical information did not
enhance the efficacy of Modelradiomic (p = 0.876).
DISCUSSION

In this study, we developed a fusion model for predicting EGFR
mutation levels in 1074 patients with non-small cell lung cancer
by analyzing the clinical, radiology, radiomic, and deep learning
features. The value of the combined model (ModelCNN+radiomic

+clinical) was more efficient than models based on radiomic or
deep learning features alone, particularly those based on
radiomic features. The general objectives of this study were to
investigate the feasibility of improving the efficacy of prevalent
models to date (predictive models based on radiomic or deep
learning features alone) and to provide a new approach for
constructing models for non-invasive detection of EGFR
mutations, a and there may be a promise for future extensions
to develop models for predicting other genotypes or other tasks.

Tumor heterogeneity (36–38) is the leading driver of drug
resistance and disease progression in the post-EGFR-TKI
treatment course, and the underlying factor that liquid biopsy
and puncture pathology may not reflect the overall truly mutated
February 2022 | Volume 12 | Article 772770
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status of the lesion in the process of disease genetic identification,
therapeutic efficacy monitoring and follow-up.

However, Radiogenomics can effectively discern the
heterogeneous patterns within tumors through artificial
Frontiers in Oncology | www.frontiersin.org 6
intelligence and mathematical statistics, bridging the
limitations of pathological biopsies and liquid biopsies and
assisting clinicians in conducting more precise clinical
decisions. For remote and impoverished area and countries,
TABLE 1 | The distribution of clinical-radiology features for EGFR mutant and wild type cases in the training set.

Characteristics EGFR wild EGFR mutation p-value

Gender 0.004*
Male 176 (46.6) 142 (36.2)
Female 202 (53.4) 250 (63.8)
Age 57.5 (18.0) 60.0 (16.0) 0.004*
Invasive Degree <0.001*
Non-invasive 64 (16.9) 27 (6.9)
Micro-invasive 158 (41.8) 131 (33.4)
Invasive 156 (41.3) 234 (59.7)
Location 0.248
RUL 137 (36.2) 145 (37.0)
RML 23 (6.1) 39 (9.9)
RLL 64 (16.9) 59 (15.1)
LUL 98 (25.9) 103 (26.3)
LLL 56 (14.8) 46 (11.7)
Cancer density <0.001*
Pure GGO 72 (19.0) 29 (7.4)
Mixed GGO 221 (58.5) 313 (79.8)
Solid 85 (22.5) 50 (12.8)
Border 0.121
Well-define 271 (71.7) 254 (64.8)
Less-define 61 (16.1) 79 (20.2)
Ill-define 46 (12.2) 59 (15.1)
Vacuolation <0.001*
Present 112 (29.6) 202 (51.5)
Absent 266 (70.4) 190 (48.5)
Air Bronchogram <0.001*
Present 120 (31.7) 194 (49.5)
Absent 258 (68.3) 198 (50.5)
Spiculation 0.025*
Short 77 (20.4) 99 (25.3)
Deep 26 (6.9) 32 (8.2)
Mixed 60 (15.9) 81 (20.7)
Absent 215 (56.9) 180 (45.9)
Lobulation 0.133
Shallow 125 (33.1) 114 (29.1)
Deep 4 (1.1) 11 (2.8)
Mixed 248 (65.6) 263 (67.1)
Absent 1 (0.3) 4 (1.0)
Halo 0.006*
Present 46 (12.2) 76 (19.4)
Absent 332 (87.8) 316 (80.6)
Vascular- Alteration 0.675
Present 191 (50.5) 204 (52.0)
Absent 187 (49.5) 188 (48.0)
Pleural- Indentation <0.001*
Present 133 (35.2) 187 (47.7)
Absent 245 (64.8) 205 (52.3)
Umbilicated- Indentation 0.001*
Present 29 (7.7) 59 (15.1)
Absent 349 (92.3) 333 (84.9)
Smoke History 0.020*
Yes 172 (45.5) 146 (37.2)
No 206 (54.5) 246 (62.8)
February 2022 | Volume 12 | Article
RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; GGO, ground glass opacity; Categorical variables (e.g. gender) are expressed
by a number (percentage), continuous variables (e.g. age) are expressed by the Median (interquartile range). *p<0.05 (significant), P-values taken with three decimal places equal to 0.000
are expressed as <0.001.
The bolded values in the left column refer to the clinical-radiological features included in the statistical analysis of this study, and the bolded values in the right column refer to the P values,
with P less than 0.05 as the criterion to evaluate whether they are statistically significant and whether they are included in the subsequent statistical sub-analysis. The data are bolded for the
purpose of making them more prominent and clear only.
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this is an inexpensive, low-cost and efficient genetic diagnostic
weapon if the radiogenomic model can be brought to clinical
practice successfully by future.

