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We report detailed peptide-binding affinities between 438 HLA Class I and

Class II proteins and complete proteomes of seven pandemic human viruses,

including coronaviruses, influenza viruses and HIV-1. We contrast these affini-

ties with HLA allele frequencies across hundreds of human populations world-

wide. Statistical modelling shows that peptide-binding affinities classified into

four distinct categories depend on the HLA locus but that the type of virus is

only a weak predictor, except in the case of HIV-1. Among the strong HLA

binders (IC50 ≤ 50), we uncovered 16 alleles (the top ones being A*02:02,

B*15:03 and DRB1*01:02) binding more than 1% of peptides derived from all

viruses, 9 (top ones including HLA-A*68:01, B*15:25, C*03:02 and DRB1*07:01)

binding all viruses except HIV-1, and 15 (top ones A*02:01 and C*14:02) only

binding coronaviruses. The frequencies of strongest and weakest HLA peptide

binders differ significantly among populations from different geographic

regions. In particular, Indigenous peoples of America show both higher fre-

quencies of strongest and lower frequencies of weakest HLA binders. As many

HLA proteins are found to be strong binders of peptides derived from distinct

viral families, and are hence promiscuous (or generalist), we discuss this result

in relation to possible signatures of natural selection on HLA promiscuous

alleles due to past pathogenic infections. Our findings are highly relevant for

both evolutionary genetics and the development of vaccine therapies. However

they should not lead to forget that individual resistance and vulnerability to

diseases go beyond the sole HLA allelic affinity and depend on multiple, com-

plex and often unknown biological, environmental and other variables.
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1 | INTRODUCTION

The pandemic of the new severe acute respiratory syn-
drome coronavirus SARS-Cov-2 emerged in East Asia at
the end of 2019 and spread across the world in a couple
of months, totalizing more than 6.5 million confirmed
cases and almost 400 000 deaths as of 5 June 2020
(https://covid19.who.int/). In this context, it has become
crucial to get a better understanding of the mechanisms
that govern our immune defences against SARS-Cov-2, a
highly contagious and dangerous pathogen. The HLA
classical molecules play a crucial role in our adaptive
immunity1-3 by presenting small pathogen-derived pep-
tides at the surface of infected cells (in addition to self-
peptides that are continuously displayed at the cell sur-
face). The HLA-peptide complex is then recognised by
CD8+ or CD4+ T lymphocytes (a mechanism called T-
cell restriction), which triggers an immune response.
Pathogenic peptides are bound to a specific peptide-bind-
ing region (PBR), which forms a beta-pleated sheet floor
bordered by two α-helices at the extracellular distal end
of the HLA proteins, and is characterised by a very high
level of amino acid variation due to the huge polymor-
phism of the DNA exons that encode this part of the mol-
ecule, that is, exons 2 and 3 for HLA Class I molecules
restricted by CD8+ cytotoxic T lymphocytes (CTLs), and
exon 2 for HLA Class II molecules restricted by CD4+
helper T-cells. Actually, both Class I and Class II mole-
cules are encoded by several genes, the genomic variation
of which represents altogether several thousands of dif-
ferent HLA alleles most often differing from each other
at many single nucleotide sites (SNPs).4,5

Because of this remarkable genetic variation, which is
unique in the human genome and thought to represent
signatures of long-term balancing selection maintaining
advantageous functional diversity,6-9 the molecules
encoded by different HLA alleles display distinct physico-
chemical properties that motivated tentative alleles classi-
fication into supertypes.10-12 These properties determine

unequal levels of affinity to different pathogenic peptides
and make them present such peptides efficiently or not.
The HLA genetic profile of an individual may thus partly
influence the strength of the immune response to an
invading pathogen because the encoded HLA molecules
may exhibit distinct peptide-binding properties. More-
over, as HLA alleles exhibit variable regional frequencies
worldwide,8,9,13 the proportion of HLA molecules dis-
playing different peptide affinities for a given pathogen
may also vary between populations. To address this issue,
it is not only necessary to understand putative differences
between populations in terms of immune protection, but
also to have a better functional characterisation of the
whole HLA polymorphism spectrum for the benefit of
future vaccine developments.

Recently developed computational tools that integrate
data from in vitro or mass spectrometry assays allow the
prediction of peptide-binding affinities of HLA mole-
cules, as reviewed in.14 Such methods are mostly used to
identify viral epitopes that could be considered as good
candidates for peptide-based vaccines, for example,
against HIV-1,15 Ebola virus16 and SARS-CoV-2.17,18 In
addition to epitope identification, HLA peptide-binding
predictions may be useful for population and evolution-
ary genetics research to understand the behaviour of spe-
cific HLA alleles in pathogen-rich environments and
investigate whether such alleles might be submitted to
pathogen-driven selective pressures in human evolu-
tion.19-21 In this context, the analysis of infectious agents
belonging to distinct families is expected to bring signifi-
cant working hypotheses.

In this study, we used a bioinformatic approach to
characterise binding affinities between 438 HLA proteins
(311 Class I and 127 Class II) and the full set of 9-mer
(for Class I) and 13-mer (for Class II) peptides than can
be derived from the complete SARS-CoV-2 proteome. We
then explored the global allele frequency distributions of
the strongest and weakest HLA binders of these viral
peptides through statistical modelling to identify putative
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differences among populations. We performed the same
analyses and compared the results with SARS-CoV-2 for
six other viruses: SARS-CoV-1 and MERS-CoV, which
belong to the same beta-coronavirus family as SARS-
CoV-2; H1N1, H3N2 and H7N9, which represent three
different influenza A virus subtypes also responsible for a
highly contagious respiratory illness (flu); and the lentivi-
rus HIV-1 of the acquired immune deficiency syn-
drome (AIDS).

Our results showed significant differences among
Class I and Class II HLA molecules in their capacity to
present SARS-CoV-2 peptides at distinct affinities levels
(strong, regular, weak and non-binder), a greater propor-
tion of strongest binders being found among HLA-A pro-
teins. However, the binding affinity profiles predicted for
SARS-CoV-2 are not unique as they are very similar to
those predicted for all other viruses, to the exception of
HIV-1. Most interestingly, the frequencies of strongest
and weakest HLA binders differ among populations from
different geographic regions. In particular, Indigenous
Americans show unique peptide-binding patterns that
might represent past signatures of selection acting on sev-
eral promiscuous HLA alleles due to ancient pathogenic
infections.

2 | MATERIAL AND METHODS

2.1 | Population samples

We used a large database of HLA allele frequencies in
world populations (with alleles defined at the second-
field level of resolution, third and fourth-field levels being
recoded to second-field) including data from both the lit-
erature (1992-2017) and reports of the 11th to 16th Inter-
national HLA and Immunogenetics Workshops (IHIWs).
For each of the different loci (HLA-A, -B, -C, -DRB1,
-DQA1 and -DQB1), the dataset comprises between 158
and 374 typed samples, classified according to the hla-
net.eu guidelines,22 into 10 sub-continental regions, that
is, Sub-Saharan Africa (SAF), North Africa (NAF),
Europe (EUR), South-West Asia (SWA), North-East Asia
(NEA), South-East Asia (SEA), Australia (AUS), Oceania
(OCE), North America (NAM) and South America
(SAM). The number of populations per locus and region
and the detailed list of populations are provided in
Tables S1 and S2. Note that to avoid terms with possible
negative connotations, we will use the most generally
accepted term Indigeneous peoples to name the descen-
dants of the earliest known inhabitants of a region, hence
Indigeneous Australians and Indigeneous Americans will
replace the commonly used Australian Aborigines and
Amerindians (and other trivial names), respectively.

2.2 | HLA alleles and proteins

All HLA-A, -B, -C, and -DRB1 alleles that were observed
in at least five populations worldwide (according to our
database of allele frequencies), that is 92 HLA-A, 164
HLA-B, 55 HLA-C and 94 HLA-DRB1 were selected to
assess the peptide-binding affinity of their corresponding
proteins HLA-A, HLA-B, HLA-C and HLA-DR, respec-
tively, the latter representing the HLA-DRA/DRB1 dimer
as HLA-DRA is here considered monomorphic. For
HLA-DQA1 and -DQB1, we selected all possible allele
combinations represented in the NetMHCIIpan23

method, that is, 33 HLA-DQA1/DQB1 proteins, hereafter
named HLA-DQ. Therefore, a total of 438 different HLA
proteins were analysed (Table S3).

2.3 | Viral proteins

To assess the HLA-peptide-binding affinity predictions,
we used the whole proteome of six respiratory viruses,
including three coronaviruses important for public
health (severe acute respiratory syndrome cor-
onaviruses 1 [SARS-CoV-1] and 2 [SARS-CoV-2] and
Middle East respiratory syndrome-related coronavirus
[MERS-CoV]) and three Influenza A viruses with pan-
demic behaviour (Influenza A virus subtypes H1N1,
H3N2 and H7N9, reported to have a high pandemic
potential24). We further included the human immuno-
deficiency virus type 1 (HIV-1) as an outlier for respi-
ratory viruses to contrast our results. For each virus
we used the following proteins and strains (all these
correspond to complete proteomes of the corresponding
viruses)25:

2.3.1 | SARS-CoV-1

Replicase polyprotein 1ab of isolates BJ01, BJ02, BJ03,
BJ04, CUHK-Su10, CUHK-W1, Frankfurt 1, GD01,
GZ50, HKU-39849, HSR 1, Shanghai LY, Shanghai
QXC, Sin2500, Sin2677, Sin2679, SZ16, SZ3, Taiwan,
Taiwan TC1, Taiwan TC2, Taiwan TC3, Tor2, TW1,
TWC, TWH, TWJ, TWK, TWS, Urbani, Vietnam and
ZJ-HZ01 (Uniprot Protein knowledgebase ID
[UniprotKB]: P0C6X7).

