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Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians;
there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial
wavefunction approximating the ground state is available, as often happens for many problems in physics
and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by
means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by
implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg
spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high
accuracy for the eigenenergies (to the 1025 decimal digit). The ground-state fidelity was distilled to be more
than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows
that quantum simulators can better leverage classical trial wave functions than classical computers

Q
uantum computers can solve many problems much more efficiently than a classical computer1. One
general class of such problems is known as quantum simulation2, 3. In this class of algorithms, the
quantum states of physical interest are represented by the quantum state of a register of controllable

qubits (or qudits), which contains the quantum information of the simulated system. In particular, one of the
most challenging problems in quantum simulation is the ground-state preparation problem4 of certain
Hamiltonians, H, which can be either classical or quantum mechanical. Remarkably, every quantum circuit5,
and even thermal states6, 7, can be encoded into the ground state of certain Hamiltonians, and purely mathemat-
ical problems, such as factoring8, can also be solved by a mapping to a ground-state problem.

On the other hand, the ground-state problem has profound implications in the theory of computational
complexity9. For example, finding the ground-state of a general classical Hamiltonian (e.g. the Ising model) is
in the class of NP (nondeterministic polynomial time) computational problems, meaning that while finding the
solution may be difficult, but verifying it is efficient when employing a classical computer. The Ising model with
nonuniform couplings is an example of an NP-problem (more precisely, NP-complete)10. The quantum gen-
eralization of NP is called QMA (Quantum Merlin Arthur)5. In this class, the verification process requires a
quantum computer, instead of a classical computer. An example of a problem in QMA is the determination of the
ground-state energy of quantum Hamiltonians with two-body (or more) interaction terms11. So far, there is no
known algorithm, classical or quantum, that can solve all problems efficiently in NP or QMA.

Most of the problems in physics and chemistry, however, exhibit special structures and symmetries, that leads
to methods for approximating the ground state with trial states jyTæ. For example, in quantum chemistry12, the
Hartree-Fock mean field solution often captures the essential information of the ground state je0æ for a wide range
of molecular structures. However, the applicability of these trial states will break down whenever the fidelity,

F: e0 yTjh ij j2, ð1Þ

quantified by the square of the overlap between the trial state jyTæ and the exact state je0æ, is vanishingly small.
Specifically, if the fidelity of a certain trial state for a particular many-body problem is small, for example, about F
5 0.01, it might be considered as a ‘‘poor’’ approximation to the exact ground state13, when used as an input state
in classical computation. For quantum computing, however, the same trial state can be a ‘‘good’’ input, as one only
needs to repeat the ground-state projection algorithm, e.g., by Abrams and Lloyd14 (see below), for about O(100)
times, which is computationally efficient especially when the Hilbert space of the many-body Hamiltonian is
exponentially large. This is the motivation behind our experimental work.
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Several theoretical studies15–18 along this line of reasoning have
been carried out for various molecular structures. Here we performed
an experimental realization of this idea with one of the simplest, yet
non-trivial, physical systems, namely the Heisenberg spin model in
an external field. Our goals for this study are: (i) to determine the
eigenvalues of the ground state, and (ii) to maximize, or to distill, as
much as possible the ground-state from a trial state, which contains
a finite (F 5 0.5) ground-state fidelity. For (i), we employed a revised
version of the iterative phase estimation procedure to determine
the eigenvalues of the Hamiltonian (to the 1025 decimal digit). Sub-
sequently, we apply a state-filtering method to extract the ground-
state fidelity from the final state to achieved (ii). For this study, we
specifically chose three cases corresponding to three different values
of external field in the simulation, namely h 5 0, h 5 0.75hc, and
h 5 1.25hc, where hc is the critical value of the external field at
which the ground-state and the first excited state cross each other
(see Fig. 1). This is a singlet-triplet switching, and our experimental
simulation captures the change of the ground state around this crit-
ical point reliably.