The results of this study confirmed the reliability of radiomic
and deep learningmodels for the non-invasive prediction of EGFR
mutation status in lung adenocarcinoma with a high degree of
accuracy. In lung adenocarcinoma patients, two previous studies
(39, 40)combined both radiomic and clinical features to
successfully build a radiomic-clinical model that could efficiently
identify EGFR mutant phenotypes from wild types with good
AUCs of 0.779 and 0.823. However, two other studies (41, 42) also
successfully built a combined radiomic-clinical prediction model
but also found that a deep learning feature-based model could also
predict EGFR gene mutation status in patients with lung
adenocarcinoma in a more accurate manner, achieving AUCs of
0.810 and 0.758. These previous findings are consistent with the
results of our current study. However, our present differs from
these previous studies in that they predominantly applied
radiomic and deep learning features separately to build
Frontiers in Oncology | www.frontiersin.org 7
radiomic-clinical models or deep learning models. In this study,
we innovatively developed a fusion prediction model to diagnose
EGFR mutations in patients with non-small cell lung cancer by
fusing the most widely accepted clinicopathological, radiology,
and radiomic features with deep learning features. A previous
study published findings for a fusion model that were similar to
our present results; the efficacy of this previous fusion model was
also more efficient than the radiomic model (AUC: 0.831 vs 0.758)
(25). Comparing to this study, which enrolled only solid lung
adenocarcinoma cases, had incomplete coverage of the mutant
site, and used thick layers of images, our study also included a
significant number of ground glass type non-small cell lung cancer
cases and new radiology features. All of the images used in the
present study had a layer thickness of <1.5 mm, thus making our
models more realistic to the actual clinical scenario, thus providing
more applicable data that could support the wider use of these
models clinically.

Our current findings confirm the concept of fusing multiple
features to build prediction models to enhance the efficacy of
A B

FIGURE 2 | Performance evaluation of the models in the test set. (A) Receiver Operating Characteristic curve; (B) Precision-Recall curve. ‘CNN+Clinical+Radiomic’
refers to ModelCNN+radiomic+clinical, ‘Clinical+Radiomic’ refers to Modelradiomic+clinical, ‘Radiomic’ refers to Modelradiomic, ‘Clinical’ refers to Modelclinical, and
‘CNN’ refers to ModelCNN.
TABLE 2 | | Statistical analysis outcome of clinical-radiology characteristics.

Selected Features Univariate Analysis Multivariate Analysis

Z or c2 P Regression coefficient P

Gender 8.481 0.004 -0.649 <0.001
Age -2.826 0.004 0.015 0.037
Invasive Degree 32.923 <0.001 -1.158 <0.001
Cancer density 42.991 <0.001 1.510 <0.001
Vacuolation 38.221 <0.001 0.571 0.001
Air-Bronchogram 25.088 <0.001 0.251 0.165
Spiculation 9.348 0.025 0.313 0.253
Halo 7.520 0.006 -0.506 0.051
Pleural- Indentation 12.418 <0.001 0.145 0.493
Umbilicated- Indentation 10.352 0.001 0.481 0.093
Smoke History 5.413 0.020 -0.335 0.038
February 2022 | Volume 12 | Article
Univariate Analysis: Continuous variables were analyzed using Mann-Whitney U test. Categorical variables were analyzed using chi-square tests or Fisher's exact test.
Features with bolded numbers of the P-value column are independent predictors.
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individual models. We prove that this strategy is feasible and
may be applied to the prediction of other genetic targets in the
future, and even to other fields, including the identification of
benign and malignant nodes, prediction of the degree of
infiltration, as well as the prognosis of survival analysis.

