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Abstract

Weight loss and hematogenous metastases are poor prognosis factors in lung 
cancer patients that can but do not necessarily co-occur. We retrospectively 
investigated the clinical association between cachexia, tumor characteristics (such 
as metastatic burden and mutational status), and treatment in lung cancer 
patients. The medical records of 394 lung cancer patients from two institutions 
(Columbia University, USA and Tohoku University, Japan) were reviewed. 
Information collected included the presence of cachexia, histologic subtype, 
tumor stage, number of metastases, mutation status, treatment, and survival. 
Descriptive statistics were performed. Only stage IV patients exhibited >5% 
weight loss (0.8%, 2.2%, 3.6%, and 5.1%, for stages I to IV; P  =  0.0001). 
Patients with metastases developed cachexia more often than patients without 
metastases independent of treatment (6.0% and 7.1% weight loss in patients 
with metastases vs. 2.5% and 2.0% in patients without metastases, before 
[P  =  0.0001] and after [P  <  0.0001] treatment, respectively). The change in 
number of metastatic sites over time correlated with increasing weight loss 
(5.2%, 10.6%, 13.4%, and 13.4%, for an increase of 0, 1, 2, and ≥3 metastatic 
sites, from initial diagnosis to the endpoint; P < 0.0001). Patients with cachexia 
had worse survival than patients without cachexia (hazard ratio, 2.94; 95% 
confidence interval, 2.08–4.16; P  <  0.0001). Tumors with mutated KRAS were 
associated with an increased risk of weight loss (11.4% weight loss in patients 
with mutated KRAS vs. 6.0% in patients with wild-type KRAS; P  =  0.0011). 
Our findings suggest that the capabilities of lung cancer to metastasize and 
cause cachexia might be linked intrinsically and are independent of treatments 
administered. KRAS-mutated tumors were more commonly associated with 
cachexia.
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Introduction

Cachexia is a complex metabolic syndrome characterized 
by involuntary loss of muscle mass, with or without loss 
of fat mass, and is associated with several chronic diseases, 
including cancer [1]. An international definition of the 
diagnostic criteria for cancer-related cachexia was published 
in 2011. This operational definition characterized cancer 
cachexia as weight loss >5% of total body weight (BW) 
over the course of 6  months, weight loss >2% in indi-
viduals with a body mass index <20 over the course of 
6  months, or radiographic evidence of sarcopenia, among 
other characteristics [2]. The diagnostic criteria for cachexia 
were recently updated, incorporating the two dimensions 
of weight loss percentage and body mass index [3].

It has been estimated that cachexia affects 80% of 
patients with advanced cancers [4]. Cachexia is most 
prevalent in patients with pancreatic, gastric, colorectal, 
lung, and head and neck cancers [5]. Cancer cachexia is 
associated with functional impairment, low tolerance for 
chemotherapy, fewer symptomatic responses, and increased 
susceptibility to infections. The negative effects of cachexia 
often influence treatment by necessitating drug dose reduc-
tion, other delays, or discontinuation of treatments [6]. 
Cachexia has a significant effect on patient quality of life 
(QOL), owing to its association with fatigue and 
depression.

Epidemiologic studies suggest that the frequency of 
weight loss in patients with lung cancer is 55%–60%. 
However, as the onset of weight loss in patients with 
lung cancer is not as rapid as in patients with pancreatic 
or gastric cancer, it often remains unrecognized until the 
end stages of the disease [7, 8]. In an analysis of 418 
patients with non–small cell lung cancer (NSCLC), the 
presence of weight loss was thought to be associated with 
poorer treatment outcomes, attributable to reduced treat-
ment tolerance [9]. In a second study, comprising 40 
patients with stage III NSCLC, cachexia was associated 
with lower QOL and shorter survival [10].

Metastasis is the process of systemic dissemination and 
growth of cancer cells in sites distant from the primary 
site of disease [11]. Since metastases and cachexia may 
coexist, we sought to investigate the potential link between 
the development of cachexia and of metastases in a ret-
rospective study of lung cancer patients. We hypothesized 
that the ability of a cancer to metastasize might be linked 
to the pathogenesis of cachexia.

