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Cancer‑associated fibroblasts 
are associated with poor 
prognosis in solid type of lung 
adenocarcinoma in a machine 
learning analysis
Kyueng‑Whan Min1*, Dong‑Hoon Kim2*, Yung‑Kyun Noh3,4, Byoung Kwan Son5, 
Mi Jung Kwon6 & Ji‑Yong Moon7

Cancer‑associated fibroblasts (CAFs) participate in critical processes in the tumor microenvironment, 
such as extracellular matrix remodeling, reciprocal signaling interactions with cancer cells and 
crosstalk with infiltrating inflammatory cells. However, the relationships between CAFs and survival 
are not well known in lung cancer. The aim of this study was to reveal the correlations of CAFs 
with survival rates, genetic alterations and immune activities. This study reviewed the histological 
features of 517 patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database. 
We performed gene set enrichment analysis (GSEA), network‑based analysis and survival analysis 
based on CAFs in four histological types of lung adenocarcinoma: acinar, papillary, micropapillary 
and solid. We found four hallmark gene sets, the epithelial‑mesenchymal transition, angiogenesis, 
hypoxia, and inflammatory response gene sets, that were associated with the presence of CAFs. 
CAFs were associated with tumor proliferation, elevated memory CD4+T cells and high CD274 
(encoding PD‑L1) expression. In the pathway analyses, CAFs were related to blood vessel remodeling, 
matrix organization, negative regulation of apoptosis and transforming growth factor‑β signaling. 
In the survival analysis of each histological type, CAFs were associated with poor prognosis in the 
solid type. These results may contribute to the development of therapeutic strategies against lung 
adenocarcinoma cases in which CAFs are present.

Abbreviations
CAFs  Cancer-associated fibroblasts
ECM  Extracellular matrix
TCGA   The Cancer Genome Atlas
GSEA  Gene set enrichment analysis
FAP  Fibroblast activation protein-α
GBM  Gradient Boosting Machine
NSCLC  Non-small-cell lung carcinoma
ROC  Receiver operating characteristic
ML  Machine Learning
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MSigDB  Molecular signatures database
DFS  Disease-free survival
DSS  Disease-specific survival
VEGF-A  Vascular endothelial growth factor-A
HIF1α  Hypoxia-inducible factor 1 subunit alpha
MMP-11  Matrix metallopeptidase-11
IL-6  Interleukin-6
TGF-β  Transforming growth factor-β
GO  Gene ontology
BRAF  V-raf murine sarcoma viral oncogene homolog B

Lung cancer is a major cancer and the most common cause of cancer death in the  world1,2. According to the 
National Comprehensive Cancer Network (NCCN) guidelines in oncology, early lung cancer requires surgical 
procedures, but advanced cancer is treated with systemic  treatment3. However, about half of the patients recur, 
usually within the first year after starting  treatment4,5.

Genetic mutation of cells can induce cancer development, but disease progression and treatment sensitivity 
are affected by nonmutant cells within the tumor  microenvironment6. One type of nonmutant cell within the 
dense collagenous stroma is fibroblast-like cells, so-called cancer-associated fibroblasts (CAFs)7. CAFs can drive 
cancer metastasis through remodeling of the extracellular matrix (ECM) and the production of growth factors 
and can affect angiogenesis, and these effects influence therapy  response8. Recently, there has been a growing 
appreciation of the ability of CAFs to modulate the immune  system6.

Several studies have reported that survival rates are associated with CAF histological features in different 
types of malignancy. Previous studies have demonstrated that CAFs and desmoplastic reaction are predictive of 
poor prognosis in colorectal  cancer9. Another study suggested that adipocyte-derived fibroblasts are correlated 
with poor survival and desmoplastic reaction in breast  cancer7. However, another study reported that histological 
type, specifically the desmoplastic type, is an independent predictor of favorable prognosis in colorectal  cancer10.