Finally, we note that the approach employed here is different
from the method for preparing many-body ground states based on
the adiabatic evolution19–26, where the initial state is usually chosen
as the ground state of some simple Hamiltonian, which can be pre-
pared efficiently, instead of the trial states, which aim to capture the
essential physics of the exact ground state. The performance (com-
plexity) of the adiabatic approach depends on the energy gap along
the entire evolution path. In our approach, the performance depends

on the fidelity of the initial state and the energy gap of the
Hamiltonian. Furthermore, in these experiments (except Ref. 23),
the eigen-energy and the ground state of the Hamiltonian are not
usually determined simultaneously, and therefore, cannot be consid-
ered as completely solving the ground-state problem4. In spite of
the differences between these two approaches, it is possible that the
adiabatic method can be incorporated in our procedure to further
enhance the ground-state fidelity of the final state. However, this
possible extension is not considered here.

This paper is organized as follows: first, we will provide the theor-
etical background for this experimental work. Then, we define the
Hamiltonian to be simulated and the choice and the optimization
of the initial state. Next, we outline the experimental procedures.
Finally, the experimental results will be presented and analyzed by
a full quantum state tomography. We conclude with a discussion of
the results and the sources of errors.

Results
Theoretical background. The central idea behind this experimental
work has a counterpart in the time-domain classical simulation
methods27. In the context of quantum computing, the method was
introduced by Abrams and Lloyd14. Specifically, it was shown that
for any quantum state jyæ 5 Skak jekæ which has a finite overlap jakj2
(or fidelity) with the eigenstates jekæ of a simulated Hamiltonian,
H, the phase estimation algorithm28 will map, with high probability,
the corresponding eigenvalues to the states of an ancilla quantum
register,

yj i 000 . . . 0j i?
X

k

ak ekj i Ekj i: ð2Þ

Consequently, a projective measurement on the register qubits will,
ideally, collapse the quantum state of the system qubits into one of
the eigenstates. By analyzing the measurement outcome, one can
determine the ground-state eigenvalue E0, and even project the exact
ground state je0æ.

Given any trial state jyTæ, the performance of the algorithm
depends on the overlap ja0j2, which can be maximized using many
classical methods, such as using advanced basis sets29, matrix product
states (MPS) representations30, or any suitable variational method.

The Hamiltonian and the optimized input state. The method
proposed here can be generalized to apply to more general Hami-
ltonians, but as an example, we will employ the Heisenberg
Hamiltonian with an external magnetic field pointing along the z-
direction:

H~J Ia
x Ib

xzIa
y Ib

y zIa
z Ib

z

� �
zh Ia

z zIb
z

� �
, ð3Þ

where Ik
a~

1
2 sk

a, and sk
a is one of the Pauli matrices (a 5 x ,y, z) acting

on the k 5 a, b spin. On the other hand, in general, there is no
restriction to the choice of a trial state, as long as it is not ortho-
gonal to the ground state (in this case, the ground state algorithm
necessarily fails). To mimic the behavior of the commonly-employed
trial states of more general systems, we require our trial state to satisfy
the following conditions: (a) that it contains one or more parameters
which can be adjusted to minimize the energy ÆHæ, and that this
procedure usually does not lead to the exact ground state, and (b)
that it may capture only part of the vector space spanned by the
eigenstates of the Hamiltonian H. One possible choice that fulfills
the above criteria is the following variational state which contains
two adjustable parameters, h and Q,

y h,Qð Þj i~ 1ffiffiffi
2
p hj iz 1ffiffiffi

2
p Qj i : ð4Þ

Here, jhæ ; cosh j10æ 1 sinh j01æ and jQæ ; cos Q j00æ 1 sinQ j11æ.
In general, the optimized states for each given pair of (J, h) are
not necessarily the same. However, in our case, we found that the

Figure 1 | (Color online) (a) The energy eigenvalues versus external
magnetic field of the Heisenberg Hamiltonian (defined in equation (3)).
The optimized state | y*æ ; | y(2p/4, p/2)æ (see equation (4)) (black line)

contains a linear combinations of the two eigenstates (red and blue lines)

only. (b) The three-qubit NMR quantum simulator consists of a sample of
13C-labeled Diethyl-fluoromalonate dissolved in2H-labeled chloroform.