Methods

After approval was obtained from the Institutional Review 
Boards at Columbia-Presbyterian Medical Center and 
Tohoku University, a retrospective review of patients treated 
for lung cancer at Columbia-Presbyterian Medical Center 
and Tohoku University Hospital between May 2004 and 
May 2014 was performed. Study entry criteria included 
the pathologic diagnosis of lung cancer, clinical care at 
one of these institutions for >3  months, and >3 recorded 
weights. Exclusion criteria included treatment at another 
institution for >3  months after diagnosis. Demographic 
and clinical variables were collected (see Data S1), includ-
ing the presence of clinical comorbidities, such as anorexia 
and kidney failure, that might also contribute to weight 
loss.

On the basis of the international definition of cachexia 
at the time of approval from the Institutional Review 
Boards, cachexia was defined in this study as >5% weight 
loss [2]. Weights were recorded at defined points during 
the course of lung cancer diagnosis and treatment, includ-
ing weight before diagnosis, weight at diagnosis, weight 
during and after treatment (at approximately 6-month 
intervals), and last recorded weight. Baseline pretreatment 
weight was defined as self-reported baseline weights or 
weights from any outpatient visit 1–2  years before the 
diagnosis of lung cancer. Weight at diagnosis was defined 
as the weight recorded within 2  weeks of the date of 
diagnosis of lung cancer. Weight at first treatment was 
taken as the weight recorded within 3  days of starting 
the first treatment. To exclude bias resulting from physical 
differences between patient populations, percentage weight 
loss instead of absolute weight loss was used for all analy-
sis. Treatment included chemotherapy, radiation therapy, 
targeted therapy, and surgery. Posttreatment weight was 
recorded approximately every 6  months. In total, 62 of 
394 cases lacked baseline weights; therefore, these patients 
were not used in analyses of the correlation between pre-
treatment cachexia and pre- and posttreatment metastasis 
and stage. The weight at the endpoint was defined as the 
last weight before death, at terminal discharge from inpa-
tient admission, or at the last outpatient visit.

Statistical analysis

Student’s t test was used to compare each mean weight 
loss percentage between characteristics of the two groups, 
such as presence of pretreatment metastasis, posttreat-
ment metastasis, EGFR mutation, KRAS mutation, and 
anti-EGFR tyrosine kinase inhibitor (TKI) therapy. 
Analysis of variance and Tukey–Kramer’s honestly sig-
nificant difference test were used to compare each mean 
weight loss percentage among >3 groups, such as 
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histologic subtype (adenocarcinoma, squamous cell car-
cinoma, small cell carcinoma, other), stage (I, II, III, 
IV), and chronological metastasis site number change 
(0, 1, 2, ≥3). Equality of variances of each analysis was 
confirmed by Bartlett’s, Levene’s, Brown–Forsythe’s, and 
O’Brien’s tests. Kaplan–Meier methods were used to 
construct survival plots, and the log-rank test was used 
to compare the respective groups. Cox proportional haz-
ard regression was used to estimate hazard ratios (HRs) 
and 95% confidence intervals (CIs). JMP software (ver-
sion 11.0; SAS Institute, Cary, NC) was used for statistical 
analyses. In all cases, two-sided P-values of 0.05 were 
considered significant.

Results

Incidence of cachexia in patients with 
metastasis pre- and posttreatment

The medical records of patients with histologically proven 
lung cancer treated at Columbia-Presbyterian Medical Center 
(n  =  294) or Tohoku University Hospital (n  =  100) were 
reviewed. Patient demographic and clinical characteristics 
are summarized in Table 1. Given the biological differences 

between lung cancer subtypes, we asked whether differences 
exist in cachexia incidence. However, we observed no sig-
nificant difference in weight loss between patients with the 
main histopathologic subtypes of adenocarcinoma, squa-
mous cell carcinoma, small cell lung cancer, and others, 
such as large cell lung cancer (P  =  0.66; Table  2).

We then explored the relationship between the frequency 
of cachexia in lung cancer patients with different stages 
of the disease. We found that only patients with stage 
IV lung cancer (i.e., patients having hematogenous metas-
tases) had a mean weight loss percentage that met the 
definition of cachexia (Table  3).