Recently, molecular studies have utilized bioinformatic tools to find the mechanisms of CAFs. CAFs are a 
different cell population in terms of origin and pathobiological roles and are derived mainly from mesenchymal 
stromal cells that are resident in or recruited by the  cancer11. CAFs are located close to tumor cells and stromal 
components such as lymphocytes, neutrophils, plasma cells, endothelial cells and  ECM12. Fibroblasts include 
CAFs as well as myofibroblastic cells, quiescent fibroblastic cells and pericytic cells. The identification of fibro-
blasts within the cancer remains challenging due to the lack of specific biomarkers for known and still unclear 
 subtypes12.

In recent years, big data analytics and next-generation sequencing (NGS) have allowed the analyses of genetic 
biomarkers, the quantification of the several types of tumor-infiltrating lymphoid cells and the molecular pathway 
network-based integration of multiomics  data13–15. Considering the multiple gene-environment relationships 
of lung cancer, the clinicopathological application of gene expression data is difficult. For these reasons, we 
believe that analyses based on gene expression data should focus on identifying a simple, robust, and druggable 
biomarkers based on high-throughput experimental tools and bioinformatics to achieve accessible therapeutic 
strategies. The Cancer Genome Atlas (TCGA) has a big database, including digital pathologic slides, clinico-
pathological information, RNA sequencing, mutation, copy number variable and methylation  data13. Moreover, 
the histological features reported in the TCGA database provide data on the presence of CAFs and the tumor 
microenvironment in lung cancer.

This study aimed to determine whether the presence of CAFs contributes to the clinical outcomes of lung 
cancer and to evaluate the prognostic value of  CAFs16. We further aimed to find the gene sets related to CAFs 
based on gene set enrichment analysis (GSEA)14 and molecular pathway network  analyses17,18. The relationships 
between lymphoid cells and CAFs were  analyzed15.

Materials and methods
Patient selection. We obtained a total of 1,053 non-small-cell lung carcinoma (NSCLC) cases comprising 
566 lung adenocarcinomas and 487 squamous cell carcinomas with known mRNA expression and mutation data 
from the TCGA  database13. The analysis was performed on 517 cases containing both virtual histopathological 
slides and clinical data (from a total of 566 lung adenocarcinoma samples).

Cancer‑associated fibroblasts. In this review, cells with both immature fibroblastic proliferation (pro-
portion: > 10%) at the tumor invasive front and high FAP gene expression were defined as CAFs (Fig. 1A)19,20. 
To determine the optimal cutoff value for FAP expression, we generated receiver operating characteristic (ROC) 
curves comparing sensitivity versus 1–specificity. The cutoff value calculated by the ROC curve was used to 
evaluate the relationship between survival and FAP expression. On the basis of the ROC curve, FAP expression 
was classified as low (mRNA level ≤ 562.9965) or high (mRNA level > 562.9965). Of the 517 cases, CAFs were 
present in 101 cases (19.5%).

Gene set enrichment analysis and pathway‑based network analysis based on TCGA data. To 
detect significant gene sets, GSEA (version 4.1.0) was performed with 31,117 gene sets in the Molecular Signa-
tures Database (MSigDB version 7.2) from the Broad Institute at  MIT14. Specific gene sets (50 hallmark gene 
sets) were tested to determine which were associated with CAFs. For this analysis, 1000 permutations were 
utilized to calculate the p values, and the permutation type was set to phenotype. Significant gene sets were those 
with the following characteristics: false discovery rate < 0.001; family wise-error rate ≤ 0.001; and p < 0.001.
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We analyzed tumor-infiltrating lymphocytes using deep learning-based lymphocyte classification with convo-
lutional neural networks in whole-slide image analysis and identified immune subtypes using in silico cytometry 
analyses [CIBERSORT (https:// ciber sort. stanf ord. edu/) with Kallisto  algorithms]15,21–23.

Pathway-based network analysis was based on the identified genes linked to CAFs using Cytoscape (ver-
sion 3.8.1) network visualization software. To visualize the biological relevance of the histological subtypes and 
their relevant elements on the basis of GSEA, we performed functional enrichment analyses using ClueGO, an 
application within Cytoscape  software17,18.