The nuclear spins (circled) of13 and1H are used as the system qubits and

that of19F is the probe qubit. The parameters of the NMR couplings of this

molecule are listed in the table.

www.nature.com/scientificreports
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optimized state jy*æ ; jy (2p/4, p/2)æ can minimize the energy for
all values of h and J . 0. Moreover, it turns out that this optimized
state captured two out of the four eigen-energies (see Fig. 2a) only;
therefore, a single probe qubit is sufficient to resolve them (for more
general cases, see the section in Methods). We note that the fidelity F
(cf. equation (1)) of the state jy*æ with the exact ground state je0æ is
exactly 50%. However, the scheme works equal well even for smaller
values of the initial fidelity, as long as the peaks in the spectrum can
be resolved from the background noise (cf. Fig. 3).

Outline of the method. This algorithm starts with a set of system
qubits initialized in the state jy*æ 5 Sk ak jekæ and a single ‘‘probe’’
qubit in the 0j iz 1j ið Þ

� ffiffiffi
2
p

state. For different times t, a controlled
U(t) gate, where U (t) ; e2iHt (B5 1), is then applied, resulting in the
following state: 1

� ffiffiffi
2
p� �P

kak 0j ize{ivkt 1j ið Þ ekj i, where vk;Ek.
The reduced density matrix of the probe qubit,

rprobe tð Þ~ 1
2

1
P

k akj j2eivktP
k akj j2e{ivkt 1

 !
, ð5Þ

contains the information about the eigenvalues in its off-diagonal
matrix elements, which can be measured efficiently in an NMR setup
(see Appendix31). A classical Fourier analysis on the off-diagonal
matrix elements at different times yields both the eigenvalues
vk and the overlaps jakj2. To obtain the value of vk with high
accuracy, a long time evolution of the simulated quantum state is
usually needed. However, for Hamiltonians with certain symmetries,
we can perform a simplified version of the iterative phase estimation
algorithm (IPEA), which is similar but not identical to the ones
performed previously in Ref. 23, 32. We will explain the details of
this IPEA in the Method Section.

Once the ground state eigenvalue E0 of the Hamiltonian H
is determined, one can, for example, employ the state-filtering
method33 to isolate the corresponding ground state je0æ from the rest.
The resulting state is of the form: a0 je0æ j00…0æ 1 …, where the
other state vectors omitted contain ancilla states that are orthogonal
to j00…0æ. If we now perform a projective measurement on the
ancilla qubits, the probability for projective the system qubits to
the ground state is ja0j2. Therefore, this procedure solves the
ground-state problem when trial wave functions are available.

Figure 2 | (Color online) (a) The quantum circuit diagram for the experiment. The explicit construction of the unitary operators W and V(t) is detailed

in the Appendix31. The quantum gates enclosed in a box in (a) (and pulse sequences in (b)) generate the input state | y*æ, which is an optimized variational

state with respect to the Hamiltonian defined in equation (3). (b) The entire pulse sequence corresponds to the quantum circuit diagram for the case of

zero external field, h 5 0. The complexity and the lengths of the pulse sequences for the other cases, namely h 5 0.75hc and h 5 1.25hc, are roughly the same

as this pulse sequence.

Figure 3 | (Color online) The absolute amplitude of the eigenvalue
spectra g(E) of the Heisenberg Hamiltonian as defined in equation (3).
These are obtained for three different values of the external magnetic field

h, namely h 5 0, h 5 0.75hc, and h 5 1.25hc, where hc is the critical field at

which the ground state becomes degenerate. The shaded region highlights

the location the the singlet state depicted in Fig. 1. The arrows indicate the

direction of the peak shift when the simulated external field h is increased.

The blue and red dots indicate the quantum states represented by the peak

signals (cf. Fig. 1).

www.nature.com/scientificreports
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Experimental procedure. The experiments were carried out at room
temperature on a Bruker AV-400 spectrometer. The sample we used
is the 13C-labeled Diethyl-fluoromalonate dissolved in2H-labeled
chloroform. This system is a three-qubit quantum simulator using
the nuclear spins of 13C and1H as the system qubits to simulate the
Heisenberg spins, and the19F as the probe qubit in the phase estima-
tion algorithm (see Fig. 1b). The internal Hamiltonian HNMR of this
system can be described by the following:

HNMR~
X

j[ a,b,cf g
2pvjI

j
zz

X
jvk[ a,b,cf g

2p JjkIj
zIk

z , ð6Þ

where nj is the resonance frequency of the jth spin and Jjk is the scalar
coupling strength between spins j and k, with Jab 5 160.7 Hz, Jbc 5

2194.4 Hz, and Jac 5 47.6 Hz. The relaxation time T1 and dephasing
time T2 for each of the three nuclear spins are tabulated in Fig. 1a.