Anticancer therapy such as chemotherapy has systemic 
effects [12] including decreased oral intake by appetite 
suppression, nausea, vomiting, and gastrointestinal tract 
inflammation. Therefore, we analyzed the effect of treat-
ment on weight loss in our patient cohort. We first ana-
lyzed mean weight loss in patients with or without cachexia 

Table 1. Patient characteristics (N = 394).

Characteristics Patients

Age, median (range), years 68 (27–96)
Sex

Male 204 (51.8)
Female 190 (48.2)

Ethnicity
White 170 (43.1)
Asian 112 (28.4)
Hispanic 61 (15.5)
African American 14 (3.6)
Other 14 (3.6)
Not known 23 (5.8)

Stage
I 51 (12.9)
II 53 (13.5)
III 103 (26.1)
IV 187 (47.5)

Histologic subtype
Adenocarcinoma 252 (64.0)
Squamous cell carcinoma 83 (21.1)
Small cell lung cancer 48 (12.2)
Other 11 (2.8)

Chemotherapy 333 (84.5)
First line 333 (84.5)
Second line 142 (36.0)
Third line and beyond 68 (17.3)

Radiation therapy 237 (60.2)
Surgery 144 (36.5)

Data are no. (%), unless otherwise noted.

Table 2. Tumor histologic subtype and weight loss (P = 0.66).

Histologic Subtype Patients Mean weight loss, %

Adenocarcinoma 214 8.7
Squamous cell carcinoma 66 8.1
Small cell lung cancer 41 10.3
Other 10 6.5

Table 3. Association between metastasis, stage, and cachexia.

Variable Patients

Mean 
weight 
loss, % P

Pretreatment metastasis 0.0001
No 180 2.5
Yes1 151 6.0

Posttreatment metastasis <0.0001
No 112 2.0
Yes 282 7.1

Stage at diagnosis 0.0001
I 47 0.8
II 50 2.2
III 86 3.6
IV2 148 5.1

Metastasis sites number change3 <0.0001
0 169 5.2
1 67 10.6
2 62 13.4
≥3 34 13.4

1The cases with available baseline body weights were analyzed.
2Three cases were counted as stage III from the above 151 cases, owing 
to solitary ipsilateral metastasis, according to the UICC 7th edition lung 
cancer TNM classification and staging system.
3Longitudinal analysis (chronological change from diagnosis to 
endpoint).
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either pre- or posttreatment in the context of metastasis. 
In both pre- and posttreatment, the metastatic group had 
significantly greater weight loss >5% (Table  3).

We next examined whether the number of metastatic 
sites or the overall tumor volume correlated with the 
frequency of cachexia. Weight loss was significantly dif-
ferent among the groups according to the existence of 
hematogenous metastases, both before (P  =  0.0001) and 
after (P  <  0.0001) treatment (Table  3). A longitudinal 
analysis was performed to assess the chronological change 
in the number of metastatic sites against the weight loss 
of each patient; this analysis showed that the weight loss 
percentage in patients with new metastatic sites was twice 
that in patients without an increase in metastatic sites 
(P  <  0.0001; Table  3).

We performed survival analysis using the Kaplan–Meier 
method, stratifying patients with and without cachexia. 

Patients with cachexia before treatment had worse survival 
(HR, 2.94; 95% CI, 2.08–4.16; P  <  0.0001; Fig.  1A). In 
the subgroup of patients with stage IV disease, patients 
with cachexia at diagnosis had worse survival (HR, 2.33; 
95% CI, 1.48–3.79; P  =  0.0003; Fig.  1B). When patients 
are deemed cachectic at diagnosis, systemic chemotherapy 
is often not a viable option. In such instances, poor prog-
nosis could be attributed to not only cachexia but also 
to lack of therapy administration. We considered such a 
possibility and carried out an analysis that excluded patients 
who did not receive systemic chemotherapy (i.e., who 
received only locally ablative therapy, such as surgery or 
radiotherapy). We observed a significantly poorer prognosis 
in the cachexia group (HR, 2.24; 95% CI, 1.40–3.71; 
P  =  0.0007; Fig.  1C). Finally, in posttreatment setting, a 
longitudinal analysis using the total amount of weight loss 
during treatment, from the time of diagnosis, showed that 

Figure 1. Kaplan–Meier estimates of overall survival among patients with cachexia (defined as >5% weight loss) or without cachexia. (A) Patients with 
all stages at diagnosis. (B) All stage IV patients. (C) Stage IV patients, excluding those who did not receive systemic chemotherapy and did received 
only local therapy, such as surgery or radiotherapy, and (D) All patients according to chronological total amount of weight loss.
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patients with progressive cachexia had significantly worse 
survival (HR, 1.63; 95% CI, 1.03–2.66; P = 0.0388; Fig. 1D).