Machine learning algorithm for validation. We integrated CAFs with clinical risk factors (T stage, N 
stage, age, sex, smoking history) to composite prognostic models for survival prediction by applying machine 
learning (ML) algorithms in 517 cases (randomization: train set, 70%; validation set, 30%). A learning algorithm 
was independently applied to select and combine multiple covariates from gradient boosting machines (GBM) 
based on multivariate Bernoulli models. In this step, ‘‘forward” search method, which initiates on a prototype 
set and selects a feature if and only if the addition of the feature could increase the performance of the prog-
nostic model, is adopted to select optimal features sequentially. Hyperparameters of the ML algorithms, such 
as learning rate in GBM were optimized for each combination of selected covariates and learning algorithm by 
grid search cross-validation through a predefined range. We searched across 81 models with varying learning 
rates and tree depth. The final optimal models were trained based on the selected covariates and the optimized 
 hyperparameters24. To explore the performances of the GBM method, the receiver operator characteristic (ROC) 
curve was used.

Statistical analysis. Student’s t-test was used to evaluate the differences or relationships among continuous 
paramters. Disease-free survival (DFS) and disease-specific survival (DSS) were compared using the log rank 
test. Multivariate analysis was performed to identify independent prognostic markers for DFS and DSS using a 
Cox multistep regression model. All data were analyzed using R packages. A two-tailed p value < 0.05 was con-
sidered statistically significant.

Results
CAFs were associated with EMT, angiogenesis, hypoxia and inflammatory response. FAP 
was highly expressed in tumors compared with normal tissues (p < 0.001) (Fig. 1B). We performed GSEA to 
identify various gene sets associated with CAFs. In the analyses of hallmark gene sets, we found four gene sets 
(the epithelial-mesenchymal transition, angiogenesis, hypoxia and inflammatory response gene sets) that were 
associated with lung adenocarcinoma (Fig. 2A).

On the basis of the GSEA results, we analyzed the association between CAFs and each gene set-related 
marker. Vimentin, a biomarker related to epithelial-mesenchymal transition, was highly expressed in the pres-
ence of CAFs (p < 0.001). Vascular endothelial growth factor-A (VEGF-A), as a marker related to angiogenesis, 
was increased in the presence of CAFs (p = 0.022). Hypoxia-inducible factor 1 subunit alpha (HIF1α), which is 
linked to hypoxia, was elevated in the presence of CAFs (p < 0.001). The lymphocyte infiltration signature score, 
which is associated with the inflammatory response, showed a tendency to increase in the presence of CAFs, but 
it was not statistically significant (p = 0.209) (Fig. 2B).

CAFs were related to low B cells, high CD4+T cells, high PD‑L1 expression and prolifera‑
tion. In the analyses of CAFs, we referred to the immune cell profiles, tumor cell proliferation parameters 
and biomarkers used in a study by Thorsson et al. and in silico cytometry.22

In comparing the immune cell fractions between samples with and without CAFs, memory B cells were 
decreased in samples with CAFs (p < 0.001), while activated memory CD4+T cells were increased in samples 
with CAFs (p = 0.002). CD274 (encoding PD-L1, programmed death-ligand 1) expression was more elevated in 

Figure 1.  (A) Histological images showing cancer-associated fibroblasts at the tumor invasive front (green line) 
(inset: immature cancer-associated fibroblasts) (original magnification × 400; inset × 1000) and high fibroblast 
activation protein-α (FAP-α) expression. (B) Bar plots showing the difference in fibroblast activation protein-α 
expression between normal and tumor tissues (p < 0.001).

https://cibersort.stanford.edu/
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Figure 2.  (A) Four gene sets (the epithelial-mesenchymal transition, angiogenesis, hypoxia, and inflammatory 
response gene sets) associated with cancer-associated fibroblasts. (B) Bar plots of the relationships between 
cancer-associated fibroblasts and markers of the identified gene sets: vimentin, vascular endothelial growth 
factor-A (VEGF-A), hypoxia inducible factor 1 subunit alpha (HIF1α) and lymphocyte infiltration signature 
score (p < 0.001, = 0.022, < 0.001 and = 0.209, respectively).