2.3.2 | SARS-CoV-2

The translation of the complete genome of the isolate
Wuhan-Hu-1 (as reported in the NCBI Reference
Sequence: NC_045512.2).

BARQUERA ET AL. 279



2.3.3 | MERS-CoV

The replicase polyprotein 1ab of isolate United Kingdom/
H123990006/2012 (UniprotKB: K9N7C7).

2.3.4 | A/H1N1

The hemagglutinin (HA) and neuraminidase (NA) of the
strain A/Mexico/InDRE4114/2009 (UniprotKB: C5MQJ6
and C5MQL2, respectively), the nucleoprotein (NP) of
strain A/New York/1682/2009 (UniprotKB: C5E522), the
matrix protein (M1) of strain A/Nagano/RC1/2009
(UniprotKB: D4QF89), the Matrix protein 2 (M2) and the
nuclear export protein (NEP) of strain A/USA:Albany/
12/1951 (UniprotKB: A4U7A7 and A4U7B1, respec-
tively), the non-structural protein 1 (NS) of strain A/
Hickox/1940 (UniprotKB: Q0HD54), the polymerase
acidic protein (PA), the RNA-directed RNA polymerase
(RDRP) and the polymerase basic protein 2 (PB2) of
strain A/Puerto Rico/8/1934 (UniprotKB: P03433, P03431
and P03428, respectively) and the Protein PB1-F2 (PB1-
F2) of strain A/USA:Phila/1935 (UniprotKB: A4GCM8).

2.3.5 | A/H3N2

The entire proteome (HA [UniprotKB: P03435], NA
[UniprotKB: P03482], NP [UniprotKB: H9XII9], M1
[UniprotKB: H9XII6], M2 [UniprotKB: H9XII7], NEP
[UniprotKB: H9XIJ1], NS [UniprotKB: H9XIJ0], PA
[UniprotKB: P31343], RDRP [UniprotKB: P31341], PB2
[UniprotKB: P31345] and PB1-F2 [UniprotKB: H9XIJ4])
of the strain A/Victoria/3/1975.

2.3.6 | A/H7N9

The HA and PB2 of strain A/Shanghai/02/2013
(UniprotKB: R4NN21 and R4NN18, respectively), the NA
of strain A/Shanghai/JS01/2013 (UniprotKB: A0A067Y
7N7), the NP, M1, NEP and RDRP of strain A/Shanghai/
PD-01/2014 (UniprotKB: A0A0C4K0D4, A0A0C4K0Q1,
A0A0C4K471 and A0A0C4K0Q0, respectively), the MP2
of strain A/Shanghai/5190 T/2013 (UniprotKB:
W5U0H8), the NS of strain A/Shanghai/Mix1/2014
(UniprotKB: A0A0A1CFP7), the PA and PB1-F2 of strain
A/Shanghai/01/2014 (UniprotKB: A0A059T4A8 and
A0A059T4Z4, respectively) and PB2 of strain A/Shang-
hai/02/2013 (UniprotKB: R4NN18).

2.3.7 | HIV-1

The Envelope glycoprotein gp160 (gp160) and Protein Tat
(Tat) of the group M (UniprotKB: Q0H600 and Q76PP9,

respectively), the Gag-Pol polyprotein (Gag-Pol) of isolate
BH10 (group M, subtype B) (UniprotKB: P03366), the
Protein Rev (Rev) of isolate HXB3 (group M, subtype B)
(UniprotKB: P69718), the Virion infectivity factor (VIF),
Protein Vpu (Vpu) and Protein Vpr (Vpr) of isolate HXB2
(group M, subtype B) (UniprotKB: P69723, P05919 and
P69726, respectively).

2.4 | HLA peptide-binding affinity
predictions

We predicted the peptide-binding affinity of each HLA
protein to all possible overlapping 9-mer (for HLA Class
I) and 13-mer (for HLA Class II) peptides (the most com-
monly bound by these proteins, respectively) derived
from all viral proteins and strains listed above. The total
number of viral peptides considered in this study for
HLA Class I/Class II-binding predictions were 7065/7061
for SARS-CoV-1, 7089/7084 for SARS-CoV-2, 7070/7066
for MERS-Cov, 4471/4430 for H1N1, 4472/4431 for
H3N2, 4451/4407 for H7N9 and 2803/2778 for HIV-1.

The peptide-HLA-binding affinity predictions were
run using the Immune Epitope Database (IEDB) and
Analysis Resource virtual machine image.26,27 We used
the prediction algorithm from NetMHCpan v. 4.028 for
Class I alleles and NetMHCIIpan v. 3.223 for Class II
alleles, since these methods include all alleles described
in the Table S3. We classified the binding predictions, or
binding kind, as strong (IC50 ≤ 50 nM), regular (50 nM
< IC50 ≤ 500 nM) and weak (500 nM < IC50 ≤ 5000 nM)
binders for Class I, and strong (IC50 ≤ 50 nM), regular
(50 nM < IC50 ≤ 1000 nM) and weak (1000 nM <
IC50 ≤ 5000 nM) binders for Class II, following the rec-
ommendations by the authors.26,27 Any peptide-binding
prediction affinity above 5000 nM was considered as a
non-binder. We validated our results against those
obtained using the ANN method29 and the NN-align-2.3
(netMHCII-2.3) method23 for smaller subsets of Class I
and Class II alleles respectively. These methods yield pre-
diction affinites with higher accuracy,30 but were not
used for this study as they only include a fraction of the
alleles analysed (data not shown).

3 | STATISTICAL ANALYSES

3.1 | HLA strongest and weakest binders
of SARS-CoV-2 peptides in populations
worldwide

Allele frequencies of population samples were added and
collapsed into the four binding kinds (strong, regular,
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weak and non-binder). The variation of these frequencies
was graphed by locus and region to identify putative pat-
terns. Statistical modelling was used to confirm and for-
malise the patterns identified. Linear modelling was used
to obtain estimates of the associations between the
regions and the loci for each of two extreme binding
kinds retained, that is, strongest (strong binder for at
least 100 SARS-CoV-2-derived peptides) and weakest
(weak or non-binder for more than 99% of the total set of
SARS-CoV-2 derived peptides). Potential
heteroscedasticity issues due to uneven sample distribu-
tions among geographic regions were addressed using
mixed models31 and the results were consistent with
those of the linear model. A single model including bind-
ing kind as a third predictor was considered and provided
similar results but, because three-way interactions were
necessary to report the model, we preferred splitting the
data set according to binding kind to simplify the presen-
tation of results.

3.2 | HLA strongest and weakest binders
of peptides derived from the seven viruses

In order to analyse the binding repertoires for all viruses,
we recoded the absolute counts of bound peptides into
proportions to obtain comparable quantities. Strongest

binders were thus defined as strong binders for at least
1% of the total set of peptides per virus, and weakest
binders (as was performed for SARS-CoV-2 alone) as
weak or non-binders for 99% (or greater) of them. Pat-
terns were sought through graphical representations and
formalised by means of linear modelling. Issues with
heteroscedasticity were handled by rank transforming
the proportions. The model was further confirmed using
robust regression, a procedure that iteratively reweighted
the observations in inverse proportion of its residuals,32

to tame the impact of outliers.
All the reported statistical analyses were performed

using R version 3.4.433 in a ×86_64-pc-linux-gnu (64-bit)
platform.

4 | RESULTS

4.1 | Binding affinities of HLA-A, -B, -C,
-DR and -DQ molecules to SARS-CoV-2

The 438 HLA molecules analysed in this study bind
different numbers of SARS-CoV-2 peptides with each
of the four kinds of binding affinities (strong, regular,
weak or non-binding) (Data S1), with the proportions
of bound peptides also varying among loci (Table 1
and Figure 1).