The experimental procedure consists of three main parts: I. State
initialization (preparing the system qubits as jy*æ, probe qubit as j0æ),
II. Eigenvalue measurement by iterative phase estimation, and III.
Quantum state tomography. The state initialization part is rather
standard and we leave the details of it to the Appendix31. Part II is
implemented with a quantum circuit as depicted in Fig. 2 (see the
section in Methods for the detailed circuit construction). The probe
qubit is measured at the end of the circuit (see also equation (5)).

The resulting Fourier spectra for various cases are shown in Fig. 3.
The positions of the peaks indicate the eigenvalue of the Hamiltonian
H. Although the peaks look sharp, the errors are in fact about 22%.
However, we are able to reduce the errors to less than 0.003% (see
Fig. 4) by five steps of the iterative phase estimation algorithm which
is described in the Method section.

Experimental Results. Once the two eigenvalues (E0 and E1) are
accurately determined by the IPEA, we can identify the eigenvectors
(ground state je0) and excited state je1æ) by the same quantum circuit
as shown in Fig. 2a. The difference is that, the time t, in the controlled
rotation U (t) ; e2iHt is chosen to be t 5 p/(E1 2 E0). This allows us
to obtain the following state,

1ffiffiffi
2
p e0j i 0j i{ e1j i 1j ið Þ : ð7Þ

This state is very similar to the one discussed in equation (2). The
important point is that, now each eigenstate is tagged by the two
orthogonal states of the ancilla qubit, and can be determined sepa-
rately, e.g. through quantum state tomography.

To obtain the state in equation (7), starting from the product state
jy*æ j0æ, we first prepared the probe state as a superposition state
with a phase eiE0t ‘‘preloaded’’ in it, i.e., 0j izeiE0t 1j ið Þ

� ffiffiffi
2
p

. Next,
after applying the controlled-U(t) to the trial state jy*æ 5 a0je0æ 1

a1je1æ, we have,
1ffiffiffi
2
p a0 e0j i 0j iz 1j ið Þz 1ffiffiffi

2
p a1 e1j i 0j ið Þzeip 1j i : ð8Þ

Subsequently, we apply a single-qubit rotation gate Rc
y {p=2ð Þ,

which maps 0j iz 1j ið Þ
� ffiffiffi

2
p

? 0j i and 0j i{ 1j ið Þ
� ffiffiffi

2
p

?{ 1j i, we
then obtain the final state in equation (7).

Finally, the standard procedure of quantum state tomography34

was performed on the final states (equation (7)) for the cases h 5

0, h 5 0.75hc, and h 5 1.25hc, shown respectively in Fig. 7 (b)–(d).
The corresponding results of the ground state (i.e. the je0æ part in
equation (7)) are shown in Fig. 5 (e)–(g). These density matrices
allow us to obtain all information about the experimentally deter-
mined ground states. Fig. 5a shows the improvement of the magnet-
ization M of the final states, as compared with the initial state. The
inset figure shows that the magnitude of the deviations (blue bars)
from the theoretical values are always smaller then that (red bars) of
the trial state.

The quality of the final state rexp in the experiment is quantified by
the fidelity F 5 Æe0jrexp je0æ (cf. equation (1)), and the projection35

P~F
� ffiffiffiffi

Q
p

, where Q~Trðr2
expÞ is the purity of rexp. The results are

shown in Fig. 5b. Note that the reduced density matrices (e),(f),(g)
have better fidelities than that of the original density matrices
(b),(c),(d). In Fig. 6, the weights (probabilities) of the eigenstates of
H in the final states are shown. Note that, as mentioned above, the