Figure 3.  Bar plots of the relationships between cancer-associated fibroblasts and immune factors. (A) Memory 
B cells, activated CD4 + memory T cells, CD8 T cells and CD274 (encoding PD-L1) + cells (p = 0.001, 0.002, 
0.602 and < 0.001, respectively). (B) Relationships between tumor proliferation, matrix metalloproteinase-11 
(MMP-11), interleukin-6 (IL-6) and transforming growth factor-β (TGF-β) (p < 0.001, 0.001, = 0.015 and < 0.001, 
respectively).
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samples with CAFs than in those without CAFs (p < 0.001). CD8+T cells showed a tendency to be decreased in 
samples with CAFs, but this trend was not statistically significant (p = 0.602) (Fig. 3A).

The presence of CAFs was associated with higher proliferation and matrix metallopeptidase-11 (MMP-
11), interleukin-6 (IL-6) and transforming growth factor-β (TGF-β) levels than the absence of CAFs 
(p < 0.001, < 0.001, = 0.015 and < 0.001, respectively) (Fig. 3B).

CAFs were linked to blood vessel remodeling, fibrosis and tissue remodeling pathway. We 
performed pathway-based network analysis using the genes and gene sets associated with CAFs. The CAFs were 
linked to 10 functionally enriched Gene Ontology (GO) terms and pathways: (1) blood vessel remodeling; (2) 
lung fibrosis; (3) regulation of tissue remodeling; (4) extracellular matrix organization; (5) cell–matrix adhesion; 
(6) fibrillar collagen trimer; (7) negative regulation of extrinsic apoptosis signaling pathway; (8) collagen fibril 
organization; (9) morphogenesis of an epithelial sheet; and (10) TGF-β receptor signaling (Fig. 4).

CAFS improved survival prediction using machine learning.. In the TCGA data, the distributions 
of the five predominant histological types were as follows: 7 lepidic type (1.4%), 115 acinar type (22.2%), 107 
papillary type (20.7%), 65 micropapillary type (12.6%) and 223 solid type (43.1%). There was an absence of CAFs 
in the lepidic cases; thus, they were not included in the survival analyses.

The presence of CAFs was associated with unfavorable DFS and DSS in the acinar type (p = 0.039 and 0.067, 
respectively), but the relationship between CAFs and DSS was not statistically significant. The presence of CAFs 
was significantly related to shorter DFS and DSS than the absence of CAFs in the papillary type (p < 0.001 and 
0.019, respectively). The presence of CAFs correlated with worse DFS and DSS in the micropapillary type (p = 0.47 
and 0.069, respectively), but the correlations were not statistically significant. In the solid type, the presence of 
CAFs was significantly associated with shorter DFS and DSS than the absence of CAFs (p = 0.007 and 0.002, 
respectively) (Fig. 5A,B). After adjustment for confounders including T stage, N stage, age, sex and smoking 

Figure 4.  Grouping of networks based on functionally enriched Gene Ontology (GO) terms and pathways 
associated with the presence of cancer-associated fibroblasts.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16779  | https://doi.org/10.1038/s41598-021-96344-1

www.nature.com/scientificreports/

history, the presence of CAFs was associated with worse DFS in the papillary type and solid type than the absence 
of CAFs (p < 0.001 and = 0.008, respectively). There was a relationship between shorter DSS and the presence of 
CAFs in only solid type samples (p = 0.003) (Table 1).