TABLE 1 Number of SARS-CoV-2 peptides binding at different affinity levels or not binding HLA proteins

HLA loci

Affinity levels # peptides A B C DRB1 DQA1/DQB1

Strong binding (IC50 ≤ 50 nM) Min (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Max (%) 272 (3.8) 203 (2.9) 99 (1.4) 719 (10.1) 9 (0.13)

Average (%) 50.6 (0.7) 17.8 (0.25) 17.7 (0.25) 35.2 (0.5) 0.5 (0.01)

Regular binding
(50 nM < IC50 ≤ 500 nM for Class
I) (50 nM < IC50 ≤ 1000 nM for
Class II)

Min (%) 16 (0.2) 0 (0) 0 (0) 2 (0.03) 0 (0)

Max (%) 329 (4.6) 478 (6.7) 448 (6.3) 3855 (54.4) 1536 (21.7)

Average (%) 136.3 (1.9) 79.9 (1.1) 125.9 (1.8) 1507.2 (21.3) 436.3 (6.1)

Weak binding
(500 nM < IC50 ≤ 5000 nM for
Class II)
(1000 nM < IC50 ≤ 5000 nM for
Class II)

Min (%) 130 (1.9) 45 (0.6) 18 (0.25) 197 (2.8) 50 (0.7)

Max (%) 1123 (15.8) 1162 (16.4) 1206 (17) 3917 (55.3) 4572 (64.5)

Average (%) 433 (6.1) 354.1 (5) 560 (7.9) 2841 (40.1) 2701.3 (38.1)

No binding (IC50 > 5000 nM) Min (%) 5605 (79.1) 5246 (74) 5404 (76.2) 683 (9.6) 976 (13.8)

Max (%) 6939 (97.9) 7041 (99.3) 7071 (99.7) 6885 (97.2) 7034 (99.3)

Average (%) 6469.1 (91.3) 6637.2 (93.6) 6385.4 (90.1) 2700.6 (38.1) 3945.9 (55.7)

Weak or nobinding (IC50 > 500 nM
for Class I) (IC50 > 1000 nM for
Class II)

Min (%) 6502 (91.7) 6408 (90.4) 6564 (92.6) 2510 (35.4) 5548 (78.3)

Max (%) 7072 (99.8) 7089 (99.99) 7089 (99.99) 7082 (99.97) 7084 (100)

Average (%) 6902.2 (97.4) 6991.3 (98.6) 6945.5 (98) 5541.5 (78.2) 6647.2 (93.8)
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The average proportion of SARS-CoV-2 peptides
predicted to bind HLA molecules with strong affinity is
below 1% (varying between 0.01% for HLA-DQ and 0.7%
for HLA-A). The average proportion of peptides that bind
with either regular or weak affinity is also low for Class I
molecules (<2% and <8%, respectively) but substantially
higher (6%-21% and 38%-40%, respectively) and with a
much larger variance (eg, 0.03%-54.4% and 2.8%-55.3%,
respectively, for HLA-DR) for Class II. The vast majority
of peptides (at least >74%, and on average >90%) do not
bind HLA Class I molecules, whereas larger variances are
again observed for HLA Class II (eg, 9.6%-97.2% for
HLA-DR).

Among HLA Class I proteins, only one HLA-A mole-
cule (1.1%) is never classified as a strong binder (# of
bound peptides = 0) and as many as 17 molecules
(18.5%) are strong binders for more than 100 peptides
(“strongest” binders, see below), while these proportions
are reversed for HLA-B and HLA-C (18.3% and 20% of
never strong binders and 3% and 0% of strongest binders,
respectively) (Table 2). For HLA Class II, almost half
(47.9%) of HLA-DR and as many as 88.9% of HLA-DQ

proteins are never strong binders and the proportions of
strongest binders is moderate for HLA-DR (6.4%) and
null for HLA-DQ.

Very few HLA molecules are never regular binders
(the highest proportion, 9.1%, being observed at HLA-C).
However, a greater proportion of HLA-A molecules (62%)
are often regular binders compared to HLA-B (25%) and
HLA-C (49.1%) although the great majority of regular
binders are found among Class II molecules (97.9% of
HLA-DR and 73.5% of HLA-DQ).

Each HLA molecule binds weakly or does not bind at
least one peptide (the number of peptides is never 0 in
these categories). Most HLA Class II (>97%) and a large
proportion of HLA-C (56.4%) bind weakly more than 500
peptides, compared to HLA-A (31.5%) and HLA-B
(26.2%). However, HLA-B displays the greatest propor-
tion of proteins (57.3%) that bind weakly or do not bind
the main bulk (>99%) of SARS-CoV-2 peptides, followed
by HLA-C (38.2%), HLA-A (22.8%), HLA-DQ (20.6%) and
HLA-DR (2.1%).

Overall, HLA-A proteins appear to be better binders
of SARS-CoV-2 peptides than the other HLA Class I
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proteins although the proportion of peptides predicted to
be bound by all these molecules is very low. Among Class
II proteins, both HLA-DR and (to a lesser extent) HLA-
DQ display heterogeneous kinds of binding affinities, but
HLA-DQ dimers are rarely strong binders.

4.2 | List of strongest and weakest HLA
SARS-CoV-2 peptide binders at each HLA
locus

We classified the HLA proteins showing extreme binding
profiles relatively to SARS-CoV-2 peptides into strongest

TABLE 2 Number of HLA proteins binding at different affinity levels or not binding 0, ≥100 or ≥99% of SARS-CoV-2 peptides

HLA loci (total # of proteins)

Affinity levels # peptides A (92) B (164) C (55) DRB1 (94) DQA1/DQB1 (34)

Strong binding (IC50 ≤ 50 nM) 0 (%) 1 (1.1) 30 (18.3) 11 (20) 45 (47.9) 32 (88.9)

≥ 100 (%) 17 (18.5) 5 (3) 0 (0) 6 (6.4) 0 (0)

Regular binding (50 nM < IC50 ≤ 500 nM for Class I)
(50 nM < IC50 ≤ 1000 nM for Class II)

0 (%) 0 (0) 2 (1.2) 5 (9.1) 0 (0) 1 (2.9)

≥ 100 (%) 57 (62) 41 (25) 27 (49.1) 92 (97.9) 25 (73.5)

Weak binding (500 nM < IC50 ≤ 5000 nM for Class II)
(1000 nM < IC50 ≤ 5000 nM for Class II)

0 (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

≥ 100 (%) 92 (100) 154 (93.9) 49 (89.1) 94 (100) 33 (97.1)

No binding (IC50 > 5000 nM) 0 (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

≥ 100 (%) 92 (100) 164 (100) 55 (100) 94 (100) 34 (100)

Weak or no binding (IC50 > 500 nM for Class I)
(IC50 > 1000 nM for Class II)

0 (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

≥99% (%) 21 (22.8) 94 (57.3) 21 (38.2) 2 (2.1) 7 (20.6)

TABLE 3 List of HLA strongest binders (>100 peptides bound at high affinity, that is, IC50 ≤ 50 nM) of SARS-CoV-2 peptides

Strongest binders
HLA-
A

# bound
peptides

HLA-
B

# bound
peptides HLA-C

# bound
peptides

HLA-
DRB1

# bound
peptides

HLA-
DQA1/DQB1

A*02:11 272 B*15:03 203 (C*03:02) (99) DRB1*01:01 719 —

A*02:22 224 B*15:17 154 DRB1*10:01 358

A*02:02 179 B*35:10 147 DRB1*01:04 185

A*02:03 176 B*15:25 104 DRB1*11:02 169

A*02:06 144 B*15:39 103 DRB1*13:01 169

A*02:12 142 DRB1*13:22 169

A*23:04 120

A*02:01 115

A*02:09 115

A*02:24 115

A*02:40 115

A*68:01 111

A*68:12 111

A*02:35 111

A*02:05 104

A*24:03 101

A*24:23 101

Note: The complete list of alleles with the number of peptides bound at different affinity levels is given in Data S1.
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and weakest binders. Strongest binders were those
predicted to bind at least 100 viral peptides with strong
affinity and weakest binders were those predicted to bind
weakly or not at all to more than 99% of viral peptides. A
total of 28 HLA were classified as strongest (Table 3) and
144 as weakest (Table 4) according to these criteria.

4.2.1 | HLA-A

Among the strongest HLA-A binders, A*02:11 and
A*02:22 are particularly successful as they bind more
than 200 peptides with high affinity and are also weak or
non-binders for the lowest proportion of peptides (<93%).
Regarding their allele frequencies, both of them are very
rare globally (<2.5%) except A*02:11 in several Indian
populations (up to 21.1% in Munda34) and A*02:22 in two

Indigenous populations from Brazil (5.8% in Guarani and
15% in Terena). The other strongest binders mostly belong
to the A*02 lineage (A*02:02, *02:03, *02:06, *02:12,
*02:01, *02:09, *02:24, *02:40, *02:35, *02:05), although
A*68 (*68:01, *68:12), A23 (*23:04) and A*24 (*24:03,
*24:23) molecules (all belonging to the A2 cross-reactive
group35) are also represented. Most of these alleles are
also very rare except A*02:01, which is widespread in the
world (only absent in New Guinea) and particularly fre-
quent (sometimes above 50%) in all Indigenous American
populations (eg, in Seri from Mexico); A*02:06, which is
observed at 20%-30% in some Mexican populations; and
A*68:01, which also reaches 20%-25% in some Indigenous
peoples in South America. At the opposite, A*25:02 and
A*25:01 are the weakest HLA-A binders as they are weak
or non-binders for the highest proportions of viral pep-
tides (99.8% and 99.7%, respectively) and only bind one

TABLE 4 List of HLA weakest binders (>99% of weak or no bindings, that is, IC50 > 500 nM f or Class I, IC50 > 1000 nM for Class I)

of SARS-CoV-2 peptides

Weakest binders

HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQA1/DQB1

A*25:02 B*44:06a,b B*48:04 B*18:07 B*15:08 C*01:03a,b DRB1*01:01 DQA1*01:02/DQB1*06:09a,b