Mutation status in tumors and cachexia 
incidence

In the era of genomic and personalized medicine, lung 
cancer treatment is commonly guided by molecular testing 
of key driver mutations such as KRAS and EGFR [13, 14]. 
KRAS and EGFR represent two most commonly mutated 
oncogenes in lung cancer with distinct biology. KRAS and 
EGFR encode for a G-protein and transmembrane tyrosine 
kinase, respectively, and both have a critical role in prolif-
eration and cell survival. Therefore, we examined whether 
the risk of cachexia was associated with the mutation status 
of these genes. Among several other characteristics that were 
explored (Table 4), the presence of mutated KRAS in tumors 
was associated with a doubled risk of weight loss (P = 0.0011; 
Table  4); EGFR mutation status was not associated with 
an increased risk of weight loss (P  =  0.6032; Table  4). 
Because TKIs, such as gefitinib and erlotinib, significantly 
improve the clinical outcome of EGFR-mutant lung cancers, 
we also analyzed cachexia risk in patients with EGFR muta-
tion by treatment with anti-EGFR TKIs. However, no sta-
tistically significant difference in weight loss percentage was 
found by TKI treatment status (P  =  0.3036; Table  4). 
Therefore, these results suggest that KRAS mutation status 
of tumors, and therefore, their intrinsic biological charac-
teristics could be linked to cachexia development.

Discussion

The incidence of weight loss in patients with lung cancer 
is estimated to be 55%–60%, but the associations between 
the histologic and clinical characteristics of the cancer 
and the likelihood of cachexia are poorly characterized. 
The present retrospective analysis of clinical data from 
lung cancer patients has four main findings. First, patients 

with metastatic lung cancer had higher rates of cachexia, 
both before and after treatment, compared to patients 
without metastatic disease. That cachexia is seen in the 
pretreatment or treatment-naive setting argues against the 
hypothesis that cancer-associated cachexia is primarily 
caused by treatment (e.g., chemotherapy-induced gastro-
intestinal disorders or radiation sickness) and suggests that 
it is likely an inherent characteristic of the tumor. Second, 
within the cohort of patients with metastases, a greater 
burden of metastatic disease (as measured by the number 
of metastatic sites) correlated with a higher risk of cachexia. 
Third, the presence of cachexia predicted poorer survival, 
independent of treatment. Fourth and finally, the presence 
of mutated KRAS in tumors correlated with likelihood 
of cachexia.

KRAS- and EGFR-mutant lung cancers display different 
biological characteristics, are clinically distinct, and are 
treated differently [15]. KRAS-mutant tumors account for 
approximately 25% of cases of NSCLC, whereas EGFR-
mutant tumors account for 10%–35%. KRAS mutation 
status has predictive value for colorectal cancer patients 
receiving anti-EGFR antibody treatment, but its diagnostic 
significance for lung cancer patients is less clear [16, 17]. 
Generally, EGFR and KRAS mutations appear to be mutu-
ally exclusive [18]. Our study showed that the presence 
of a KRAS mutation in the tumor correlated with the 
development of cachexia, whereas EGFR mutation was 
not significantly correlated with cachexia. Interestingly, 
the mean weight loss did not significantly differ for patients 
with EGFR mutations by anti-EGFR TKI therapy status, 
despite it being an effective targeted therapy for lung 
cancer [19, 20]. Therefore, the correlation between tumor-
associated mutations and cachexia must be related to the 
inherent mutation and its associated aggressiveness, rather 
than to the associated treatment. In line with these clini-
cal findings, mouse models bearing lung, colon, or pan-
creatic cancers harboring KRAS mutations have been found 
to exhibit features of cachexia [21–24]. As KRAS mutation 
is one of the key oncogene drivers linked to aggressive-
ness in various human malignancies—including lung, 
colorectal, and pancreas cancers [25, 26]—it is plausible 
that mutated KRAS drives both metastasis and cachexia 
and, consequently, correlates with poor prognosis. 
However, our results, although suggestive of such an 
association, require further validation.