We compared the performance of the two GBM models in predicting survival rates (Model 1; T stage, N stage, 
age, sex, smoking history versus Model 2; CAFs, T stage, N stage, age, sex, smoking history) (Supplementary 
information and Fig. 1). ROC curves were performed (area under the curve: Model 1, 0.642; Model 2, 0.677) 
(Fig. 5C). We found that the GBM algorithm performed the best while the addition of CAFs to the prediction 
model improved the prognostic performance. With cross-validation estimates, 7 decision trees were utilized 
sequentially while the maximum depth of each decision tree was optimized at 1, corresponding to one-way 
interactions, and the learning rate was optimized at 0.018.

Discussion
This study showed survival differences between patients with and without CAFs and analyzed genetic/molecu-
lar alterations in patients with lung adenocarcinoma. In previous studies, genetic/molecular signatures related 
to CAFs have been shown to correlate with prognosis in colorectal, ovarian and breast  cancer25–27. Our results 
revealed that the presence of CAFs was associated with a shorter survival rate than the absence of CAFs in lung 
adenocarcinoma, especially the solid type. In this study, the machine learning model analysis which includes 
CAFs increased the accuracy of predicting the survival rate. A study by Marcela et al. reported that CAFs were 
related to increased survival in patients with diffuse large B cell  lymphoma28. Moreover, another study of colo-
rectal carcinoma demonstrated that the presence of desmoplasia and CAFs was associated with better survival 
than the absence of  desmoplasia10. Thus, there is controversy regarding the association between CAFs and the 
survival of patients with cancer. It is thought that CAFs in the tumor microenvironment are phenotypically 

Figure 5.  Survival analyses of the four types based on the absence or presence of cancer-associated fibroblasts. 
(A) Disease-free survival: acinar, papillary, micropapillary and solid types (p = 0.039, < 0.001, = 0.47 and 0.007, 
respectively). (B) Disease-specific survival: acinar, papillary, micropapillary and solid types (p = 0.067, 0.019, 
0.069 and 0.002, respectively). (C) We supervised machine-learning models for prognosis prediction using 
gradient boosting machine (GBM). Covariates were included in the confounding factors [Model 1 (left); T stage, 
N stage, age, sex, smoking (pack years) versus Model 2 (right); Cancer associated fibroblasts (CAFs), T stage, 
N stage, age, sex, smoking (pack years)] and their relative importance using overall survival. Receiver operator 
characteristic curve for GBM was used based on a multivariate Gaussian model.
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heterogeneous and may exhibit both a protumorigenic and antitumorigenic  phenotypes29. We analyzed hall-
mark gene sets related to CAFs in lung adenocarcinoma. A total of four gene sets associated with the presence of 
CAFs were identified: the epithelial-mesenchymal transition (EMT), angiogenesis, hypoxia, and inflammatory 
response gene sets. Subsequently, we determined the correlations of representative biomarkers associated with 
these gene sets with to the presence or absence of CAFs. First, vimentin is an EMT biomarker and is involved 
in cell migration, motility and adhesion and associated with  metastasis30. Second, VEGF-A is an angiogenesis 
biomarker and induces high microvascular density and permeability and promotes tumor  expansion31. Third, 
HIF1α is a hypoxia biomarker and is associated with the upregulation of glycolytic genes related to oxygen 
deprivation with increased cancer  metabolism32. Fourth, the lymphocyte infiltration signature score, which 
is an inflammatory response marker, is related to prognosis and host-tumor immune interactions in different 
types of  malignancies33. Some representative markers, such as vimentin, VEGF-A and HIF1α, were elevated in 
the presence of CAFs compared to the absence of CAFs. There was no significant difference in the lymphocyte 
infiltration signature score between samples with and without CAFs. These results suggest that the presence or 
absence of CAFs has minimal effect on the host-tumor immune response in lung adenocarcinoma.