A*25:01 B*51:07a,b B*44:05a B*49:01 B*27:08 C*07:04a,b DRB1*03:02a DQA1*01:02/DQB1*06:03a

A*01:02 B*08:03a B*14:01 B*15:04a B*18:01 C*07:11a,b DRB1*03:03a DQA1*01:02/DQB1*06:14a

A*01:03 B*46:01a B*14:02 B*35:02 B*18:05 C*18:01a,b DQA1*01:01/DQB1*05:03a

A*02:07 B*52:01a B*51:01 B*35:04 B*56:01 C*18:02a,b DQA1*01:02/DQB1*06:08a

A*74:01 B*27:03a B*27:04 B*35:09 B*27:05 C*04:04a DQA1*01:03/DQB1*06:03a

A*74:03 B*73:01a B*13:03a B*35:12 B*57:02 C*04:01a DQA1*01:02/DQB1*06:10a

A*01:01 B*82:01a B*27:14a B*15:13a B*07:04 C*04:05a

A*26:03 B*82:02a B*15:58a B*08:04 B*40:06 C*04:07a

A*01:06 B*58:02a B*59:01 B*40:10 B*54:01 C*01:02a

A*43:01 B*51:05a B*44:04 B*50:02 B*55:07 C*07:07a

A*66:03 B*51:08a B*15:21a B*44:03 B*50:01 C*04:06

A*26:05 B*51:04a B*78:01a B*44:07 B*55:12 C*04:03

A*36:01 B*15:09 B*44:15a B*44:02 B*07:02 C*07:08

A*66:01 B*15:10 B*40:12 B*42:02 B*45:01 C*08:02

A*30:08 B*51:09 B*48:03 B*39:05 B*47:03 C*06:02

A*26:01 B*14:03a B*13:04a B*08:05 B*40:01 C*07:01

A*24:04 B*35:06 B*38:01 B*53:02 B*53:05 C*07:06

A*30:04a B*51:06a B*37:01a B*18:03 B*27:06 C*07:18

A*26:12 B*78:02a B*51:02 B*39:06 B*53:01 C*17:03

A*26:18 B*27:02a B*81:01 B*15:24a B*13:01 C*05:01

B*35:03 B*38:02 B*15:18 B*44:09

B*13:02a B*55:01 B*15:11

B*48:01 B*47:01 B*18:02

Note: The complete list of alleles with the number of peptides bound at different affinity levels is given in Data S1.
aNever strong binders.
bNever strong nor regular binders.
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peptide with high affinity. Finally, A*30:04 is unique in
that it never is a strong binder. The alleles corresponding
to A*25:01, A*25:02 and A*30:04 are rare except the latter
in a few African populations (7.4%in Sudanese and 11.5%
in Cameroonese).

4.2.2 | HLA-B

At locus HLA-B, B*15:03 is predicted to bind more than
200 peptides with strong affinity and is weak or non-
binder for a minimum number of peptides (90.4%). The
other strongest binders are B*35:10 as well as other mole-
cules of the B*15 lineage (B*15:17, *15:25, *15:39). All
these alleles are generally rare (<3%) except B*15:03 in
sub-Saharan Africa (up to �11%) and B*15:25 in
populations from South-East Asia, New-Guinea and Aus-
tralia (up to �15%, with an exceptionally high frequency
of 40% in an Indigenous Taiwanese population, the
Yami). By contrast, B*44:06, B*51:07, B*08:03, B*46:01
and B*52:01 are the top weakest binders as they both
bind weakly or do no bind 100% of viral peptides and are
never strong binders (and B*44:06 and B*51:07 never
behave as regular binders either). Contrary to HLA-A, in
which weakest binders are always rare, some HLA-B
weakest binders are observed at intermediate to high fre-
quencies in several geographic regions, namely B*46:01
in several populations from China and South-East Asia
(eg, above 20% in Dai and Shui), and B*52:01 in some
Japanese, Indian, Chinese (above 20% in Lisu) and a few
other populations in different geographic regions.

4.2.3 | HLA-C

HLA-C proteins display weaker binding properties com-
pared to HLA-A and -B, as none of them bind more than
100 peptides with high affinity (HLA-C*03:02 is the top
strongest binder with 99 peptides). The weakest binders
are C*01:03, C*07:04, C*07:11, C*18:01, C*18:02 and
C*04:04, all of which either bind weakly or do not bind
100% of peptides; they are also never classified as either
strong or regular, except in one case for C*04:04. C*18:01
shows moderate frequencies (rarely above 10%) in a few
sub-Saharan African populations and C*04:04 reaches
20% in a single Sioux population from North America.

4.2.4 | HLA-DR

Among HLA-DR proteins, DRB1*01:01 is strong binder
for as many as 719 peptides, followed by DRB1*10:01 (358
peptides). The other strongest binders are DRB1*01:04,

DRB1*11:02, DRB1*13:01 and DRB1*13:22. Most of these
alleles are globally widespread although at low to inter-
mediate frequencies (eg, up to 10%-15% for DRB1*01:01
in some European populations and for DRB1*10:01 and
DRB1*13:01 in some European, African and South-West
Asian populations). By contrast, DRB1*03:02 is the weak-
est binder (weak or not binder for 100% of peptides)
followed by DRB1*03:03. DRB1*03:02 is only found at
intermediate frequencies (10%-20%) in a few sub-Saharan
African populations.

4.2.5 | HLA-DQ

Finally, as for HLA-C, no HLA-DQ protein is a strong
binder for more than 100 peptides. Among the weakest
binders, DQA1*01:02/DQB1*06:09 binds weakly or does
not bind 100% of peptides. The other weakest binders are
all DQA1*01/DQB1*06 dimers (DQA1*01:02/DQB1*06:03,
DQA1*01:02/DQB1*06:14, DQA1*01:02/DQB1*06:08,
DQA1*01:03/DQB1*06:03, DQA1*01:02/DQB1*06:10),
except DQA1*01:01/DQB1*05:03. DQA1*01 and DQB1*06
(mostly DQB1*06:03) alleles are widespread (sometimes
with high frequencies for DQA1*01) in most global
populations except in Indigenous Americans where they
are most often not observed.

4.3 | Global frequency distributions of
strongest and weakest HLA SARS-CoV-2
peptide binders

We developed an interactive tool (https://hla-net.eu/sars-
cov-2/) to visualise the population frequencies of HLA
alleles in relation to the ability of their corresponding
proteins to bind SARS-CoV-2 peptides at different affinity
levels. This tool was built using R Shiny Package (version
1.4.0) and runs on the hla.net.eu server maintained at the
Anthropology Unit of the University of Geneva. It allows
one to select one or more HLA alleles per locus, per geo-
graphic region and per kind of binding (strong, regular,
weak or non-binder), and in each case a continuous
slider allows choosing a cut-off for the number of viral
peptides bound (or not bound) to the corresponding mol-
ecules (default value 10% of peptides per locus). Three
outputs are provided for each set of selected alleles: a
global map (two for HLA-DQ, that is, for DQA1 and
DQB1, respectively) showing their frequencies in all
populations in the form of pie charts; box plots showing
the frequencies of these alleles in each of the 10 geo-
graphic regions; and a table providing information on all
population samples used in the study including detailed
allele frequencies. This tool has been implemented in the
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FIGURE 2 Cumulative allele frequencies for the two groups of alleles that were considered as strongest (in red) and weakest (in blue)

binders, by locus (HLA-A, -B, -C and -DRB1) and geographic region for each population sample. Population samples and binding criteria are

described in the main text. In the bottom panel, HLA-A and -B frequencies have been averaged (named as “A + B”) and the distribution of

the cumulative frequencies among the population samples of each region are presented both as violin and box plots. Geographic regions are

SAF, Sub-Saharan Africa; NAF, North Africa; EUR, Europe; SWA, South-West Asia; NEA, North-East Asia; SEA, South-East Asia; AUS,

Australia; OCE, Oceania; NAM, North America; SAM, South America
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hla-net.eu bioinformatic platform (http://hla-net.eu) first
developed within the scope of the EU-funded HLA-NET
BM0803 Action.22,36

We plotted the cumulative frequency distributions of
the strongest (red dots in Figure 2) and weakest (blue
dots in Figure 2) binders in each population at each
locus, except HLA-DQ, which is not represented because
it involves two polymorphic loci and no such joint fre-
quencies were available (as we do not have information
on populations' genotypes, we do not know the frequen-
cies of DQ heterodimers, this is why we could not report
DQ results in relation to population frequencies). This
revealed notable differences both among the loci and geo-
graphical regions (Figure 2 top). Strongest binders are
generally more frequent than weakest binders at loci
HLA-A and HLA-DRB1, whereas HLA-B displays the
opposite pattern (for HLA-C, no strongest binders follow-
ing our criteria were found). Notably, HLA-A shows both
extremely high frequencies of strongest binders and rela-
tively low frequencies of weakest binders in Indigenous
peoples of North (NAM) and South (SAM) America. The
populations from the other geographic regions have more
similar frequencies for both kinds of alleles, although
there is substantially more overlap in sub-Saharan Africa
(SAF), South-East Asia (SEA) and (to a lesser extent)
Oceania (OCE). At HLA-B, the frequencies of strongest
binders are very low compared with those of weakest
binders (except in one population of Oceania). At HLA-
DRB1, the frequencies of weakest binders are residual
except in sub-Saharan Africa, and strongest binders show
lower frequencies in South-East Asia (SEA), Australia
(AUS), Oceania (OCE) and North (NAM) and South
(SAM) America compared with the other regions.