ALK rearrangement, MET amplification, BRAF mutation 
which account for 3–7%, 2–4%, and 1–3%, respectively, 
represent less frequent alterations in lung cancer [27]. 
Future studies are needed to identify the association of 
other genomic alterations besides KRAS and EGFR and 
cachexia development. Interestingly, an experimental mouse 
model of human anaplastic thyroid cancer developed from 
injection of a cell line harboring BRAFV600E and TP53R248G 

Table 4. Association between tumor mutation analysis and weight loss.

Variable Patients
Mean weight 
loss, % P

EGFR mutation 0.6032
Yes 55 7.7
No 156 8.5

KRAS mutation 0.0011
Yes 52 11.4
No 117 6.0

Anti-EGFR TKI therapy in the 
EGFR-mutant group

0.3036

Yes 22 9.4
No 33 6.6



2646 © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. 

M. Shiono et al.Metastases and Cachexia in Lung Cancer

mutations developed both metastasis and cachexia. Future 
studies are warranted to identify whether a similar link 
between BRAFV600E and cachexia exists in patients.

It can be envisioned that cancer progression impacts skeletal 
muscles by diverse mechanisms. In experimental models, 
Waning et al. showed that the bone metastatic tumors induce 
osteolysis and cause TGF beta release into the circulation 
[28, 29]. TGF beta induces intracellular calcium leak and 
skeletal muscle weakness. Other soluble factors such as tumor-
derived parathyroid hormone-related protein (PTHrP) in a 
lung cancer model mediates energy wasting in adipose tissue 
and affects skeletal muscle mass and strength [30]. Release 
of extracellular vesicles or exosomes in cancer is yet another 
potential mechanism which could link systemic effects of 
metastasis with skeletal muscle wasting. Exosome release and 
function has been implicated in the premetastatic and meta-
static states of cancer progression [31–33]. He et  al. [34] 
showed how tumor-derived microvesicles could impact distant 
skeletal muscle by inducing apoptosis of skeletal muscle cells 
and muscle mass loss. Future experimental studies are needed 
to mechanistically define the contribution of metastasis to 
cachexia development.

In our present retrospective study, there are limitations 
that need to be considered. First, important parameters 
such as muscle composition and function could not be 
determined. Impaired muscle function has been recently 
linked to excess TGF beta released from bone metastasis 
in mouse models [28], suggesting that these might be 
relevant parameters to test in future prospective trials 
linking metastasis and cachexia. Second, BW measurement 
may not accurately reflect body composition. Intravenous 
infusions can lead to increased BW (volume) and even 
fluid overload [35]. Similarly, lung cancer patients may 
develop malignant pleural or peritoneal effusions, leading 
to an increase in overall BW, even if there is loss of 
muscle and fat stores. Hypoalbuminemia can lead to third 
spacing of fluid, owing to a decrease in oncotic pressure 
in the face of maintained vascular hydrostatic pressure, 
and can raise BW. However, despite these potential con-
founders, our study shows a consistent strong relationship 
between weight loss and metastasis. Two other parame-
ters—obesity masking loss of muscle mass and cachexia 
symptoms preceding measured weight loss—could also 
lead to underestimation of the influence of cachexia on 
QOL and survival among cancer patients [6]. Such limita-
tions could not be addressed in this retrospective study 
but are being pursued in our prospective studies on 
metastasis and cachexia using longitudinal image analysis, 
following published studies that used imaging modalities 
to characterize cachexia [36–38].

In summary, our retrospective clinical analysis of patients 
with lung cancer suggests that there is a link between 
metastasis and cachexia that is associated with the inherent 

tumor characteristics, rather than with treatment. Our 
broad research goal is to develop a comprehensive diag-
nostic/predictive platform that integrates molecular and 
clinical features of lung cancer with metastatic ability and 
risk of cancer cachexia. The present findings lay the ground-
work for ongoing investigations and provide the rationale 
for future prospective and experimental studies for further 
understanding of and ability to treat lung cancer cachexia.
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