In addition, we analyzed the changes in immune cell subtypes according to the presence or absence of CAFs 
by considering the characteristics of different immune cells. Memory B cells were decreased in the presence of 
CAFs, but activated memory CD4+T cells were increased in the presence of CAFs. CD274 was elevated in the 
presence of CAFs. There was no significant difference in CD8+T cells between samples with or without CAFs. A 
study by Costa et al. demonstrated that FAP-high fibroblasts, such as CAFs, are correlated with  Treg cell-mediated 
immunosuppression and poor outcome in breast  cancer34. Our results showed that, in lung adenocarcinoma, 
CAFs have little effect on the immunomodulation associated with CD8+T cells in the tumor microenvironment.

CAFs can induce increased levels of growth factors, matrix remodeling and increased levels of numerous 
cytokines related to  immunomodulation6. In our results, the proliferation index was increased in the presence 
of CAFs. TGF-β and IL-6 are related to tumor growth and/or immunosuppression and were increased in the 
presence of CAFs. A representative marker of ECM and cancer invasion, MMP-11, was elevated in the presence 
of CAFs. The pathway-based network analysis showed biological functions related to CAFs, such as blood vessel 
remodeling, extracellular matrix organization, negative regulation of the extrinsic apoptotic signaling pathway 
and TGF-β receptor signaling.

This study has several limitations that should be acknowledged. First, because this is a cross-sectional study 
and the in silico analyses with TCGA did not show sustained relationships over time, it is difficult to reach a 
definitive conclusion. Second, experimental data allowing for novel biological insights into CAFs were not 
obtained in our study. Further in vitro and/or in vivo studies may be necessary to clarify the molecular mecha-
nisms of CAFs in solid lung adenocarcinoma. Third, CAF function may be highly heterogeneous in solid lung 
adenocarcinoma patients, as many components of signaling pathways are affected by disease status, microen-
vironment, and immunity. Fourth, the difficulty in identifying CAFs results largely from the lack of unique 
 markers6. In our study, CAFs were defined by a combination of the histological features of fibroblasts and high 
FAP gene expression. Fifth, we used machine learning and general statistical methods to predict survival differ-
ences between patient with or without CAFs. Because CAFs were identified as important factors in predicting 
survival in both methods, our study based on limited data could not explain the difference between machine 
learning, which focuses on prediction, and statistical analysis, which focuses on inference. Discussion of the 
issues will require future research.

This study demonstrated that CAFs are associated with increased tumor cell growth, angiogenesis, and ECM 
remodeling, effects that produce an unfavorable prognosis in patients with solid lung adenocarcinoma. CAFs 
were found to be associated with enhanced recruitment of activated memory CD4+T cells with high CD274 
expression. The presence of CAFs was related to decreased numbers of CD8+T cells, but the relationship was 
not statistically significant. Patients with CAFs with high CD274 expression without elevated CD8+T cells might 

Table 1.  Univariate and multivariate analyses of disease-free survival and disease-specific survival based on 
cancer-associated fibroblasts. *Adjusted for T stage, N stage, age, sex and smoking history.

Covariate

Disease-free survival Disease-specific survival

HR 95%CI P value HR 95%CI P value

Acinar type

Univariate 2.125 1.021 4.427 0.039 2.202 0.926 5.235 0.067

Multivariate* 1.712 0.775 3.785 0.184 1.842 0.698 4.864 0.217

Papillary type

Univariate 5.460 2.031 14.676  < 0.001 4.061 1.142 14.441 0.019

Multivariate* 13.630 4.112 45.174  < 0.001 3.585 0.706 18.214 0.124

Micropapillary type

Univariate 1.724 0.387 7.677 0.47 3.975 0.796 19.849 0.069

Multivariate* 0.535 0.051 5.642 0.603 3.844 0.367 40.251 0.261

Solid type

Univariate 1.852 1.173 2.925 0.007 2.161 1.296 3.603 0.002

Multivariate* 1.980 1.199 3.269 0.008 2.339 1.328 4.119 0.003
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develop resistance to anti-PD-L1 therapies. Our workflow results regarding CAFs will contribute to designing 
future clinical and experimental studies for patients with solid lung adenocarcinoma.

Data availability
The authors declare that all data supporting the findings of this study are available within the article.
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