HLA Class I molecules are mostly involved in the pre-
sentation of viral peptides and CD8+ CTL restriction,
whereas HLA Class II molecules present antigenic pep-
tides to CD4+ T-helper cells, which triggers differentia-
tion of antibody-producing B cells. For that reason, we
also plotted the averaged cumulative frequencies of HLA
Class I (A + B) strongest and weakest binders separately
from those of HLA Class II (DRB1) for the same subset of
124 populations (7 SAF, 6 NAF, 26 EUR, 7 SWA, 16
NEA, 17 SEA, 5 AUS, 25 OCE, 10 NAM and 5 SAM,
respectively) tested at these three loci (Figure 2 bottom).
On average, strongest binders are less frequent than
weakest binders for A + B, although weakest binders' fre-
quencies sometimes show larger variances. All Indige-
nous Americans again display the highest frequencies of
strongest and the lowest frequencies of weakest binders.
The plot of HLA Class II (DRB1) frequencies clearly dis-
tinguishes sub-Saharan Africa, which displays the highest
frequencies of weakest binders, and contrasts SAF, NAF,
EUR, SWA, and NEA from SEA, AUS, OCE, NAM, SAM

regions due to higher frequencies of strongest binders in
the former.

4.4 | Effects of HLA locus and
geographic region on the global frequency
distributions of HLA SARS-CoV-2 peptide
binders

We tested simultaneously the effects of several parame-
ters, that is, HLA locus (HLA-A, -B, -DR) and geographic
region (SAF, NAF, EUR, SWA, NEA, SEA, AUS, OCE,
NAM, SAM) on the global frequencies of the strongest
and weakest HLA binders by setting up a statistical
model (see Materials and Methods).

We tried many simplifications (either automatic, via
stepwise regression or handmade) of the complete maxi-
mal model (the model including all variables and their
interactions) by grouping some regions together, but the
resulting models were significantly worse. As our initial
model presented some heteroscedasticity, not unexpected
given the uneven number of samples per region, we reso-
rted to mixed models using the samples as a random
effect. The complete maximal mixed model could not be
simplified without significant loss and the relative magni-
tudes of almost all the coefficients remained the same.
We thus concluded that the structure presented by the
data was relevant as the (linear) model retained explains
85% and 95% of the total variance of the frequency of
strongest and weakest binders, respectively (Table 5).

Both kinds of binding show common patterns of
significant differences between Locus A (taken as refer-
ence) and Locus B (P < .01) but not Locus DR
(P < .05 only for weakest). Region SAF (taken as refer-
ence) is significantly different from AUS (P < .05 for
strongest binders and P < .01 for weakest), OCE
(P < .01), NAM (P < .01) and SAM (P < .01), with
particularly high frequency increases of strongest
binders (>30%) in NAM and SAM and marked fre-
quency decreases of weakest binders (>11%) in AUS,
NAM and SAM. Region EUR shows a 10.9% significant
increase (P < .01) in the frequency of strongest binders
compared with SAF, while SWA and NEA show mar-
ginally significant differences (P < .1) and only a �5%
increase, while for weakest binders no significant dif-
ferences are observed for these regions.

The pattern of significant interactions is split, with
opposite significance for strongest and weakest binders,
to the exceptions of LocusDR:RegionNAF, LocusDR:
RegionEUR, LocusB:RegionSWA, LocusDR:RegionSWA,
LocusB:RegionNEA, LocusB:RegionSEA and LocusB:
RegionOCE that present similar patterns for strongest
and weakest binders.
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According to the retained models for both kinds of
binding affinities, allele frequencies of strongest and
weakest HLA SARS-CoV-2 peptide binders thus depend
both on the HLA locus and the geographic region,
although not in an additive way, therefore explaining the
numerous interactions that appear as statistically
significant.

4.5 | Comparison of the HLA peptide-
binding patterns observed for the seven
different viruses

Using the same methods and set of alleles as was done
for SARS-CoV-2, we performed peptide-binding predic-
tions for peptides derived from SARS-CoV-1, MERS-CoV,
H1N1, H3N2, H7N9 and HIV-1 (Data S2-S7). Overall, the
patterns displaying the percentages of bound peptides are
very similar for the seven viruses (Figure 3), but we also
note relevant differences between the three viral families
(coronaviruses, influenza viruses and the immunodefi-
ciency virus). Among strong binders, the three cor-
onaviruses bind a greater range of peptides than the
three influenza, and the range of bound peptides is low-
est for HIV-1. Regular binders show analogous

TABLE 5 Retained models for each kind of peptide binding

Dependent variable

Freq

Terms Strongest Weakest

LocusB −0.121***
(0.028)

0.44*** (0.033)

LocusDR −0.046 (0.028) −0.068** (0.033)

RegionNAF 0.028 (0.029) 0.04 (0.035)

RegionEUR 0.109*** (0.022) 0.037 (0.027)

RegionSWA 0.051* (0.028) −0.025 (0.033)

RegionNEA 0.045* (0.024) −0.022 (0.028)

RegionSEA −0.033 (0.023) −0.023 (0.028)

RegionAUS −0.063** (0.031) −0.131***
(0.037)

RegionOCE −0.081***
(0.022)

−0.096***
(0.027)

RegionNAM 0.305*** (0.026) −0.116***
(0.031)

RegionSAM 0.314*** (0.031) −0.151***
(0.037)

LocusB:RegionNAF −0.075* (0.041) 0.04 (0.049)

LocusDR:RegionNAF −0.079* (0.041) −0.121** (0.049)

LocusB:RegionEUR −0.183***
(0.031)

0.058 (0.038)

LocusDR:RegionEUR −0.115***
(0.031)

−0.123***
(0.038)

LocusB:RegionSWA −0.118***
(0.039)

0.092* (0.047)

LocusDR:RegionSWA −0.044 (0.039) −0.058 (0.047)

LocusB:RegionNEA −0.119***
(0.033)

0.114*** (0.040)

LocusDR:RegionNEA −0.111***
(0.033)

−0.064 (0.040)

LocusB:RegionSEA −0.015 (0.033) 0.021 (0.040)

LocusDR:RegionSEA −0.096***
(0.033)

−0.063 (0.040)

LocusB:RegionAUS −0.007 (0.043) 0.232*** (0.052)

LocusDR:RegionAUS −0.076* (0.043) 0.045 (0.052)

LocusB:RegionOCE 0.057* (0.032) 0.09** (0.038)

LocusDR:RegionOCE −0.066** (0.032) 0.01 (0.038)

LocusB:RegionNAM −0.381***
(0.036)

−0.001 (0.044)

LocusDR:RegionNAM −0.436***
(0.036)

0.031 (0.044)

LocusB:RegionSAM −0.393***
(0.043)

−0.017 (0.052)

LocusDR:RegionSAM −0.459***
(0.043)

0.07 (0.052)

TABLE 5 (Continued)

Dependent variable

Freq

Terms Strongest Weakest

Constant 0.202*** (0.020) 0.153*** (0.024)

Observations 372 372

R2 0.859 0.954

Adjusted R2 0.847 0.95

Residual Std. Error
(df = 342)

0.052 0.063

F Statistic (df = 29; 342) 71.608*** 244.587***

Note: The dependent variable is the frequency (Freq) of the stron-
gest (left) and weakest (right) HLA binders. The left column (terms)
lists all the independent variables and their interactions. For each
retained model (Strongest and Weakest) the first column displays
the coefficients of the model, that is, the differences in average
cumulated frequencies between the group defined by each term
and the reference (Locus: A; Region: SAF, grouped on the constant
term); the second column shows asterisks indicating the signifi-
cance level of a test for the coefficient being zero (no effect); and
the third column presents in parentheses the values of the standard
errors associated with the coefficients.
*P < .1;
**P < .05;
***P < .01.
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differences among the virus families although with a
greater contrast for HIV-1 at HLA-DR. The ranges
observed for non-binders are also globally slightly
reduced for the three influenza viruses compared with
coronaviruses and for HIV-1 compared with the other
two viral families.

We then looked at the classification of HLA proteins
as strongest and weakest binders for each virus. In order
to make the data comparable among viruses that do not
display the same proteome lengths, we took a minimal
threshold of 1% of peptides bound with high affinity
(instead of an absolute value of 100 used before for the

SARS-CoV-2 analyses) to classify HLA molecules as
strongest binders. The criterion to define weakest binders
remained the same as was used for the SARS-CoV-2 anal-
ysis (ie, weak or non-binder for more than 99% of viral
peptides).