Both Clinicopathology features that gender and smoking
history, degree of invasion, and morphology features like
cancer density and the vacuole sign, were independent
predictors for the EGFR mutant phenotype. The present study
reconfirmed that EGFR mutant phenotype is more prevalent in
women and non-smoking patients (43–45). In addition, the
tumor invasion degree and density are highly associated with
the EGFR mutation status. The higher the degree of tumor
infiltration and density, the more likely the mutation of EGFR
will occur. A greater degree of invasion indicates more
heterogeneous cells, faster gene duplication and an increased
mutation frequency. This is in line with prior research (46) study
1 where the mutation frequency of EGFR was observed to be
much larger and more distinct in IAC, than in MIA, AIS, and
AAH. Compared to pure ground glass nodules, mixed ground
glass nodules and solid nodules with greater density had
significantly better EGFR mutation rates, which also is aligned
with previous studies (46, 47) posting that the solid component is
remarkably sensitive for diagnosing invasiveness and has a
superior EGFR mutation profile. Both vacuole sign and age
were correlated with EGFR mutation condition, yet
unfortunately, this discovery was not in accordance with the
results of earlier studies (48–50), probably because our research
center specializes in geriatrics, so the population enrolled is
mostly elderly, so there might be a sample error, while the
studies correlating vacuole sign and EGFR are fewer, both of
which have to be further verified by subsequent research.

Two previous studies incorporated two EGFR-related predictors,
gender and smoking history, into the construction of a fused
clinical-radiomic model; however, the efficacy of the final separate
radiomic model was not improved (51, 52). We also found that
several radiology features were not significantly correlated with
EGFR mutations, including air bronchogram sign, spiculation sign,
and lobulation sign. The involvement of relevant features in model
construction did not effectively augment the efficacy of the radiomic
model. These highly subjective and time-consuming features should
be considered carefully in future studies; deletion of these features
may help to streamline the development procedures of
radiogenomic predictive models.

Some limitations need to be considered. First, this was a
retrospective study. Firstly, EGFR frequently merges with tumor
suppressor genes mutations (53), like TP53 (incidence >5%), but in
the clinical setting, tumor suppressor genes testing is not routinely
conducted, thus the genetic data in this study only contains EGFR
synapses, and there is no investigation yet to elucidate whether the
effect of the remaining co-alteration mutations upon the
radiogenomic model, so more information should be collected on
combined mutations for rigorous prospective trials in the future.
Second, EGFR mutation prevalence is varying across ethnics, such
that it is generally of a higher rate for the Asian population than that
of the American and European ones (54), hence the model may be
Frontiers in Oncology | www.frontiersin.org 8
more generalizable to Asia; also, there are large regional diversity in
lifestyle practices, which may sometimes change the structuring
composition of the model, such as clinical features smoking history.
This is why in coming future, multi-center, multi-ethnic studies are
expected to validate the robustness and generalization power of
radiogenomics models. And lastly: in this study, a time-consuming
manual segmentation pattern was implemented; the future semi-
automatic or fully automatic segmentationmode with deep learning
algorithms should be applied to streamline the whole process.
CONCLUSION

Both radiomic models and deep learning models can predict
EGFR gene mutation status relatively efficiently and non-
invasively. By integrating radiomics and deep learning features,
it is possible to build prediction models that can significantly
upgrade the performance of the basic radiomic models and help
to improve the performance of deep learning models. Models
featuring deep learning techniques have the potential for broader
application in the non-invasive diagnosis of lung cancer
genes mutation.
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