Among the total set of 65 HLA molecules predicted to
be strongest binders for at least one virus, 16 were found
to be strongest binders for all viruses (A*02:02, A*02:03,
A*02:06, A*02:11, A*02:12, A*02:22, A*31:04, B*15:03,
B*15:17, DRB1*01:01, DRB1*01:04, DRB1*10:01,
DRB1*11:02, DRB1*13:01, DRB1*13:04, DRB1*13:22), nine
only for respiratory viruses, that is, all viruses except
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FIGURE 3 Proportion of the total number of peptides derived from the peptidomes of the 7 viruses analysed in this study (SARS-CoV-

2, SARS-CoV-1, MERS-CoV; H1N1, H3N2, H7N9; HIV-1) that is bound by each HLA protein, per locus and binding kind. The four binding

classes strong, regular, weak and non-binder follow the usual affinity criteria (as indicated in the text). DQAB refers to the protein coded

jointly by DQA1 and DQB1 molecules. Locus DRA was considered as non-polymorphic, hence DRAB actually corresponds to DRB1

molecules
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TABLE 6 Retained model for peptide-binding proportion

Dependent variable

Terms Rank (value)

Kind.Strong −1813.988*** (93.579)

Kind.Weak 1929.162*** (93.579)

Kind.NonBinder 6177.37*** (93.579)

LocusB −953.978*** (55.024)

LocusC −609.803*** (72)

LocusDQ 826.365*** (84.912)

LocusDR 3302.612*** (61.951)

Virus.cov1 −9.609 (75.479)

Virus.mers 17.622 (75.436)

Virus.h1n1 −141.812* (75.436)

Virus.h3n2 −235.549*** (75.436)

Virus.h7n9 −193.273** (75.436)

Virus.hiv −654.673*** (75.436)

Kind.Strong:LocusB −36.94 (77.816)

Kind.Weak:LocusB 519.922*** (77.816)

Kind.NonBinder:LocusB 1270.303*** (77.816)

Kind.Strong:LocusC −458.426*** (101.823)

Kind.Weak:LocusC 564.693*** (101.823)

Kind.NonBinder:LocusC 590.722*** (101.823)

Kind.Strong:LocusDQ −3019.89*** (120.084)

Kind.Weak:LocusDQ 1420.448*** (120.084)

Kind.NonBinder:LocusDQ −2089.007*** (120.084)

Kind.Strong:LocusDR −4068.383*** (87.611)

Kind.Weak:LocusDR −826.425*** (87.611)

Kind.NonBinder:LocusDR −5163.576*** (87.611)

Kind.Strong:Virus.cov1 −27.935 (106.744)

Kind.Weak:Virus.cov1 −13.4 (106.744)

Kind.NonBinder:Virus.cov1 29.968 (106.744)

Kind.Strong:Virus.mers −46.915 (106.683)

Kind.Weak:Virus.mers 50.838 (106.683)

Kind.NonBinder:Virus.mers −72.158 (106.683)

Kind.Strong:Virus.h1n1 69.534 (106.683)

Kind.Weak:Virus.h1n1 −39.497 (106.683)

Kind.NonBinder:Virus.h1n1 261.228** (106.683)

Kind.Strong:Virus.h3n2 86.513 (106.683)

Kind.Weak:Virus.h3n2 26.338(106.683)

Kind.NonBinder:Virus.h3n2 390.448*** (106.683)

Kind.Strong:Virus.h7n9 79.336 (106.683)

Kind.Weak:Virus.h7n9 −15.716 (106.683)

Kind.NonBinder:Virus.h7n9 342.746*** (106.683)

Kind.Strong:Virus.hiv 289.56*** (106.683)

Kind.Weak:Virus.hiv 281.013*** (106.683)
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HIV-1 (A*68:01, A*68:12, B*15:25, B*15:39, B*35:10,
C*03:02, DRB1*07:01, DRB1*11:14, DRB1*13:02), 15 only
for coronaviruses (A*02:01, A*02:05, A*02:09, A*02:14,
A*02:24, A*02:26, A*02:34, A*02:35, A*02:40, A*24:03,
A*24:10, A*24:23, A*68:02, C*14:02, C*14:03), only one
for influenza viruses (A*30:01) and the remaining 24 for
other combinations (Table S4). Also, among the 187 HLA
molecules found to be the weakest binders for at least
one virus, 121 were the weakest binders for all viruses, 25
only for HIV-1 and the remaining 41 for other
combinations.

The majority of HLA proteins are thus not specific
binders of SARS-CoV-2 or even coronavirus peptides
but are generalist binders for viral pathogens of differ-
ent families. We did not identify any strongest binder
for HIV-1 alone at this threshold. In addition, a signifi-
cant number (25) of the weakest binders are HIV-1-
specific, although the majority (121) is weakest for all
viruses (Table S4).

4.6 | Effects of the kind of binding, the
HLA locus and the variety of virus on the
proportions of bound peptides

Finally, we tested simultaneously the effects of several
parameters, that is, kind of binding (strong, regular,
weak, non-binding), HLA locus (HLA-A, -B, -C, -DR)
and virus (SARS-CoV-2, SARS-CoV-1, MERS-CoV,
H1N1, H3N2, H7N9, HIV-1) on the proportions of bound
peptides by setting up a statistical model (see Materials
and Methods).

We tried many simplifications (either automatic, via
stepwise regression, or handmade) of the complete maxi-
mal model (ie, the model including all variables and their
interactions) by grouping together some viruses or kinds
of binding, but the resulting models were significantly
worse. As our initial model presented heteroscedasticity,
we restarted the modelling using a non-parametric
approach by replacing the proportion of bound peptides
with their ranks. The model could not be simplified with-
out significant loss. In addition, to further assess the
model and reduce the effects of outliers, we used robust
regression and again the maximal complete model could
not be simplified, with the relative magnitudes of almost
all the coefficients remaining the same. We thus con-
cluded that the structure presented by the data was rele-
vant as the retained model explained 90% of the total
variance.

According to the retained model, both the kind of
binding and the HLA locus and their interactions are
highly significant (Table 6). This contrasts with a weak
effect due to the virus (null for coronaviruses and with
moderate ranks and significances for influenza viruses),
except for HIV-1, which shows much higher ranks as
well as strong and highly significant interactions with all
kinds of bindings.

5 | DISCUSSION

In this study, we considered a total set of 438 Class I and
Class II proteins differing from each other by the amino
acid sequence of their PBR. We have identified which

TABLE 6 (Continued)

Dependent variable

Terms Rank (value)

Kind.NonBinder:Virus.hiv 1027.091*** (106.683)

Constant 4734.063*** (66.171)

Observations

R2 0.901

Adjusted R2 0.901

Residual Std. Error 1117.625 (df = 12244)

F Statistic 12 288 2592.272*** (df = 43; 12 244)

Note: The dependent variable is the rank of the proportion of bound peptides. The left column (terms) lists all the independent variables and
their interactions. For the retained model, the first column displays the coefficients of the model, that is, the differences in average ranks
between the group defined by each term and the reference (Locus: A; Virus: cov2; Kind: regular, grouped on the constant term); the second
column shows asterisks indicating the significance level of a test for the coefficient being zero (no effect); and the third column presents in
parentheses the values of the standard errors associated with the coefficients.
*P < .1;
**P < .05;
***P < .01.
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HLA molecules are predicted to bind all possible 9-mer
(for Class I) and 13-mer (for Class II) peptides (> 7000)
derived from the complete SARS-CoV-2 proteome, and
we have classified them according to the proportions of
peptides that they are expected to bind with different
kinds of affinity (IC50), i.e. strong, regular, weak or non-
binding. We have also explored the global distributions of
the strongest and weakest HLA binders by using a large
dataset of HLA frequencies estimated in 158-374
populations (depending on the locus) from 10 geographic
regions worldwide and by using statistical modelling to
detect possible patterns. We then complemented these
analyses by using the complete proteomes of six addi-
tional viruses, two of them belonging to the same corona-
virus family (SARS-CoV-1 and MERS-CoV), three of
them being involved in another, very common, respira-
tory disease, that is, flu (H1N1, H3N2 and H7N9), and
the last one being the main causal pathogen of AIDS
(HIV-1). We have finally compared the results obtained
for the seven viruses to identify possible similarities or
differences in the ability of HLA Class I and Class II pro-
teins to present their derived peptides, and in the world-
wide distribution of their strongest and weakest binders.
To our knowledge, this is the first study providing a com-
prehensive analysis of HLA peptide-binding predictions
for such a large set of highly infectious and (potentially)
pandemic viruses in relation to such an extensive data-
base of HLA-typed population samples. We are also fully
confident that our results differ from what we would
expect by chance, as they were fully replicated by using
two independent algorithms to run the predictions (as
mentioned in Material & Methods) and by running inde-
pendent analyses on multiple viruses for which we found
similar results within each viral family.

5.1 | Binding affinities of HLA proteins
to SARS-CoV-2 and comparison to other
viruses

Our first observation is that HLA molecules, independent
of the locus, are predicted to bind a limited proportion of
all possible SARS-CoV-2 derived peptides with high affin-
ity (on average 0.01% for HLA-DQ to 0.7% for HLA-A).
The large majority of them (on average > 90%) do not
bind Class I molecules, whereas more even proportions
of regular (6.1%-21.3%), weak (38.1%-40.1%) and non-
binders (38.1-55.7%) are found among Class II proteins.
Of course, we do not know, in reality, how many viral
peptides may trigger an immune response among the
total set of theoretical ones that we have derived in silico
from the SARS-CoV-2 proteome (and further on from
that of the other viruses). Nevertheless, we can

confidently expect a lower number and the proportions
that we have found may thus actually be much higher.
Also, because we chose a very low IC50 (≤50) and thus a
very high affinity threshold to characterise peptide bind-
ings as strong, we expect that peptide presentations by
the HLA molecules that we have classified as strongest
binders (IC50 ≤ 50 for many peptides) are able to trigger
efficient CD8+ and/or CD4+ immune responses. In sup-
port to our hypothesis, bioinformatic predictions com-
bined to in vitro experimental testing and in vivo
immunogenicity testing in HLA transgenic mice showed
that Class I alleles displaying a higher number of
predicted binders with higher-binding affinities are asso-
ciated with higher magnitude of T-cell responses.37 Pep-
tide-binding predictions for HLA Class II molecules are
also highly relevant to explore potential responses to viral
infections such as SARS-CoV-2, not only in view of the
crucial role of CD4+ T-helper cells in CD8+ T cell differ-
entiations and in the production of neutralising anti-
bodies, but also because of increasing evidence that
CD4+ cytotoxic T lymphocytes may act in concert with
CD8+ CTLs during viral infections thanks to a dual rec-
ognition of peptides through HLA Class I and II.38 We
thus believe that the inclusion, in our study, of both Class
I and Class II peptide-binding predictions brings crucial
information for the development of peptide-based vac-
cines,12 although immunogenicity would need to be vali-
dated experimentally.17,18

Interestingly, different proportions of HLA strongest
binders were seen among the loci that we analysed (up to
18.5% of HLA-A but only 6.4% of HLA-DRB1, 3% of
HLA-B and no HLA-C nor HLA-DQ molecules), and
other differences were found for regular and weak
binders. The contrasts observed among the HLA loci may
be related, at least in part, to the diverse functions that
their proteins assume for immunity. First, the greater
proportion of HLA Class I strongest binders may be
explained by the more decisive role of these molecules in
viral infections although, as stated above, Class II mole-
cules are also essential in particular to the development
of sustained, long-term humoral responses that may play
a vital role in terms of vaccination and herd immunity.
In addition, the major difference observed among the
three Class I loci is in line with both the greater promis-
cuity of HLA-A proteins in peptide binding39 (see also
below), which explains why more HLA-A proteins pre-
sent large numbers of peptides than HLA-B, and the
greater involvement of HLA-C in KIR interactions,40

which suggests that the peptide-binding function of
HLA-C molecules could be less efficient compared with
that of HLA-A and HLA-B41 or fine-tuned differently to
also accommodate peptide selectivity by KIR molecules
on NK cells.42 The strength of the immune function is
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also influenced by the expression levels of HLA mole-
cules43—which is affected by many factors44—and may
explain why HLA-C molecules, the abundance of which
are highly variable at the cell surface,45 here exhibited
worse peptide-binding affinities.

Besides these locus-specific effects, a relevant observa-
tion of our study is that the HLA-binding patterns that
we predicted for SARS-CoV-2 peptides are not unique to
this virus. Indeed, we found almost identical peptide-
binding patterns (Figure 3) and many common HLA
strongest binders (Table S4) for the other two cor-
onaviruses SARS-CoV-1 and MERS-CoV, which could be
explained by their (relatively) high level of genome-wide
sequence identity (about 79% and 50%, respectively46)
with SARS-CoV-2. The three influenza viruses H1N1,
H3N2 and H7N9 behave somewhat differently, showing
slightly lower percentages of strong or regular bindings to
HLA and by sharing fewer strongest binders (although
still a substantial number). Our statistical model also rev-
ealed that, overall, the variety of respiratory virus (ie, cor-
onaviruses or influenza) has little effect on the HLA
peptide-binding patterns (according to Table 6, no statis-
tical significance is ever observed for coronaviruses, and
heterogeneous significances for influenza viruses).

By contrast, the patterns observed for HIV-1 reveal
that a lesser proportion of peptides derived from this
non-respiratory virus binds HLA molecules with either
strong or regular affinity (the difference being particu-
larly pronounced for regular bindings), which is highly
significant according to our statistical model (Table 6).
Also, although 16 HLA proteins are found to be strongest
binders for all viruses including HIV-1 (Table S4), this
virus stands out by showing the greatest proportion of

weakest binders (of 187 weakest binders, 154 are shared
with others viruses and 25 are unique to HIV-1). Overall,
these results suggest that adaptive immune responses
driven by HLA are less efficient towards HIV-1 than
towards respiratory viruses. In the same way, HLA pro-
teins that are usually considered as conferring protection
against HIV-1, that is, B*57:01, B*57:02, B*57:03, B*58:01,
B*27:05 and B*27:02,47 bind between 0 (B*27:02) and 16
(B*58:01) HIV-1 derived peptides (ie, 0%-0.6%) with high
affinity, which is quite low compared with 48 peptides
(1.7%) presented by the strongest HLA binder found for
HIV-1, B*15:03 (which is actually the strongest HLA-B
binder for all viruses). On the other hand, our definition
of strongest binders relies on two different estimates con-
sidered simultaneously, that is, a strong affinity
(IC50 ≤ 50) and a large number of peptides bound, which
prevents us from identifying more specialist alleles that
would bind very few but key viral peptides with strong
affinity, as might be the case for some of the alleles listed
above. Moreover, another limitation of our study is that
we may have missed some strong or regular HLA binders
of peptides having different lengths than those that we
used for our predictions. Indeed, while most HLA Class I
ligands are 9-mer peptides, their lengths typically vary
between 8 and 12 amino acids in relation to different
HLA allele clusters (eg, A*01:01 and A*03:01 often pre-
sent longer peptides),48 and slightly shorter or longer pep-
tides may sometimes display better affinities. This is the
case for the 11-mer KAFSPEVIPMF epitope derived from
the p24 capsid Gag HIV-1 protein (“KF11” p24 Gag 162-
172),49 which binds HLA-B*57 molecules with much bet-
ter stability than shorter peptides50 (see also Table 7).
The putative protective effect of HLA-B proteins to HIV-1

TABLE 7 Binding affinities of HLA-B*57:01 for different lengths of Gag-derived peptide

Allele # Start End Length Peptide Core Icore IC50 Percentile rank

HLA-B*57:01 1 1 11 11 KAFSPEVIPMF KAFSVIPMF KAFSPEVIPMF 145.5 0.26

HLA-B*57:01 1 1 10 10 KAFSPEVIPM KAFSPEVIM KAFSPEVIPM 591.6 0.77

HLA-B*57:01 1 1 8 8 KAFSPEVI KAFSP-EVI KAFSPEVI 3307.6 3

HLA-B*57:01 1 3 11 9 FSPEVIPMF FSPEVIPMF FSPEVIPMF 3846.1 3.4

HLA-B*57:01 1 1 9 9 KAFSPEVIP KAFSPEVIP KAFSPEVIP 5220.4 4.5

HLA-B*57:01 1 2 11 10 AFSPEVIMF ASPEVIPMF AFSPEVIPMF 6502.4 5.6

HLA-B*57:01 1 3 10 8 FSPEVIPM FS-PEVIPM FSPEVIPM 22 769.8 28

HLA-B*57:01 1 4 11 8 SPEVIPMF -SPEVIPMF SPEVIPMF 28 204.3 39

HLA-B*57:01 1 2 10 9 AFSPEVIPM AFSPEVIPM AFSPEVIPM 30 593.4 46

HLA-B*57:01 1 2 9 8 AFSPEVIP -AFSPEVIP AFSPEVIP 39 962.7 79

Note: NetMHCPan v. 4.0 output shows the IC50 affinity scores for the immunodominant HIV-1 Gag-derived peptide KAFSPEVIPMF and all
possible 8, 9 and 10-mer derived from this peptide. B*57:01 is a regular binder (50 nM < IC50 ≤ 500 nM) of the 11-mer epitope and a bad
(500 nM < IC50 ≤ 5000 nM) or non binder (IC50 > 5000 nM) for all other epitopes.

BARQUERA ET AL. 293



could thus be attributed to a very specific affinity to a few
conserved peptides (likely of different lengths than those
that we tested), rather than a large affinity to many
diverse regions of the viral proteome. This is supported
by the idea that many (but not all) HLA-B proteins would
be more fastidious (ie, specific) whereas many (but not
all) HLA-A would be more promiscuous (ie, generalist) at
presenting pathogenic peptides.39 This agrees with our
result that HLA-A (mostly A*02, which can be considered
as highly generalist) molecules form a majority represen-
tation among the HLA Class I strongest binders shared
by the seven viruses that we have analysed.

As a consequence of the promiscuous peptide-binding
behaviour of many HLA proteins that we disclose in the
present study, some alleles that have been claimed as
strongest and weakest binders of SARS-CoV-2 so far51 are
not unique to this virus. This is the case, for example, for
HLA-B*15:03 and B*46:01 (the latter having previously
been considered to confer susceptibility to SARS-CoV-1
disease by comparing severe cases to controls,52 as
recently reviewed53), which are in our top list of strongest
and weakest binders, respectively, for SARS-CoV-2 (in
agreement with Reference51), but also for the other six
viruses that we have analysed. Therefore, we propose that
these alleles do not confer specific protection or vulnera-
bility to SARS, as recently suggested,51 but more widely
to different diseases. However, it is important to stress
that weakest binders defined by the current work might
still act as regular or strongest binders in the context of
infections by other viruses not tested in this study or by
other kinds of pathogens (ie, bacteria, fungi or parasites).
Furthermore, weakest binders could also play a crucial
role by providing more specific but significant advantages
to their carriers against new virulent strains appearing in
a population.

5.2 | Global distribution of strongest and
weakest HLA SARS-CoV-2 peptide binders
in human populations

Two unexpected results also emerged from our study
regarding the global distribution of strongest and weakest
HLA binders to SARS-CoV-2 peptides in human
populations. The first one is the opposite pattern
observed for the two loci HLA-A and -B. Indeed, the
cumulative frequency of strongest binders is higher for
HLA-A and lower for HLA-B in most regions of the
world, while the reverse is observed for weakest binders
(Figure 2). The fact that HLA-B is more polymorphic
than HLA-A4 (164 HLA-B and 92 HLA-A alleles defined
at the second field level of resolution were considered in
this study) probably explains why the cumulative

frequencies of weakest binders are much greater for
HLA-B. However, this explanation does not hold for
strong binders. Actually, the high cumulative frequencies
of HLA-A strongest binders are principally due (but not
only, see below) to HLA-A*02:01, an allele which is fre-
quent almost everywhere in the world, whereas most of
the strongest HLA-B binders are rare.

The second, and probably the most remarkable result,
is the dual observation of particularly high and low
cumulative frequencies of, respectively, strongest and
weakest HLA binders in Indigenous populations from
North and South America. These two independent pat-
terns were highly significant (Table 5) and not observed
in any other geographic region (Figure 2, see loci A + B
combined). Among the strongest binders, A*02:01 is com-
mon in most regions of the world but reaches especially
high frequencies (sometimes up to 50%) in Indigenous
Americans and is classified as strongest binder for the
three coronaviruses analysed in this study (Table S4);
A*02:06, the strongest binder for all seven viruses, is rare
globally, slightly more common in North-East Asia and
sometimes very frequent in America where it reaches
20%-30% in some Mexican populations; A*68:01 is rarely
above 5% globally but reaches frequencies of about 15%-
20% in Indigenous populations from North America
(Mixtec and Seri), and is strongest binder for all viruses
except HIV-1; A*02:22, also strongest binder for all
viruses, is virtually absent or very rare in the world
except in some Indigenous populations from Venezuela
(Bari, 6.5%) and Brazil (Terena, 15%); A*24:03, strongest
binder for all coronaviruses, is another rare allele that is
observed at 10% to 11% frequency in Brazil and Argen-
tina. Other strongest binders are also found in other
regions (eg, A*02:03, reaching 17% and B*15:25, reaching
15%—40% in Yami—in South-East Asia; A*02:11,
reaching 9%-16% in India; or B*15:03, reaching 11% in
sub-Saharan Africa) but the cumulative frequencies of
strongest binders in these populations (except Yami) are
always lower than in Indigenous Americans.

We reported many strongest HLA binders that are at
high frequencies in multiple Indigenous American
populations that are not necessarily close geographically
nor related to each other. This is in contrast to other
regions of the world where populations underwent simi-
lar strong bottlenecks and/or rapid genetic drift, such as
in Taiwan, Australia and Oceania. Therefore, the patterns
observed in the Americas might be insufficiently
explained by demography alone. Remarkably, weakest
HLA binders are also less frequent in Indigenous Ameri-
cans (as opposed to other populations where frequencies
for both strongest and weakest binders overlap), which
again represents an independent result that might not be
easily explained by demography. Instead, it seems
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plausible that strongest binders were positively selected
(eg, through soft selective sweep) from the standing
genetic variation,21,54-56 by conferring protective effects
against some (undefined) pathogens, although the formal
testing necessary to confirm our hypothesis is beyond the
scope of this study. A possible explanation is the Euro-
pean colonisation of the Americas five centuries ago, as it
introduced new infectious diseases (eg, smallpox57),
which many historical records claim to have been a key
factor in the decimation of Indigenous American
populations. Here, as the great majority of strongest HLA
binders that we have identified are not specific to a given
virus among the seven that we have compared (many of
them are even strongest binders for all these viruses,
including HIV-1), the frequency patterns that we observe
today in Indigenous Americans might be the result of
selective pressures increasing the frequencies of promis-
cuous strong HLA binders (such as HLA-A*02:01) and
decreasing the frequencies of weak HLA binders already
present in these populations. We note that the HLA
region harbours the highest levels of advantageous
genetic diversity maintained by balancing selection and/
or recombination events for, potentially, millions of
years.58-62 Previous studies already suggested that high
frequency HLA alleles could have been positively selected
in first American populations because they would have
conferred some selective advantage.63,64 Interestingly,
recent HLA sequencing of 50 exomes of a continuous
population from North-West America dating from before
and after European contact (ancient DNA) identified a
strong signal of negative selection at the HLA-DQA1
gene,65 which shows that potential selective pressures on
HLA genes may also be traced by other approaches.

By contrast, strongest HLA-DRB1 binders appear to
be more frequent in Africa, Europe, South-West Asia and
North-East Asia than in South-East Asia, Oceania, Aus-
tralia and North and South America (Figure 2). Some of
these alleles, for example, DRB1*13:01 and DRB1*13:02,
are frequent in all the regions where they are observed,
while others are less evenly distributed, for example,
DRB1*01:01 in Europe and Asia, DRB1*11:02 in Africa
and Europe and DRB1*13:04 in West Africa.66,67 These
results might indicate that, in addition to HLA-A, pro-
miscuous HLA-DRB1 molecules may have been selected
for by playing a protective role to endemic (eg, parasitic)
diseases in populations from diverse geographic regions,
as proposed for HLA-DRB1*12:02 in China.68 Selection
would have been most likely to occur if such populations
were submitted to high pathogen diversity, as has been
recently suggested.20 Finally, sub-Saharan Africans dis-
play higher proportions of weakest HLA-DRB1 binders,
which might be protective to other diseases (ie, strongest
binders for another pathogen) or simply evolve neutrally

or under the influence of different selective pressures.
This fits with the known versatile evolution of HLA
genes that are submitted to different kinds of selec-
tion.21,69,70 The evolutionary history of the HLA region is
probably particularly complicated in Africa given a
potentially higher burden of infectious diseases.

Importantly, our study provides a different conclusion
to that recently drawn by Nguyen et al.,51 who stated that
there is no correlation between HLA allele frequencies in
populations and allele ability to bind SARS-CoV peptides.
As SARS-CoV viruses appeared extremely recently,71,72 it
seems clear that natural selection did not have enough
time to induce allele frequency changes in populations,
as potentially many generations are necessary to substan-
tially change allele frequencies over time, depending on
the selection coefficient and the population size. A more
reasonable explanation for the associations that we do
observe in the present study is that most of the strong
HLA binders of coronavirus peptides are also strong
binders of other pathogens, and hence are likely to be
generalist (or promiscuous) strong binders that probably
underwent selection in the past.

6 | CONCLUSION

Thanks to an extensive analysis of peptide-binding pre-
dictions across multiple HLA genes, multiple infectious
pathogens and multiple populations worldwide, the pre-
sent study makes it possible to consider both HLA popu-
lation variation and HLA evolution in a different light.
First, the observed peptide-binding patterns are compat-
ible with current knowledge on HLA protein function
and diversity, which differ among the loci. Our results
also underline the promiscuous behaviour of HLA pro-
teins (especially HLA-A), which are able to bind pep-
tides of various pathogens, even from distinct families,
with high affinities. Finally, the global frequency distri-
bution of HLA alleles coding for the strongest and weak-
est peptide binders predicted by our analyses indicates
potential signatures of selective events occurring
throughout humans history, although future studies are
needed to confirm this hypothesis. It is important to
note, however, that the characterisation of HLA pro-
teins as strongest and weakest binders of pathogen-
derived peptides, as presented in this study, relies on
computer-based binding affinity predictions with no
experimental validation nor immunogenicity testing.
Our results should thus be taken with care until com-
bined bioinformatic (also needing improved predictive
algorithms) and experimental approaches can be per-
formed.14,53,73 Moreover, although some protective or
susceptibility markers to infectious diseases may be

BARQUERA ET AL. 295



observed at varying frequencies across populations from
different geographic regions of the world, the resistance
and vulnerability of individuals to such diseases are
multifactorial phenomena that cannot be determined by
single genetic markers as they strongly depend on multi-
ple, complex and often unknown biological (in a broad
sense), environmental and other factors. This is impor-
tant to remember in the context of global coronavirus
outbreaks where all people may be highly vulnerable.
However, this study demonstrates that knowledge on
(or at least estimation of) individual epitope binding can
be embedded into a population context to provide pow-
erful clues about population and individual susceptibili-
ties to human viral infections, at least as a crucial
informed first step towards formulating working
hypotheses that can be tested epidemiologically or
experimentally.
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