Figure 4 | (Color online) Experimental results of the iterative phase estimation algorithm (IPEA) for improving the accuracy of the measured ground-
state energy. (a) and (b) There are five iterations performed; each of them improves one digit of accuracy in the eigenvalues. For example, consider the

ground state, after the first iteration (red curve), the peak lies between 20.1 and 20.2; this means that the first digit of eigenvalue should be 20.1. After

five iterations, the value of groundstate energy is determined to be 20.11936(3), with a precision of 1025 in units of 2pJ. (c) A table listing the

improvement of the numerical values (digits in red represent uncertainty). (d) Graphical visualization of the results in (c). The theoretical curve results

from the improvement of the precision by a factor of 1/10 for each iteration.

www.nature.com/scientificreports
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trial state captures only two eigenstates. Due to experimental errors,
other eigenstates also showed up in the spectral decomposition. This
contributes to the deviation of the magnetization (M 5 0 for the
singlet state) as well. Note that the singlet-triplet switching (cf.
Fig. 1), i.e., from Fig. 6c to 6d, is reliably captured.

Discussion
In this experiment, the random fluctuations of the NMR signals in
this experiment are negligible. We are able to determine the eigen-
values to a very high accuracy, using the iterative phase estimation
algorithm (IPEA). The major source of errors (about 10% of the

fidelity) of the experiment comes from the second step of the pro-
cedure where the overall pulse sequence to construct the final state
equation (7) is lengthy, and therefore is dominantly a T2 error. The
time spent for this operation is about 1/10 of T2 (see the Appendix31).
Additional errors come from the measurement (tomography), and
the inhomogeneity in the RF pulses and the external magnetic field.
If these factors can be overcome, a further increase of fidelity is
possible by using the final state of this experiment as the input state
for another iteration of the similar distillation procedure (see the
section in Methods for details).

In conclusion, we have experimentally demonstrated a method to
solve the quantum ground-state problem using an NMR setup. This
is achieved by distilling the exact ground state from an input state,
which has 50% overlap with the ground state. The eigenvalues were
determined to a precision of the 1025 decimal digit, after five itera-
tions of the phase estimation procedure. Then, the final states are
distilled to high values of fidelity. The method we developed in this
experiment is scalable to more general Hamiltonians, and not limited
to NMR systems. This result confirms that variational methods deve-
loped for classical computing could be a good starting point for
quantum computers, opening more possibilities for the purposes
of quantum computation and simulation.

Methods
State initialization. In this experiment, we used a sample of the 13C-labeled Diethyl-
fluoromalonate dissolved in the 2H-labeled chloroform as a three-qubit computer,
where the nuclear spins of the 13C and the1H were used as the system qubits, and that
of the 19F was used as the probe qubit. The structure of the molecule is shown in Fig. 1a
of the main text, and the physical properties are listed in the table of Fig. 1b.

Starting from the thermal equilibrium state, we first created the pseudo-pure state
(PPS)

r000~ 1{Eð ÞII=8zE 000j i 000h j ð9Þ

using the standard spatial average technique27. Here, E<1025 quantifies the strength
of the polarization of the system, and II is the 8 3 8 identity matrix. Next, we prepared
the probe qubit to the state 1ffiffi

2
p 0j iz 1j ið Þ by a pseudo-Hadamard gate Rc

y p=2ð Þ, where,

Rj
a hð Þ:e{ihIj

a : ð10Þ

Here, a 5 x, y, z, is a rotation operation applied to the qubit j.
Finally, the system qubits are prepared to the initial state,

y�j i~
1
2

01j i{ 10j ið Þz 1ffiffiffi
2
p 11j i , ð11Þ

by applying two single-qubit rotations and one controlled-rotation.

Construction of the controlled-U(t). The controlled-U(t) in the phase estimation
algorithm (see Fig. 2a) is implemented in the following way: since all the terms in the
Heisenberg Hamiltonian,

H~J Ia
x Ib

x zIa
y Ib

y zIa
z Ib

z

� �
zh Ia

z zIb
z

� �
, ð12Þ

commute with each other, we decompose the time evolution operator T(t) ; e2iHt into
three parts:

T tð Þ~Vx tð ÞVyz tð ÞLz tð Þ , ð13Þ

where

Vx tð Þ:e{iJIa
x Ib

x t , ð14Þ

Vyz tð Þ:e{iJ Ia
y Ib

y zIa
z Ib

zð Þt , ð15Þ

Lz tð Þ:e{ih Ia
z zIb

zð Þt : ð16Þ
The quantum circuit diagram for simulating the operations controlled-Vx and

controlled-Vyz is shown in the Appendix31. To simulate controlled-Vx(t), we set,

V t=2ð Þ~Vx t=2ð Þ and Wy~e{ipIy : ð17Þ

(alternatively, Iz); to simulate controlled-Vyz(t), we set

V t=2ð Þ~Vyz t=2ð Þ and Wx~e{ipIx : ð18Þ
Note that the control is ‘‘on’’ when the probe qubit is in the j0æ state. In this case, the

first three quantum gates cancel the last gate V(t/2), making it effectively an identity
gate. When the controlling qubit is in the ‘‘off’’ state, this circuit executes two V(t/2)
gates.

Figure 5 | (Color online) Results from quantum state tomography. (a)

Magnetization I1
z

� 	
z I2

z

� 	
for the initial states (red dotted line) and the

final states (crossed circles) for h 5 0, h 5 0.75hc, and h 5 1.25hc. The inset

shows the absolute errors of the initial state (red bars), and the three

experimental values (blue bars). (b) The ground state fidelity (green) and

projection (yellow) for the experimentally determined states (a)-(g) in

Fig. 7. The fidelity of the initial state (blue) is included for comparison.

Figure 6 | (Color online) Spectral decomposition of the final states.
Panels (a)-(d) show the weights (probability) of the eigenstates,

S~ 01j i{ 10j ið Þ
� ffiffiffi

2
p

, T11 5 | 00æ, T~ 01j iz 10j ið Þ
� ffiffiffi

2
p

, and T21 5 | 11æ,
of the Heisenberg Hamiltonian in the initial and final states.

www.nature.com/scientificreports
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Here we exploited the symmetry of the two-spin Heisenberg Hamiltonian H (Eq.
(12)), which allows us to simplify the simulation of the time evolution operator by
using the decomposition in Eq. (13). To extend this method for three or more spins,
we will need to simulate the full (controlled) unitary operator by breaking it up into
small or simulable pieces, a procedure known as Trotterization3. This, in principle, is
efficient for quantum computers3. In our setup, however, long time simulation is still
limited by decoherence. Therefore, we avoid the problem by performing an iterative
phase estimation algorithm (IPEA), which effectively maps long-time evolution to a
process that requires a shorter evolution time. This idea follows from the special
nature of the two-qubit Heisenberg Hamiltonian and will be elaborated in the IPEA
section.

Measurement of the probe qubit. Here we explain the measurement method of the
NMR signal of the probe qubit (see equation (5)). Denote the off-diagonal elements of
rprobe(t) as,

Mtj jeiwt :
X

k

akj j2eivk t : ð19Þ

The phase shift wt can be obtained by using the method of quadrature detection
which serves as a phase detector. By measuring the integrate value of the peak in NMR
spectrum, we can obtain the value of jMtj.

To calibrate the system, we adjust the phase of the NMR spectrum such that w0

becomes the reference phase, and normalize its peak intensity as 1. Some of the
experimental data of the spectra are shown in the Appendix31 for the case of h 5 0, at
t 5 0.16/J and 6.4/J.

By simulating the Hamiltonian evolution for different times, a range of frequency
spectrum of Mtj jeiwt can be obtained by the method of discrete Fourier transforma-
tion (DFT). The Fourier-transformed spectra are shown in Fig. 3 for the cases of h 5

0, 0.75hc, and 1.25hc, respectively. For each spectrum, totally 128 data points were
collected.

Iterative phase estimation algorithm (IPEA). To improve the resolution of the
energy eigenvalues, the information stemming from long time evolution of the
simulated state is needed20. Fortunately, the required resources can be significantly
reduced by the IPEA approach. This is due to the symmetry of the Hamiltonian: since
all the terms in the Hamiltonian (equation (3)) commute with each other, they can be
simulated individually, i.e.,

e{iHt~e{iJIa
x Ib

x te{iJIa
y Ib

y t e{iJIa
z Ib

z t e{ih Ia
z zIb

zð Þt ð20Þ

for all times t. The last term e{ih Ia
z zIb

zð Þt corresponds to two separate local rotations,
whose implementation is straight-forward (see the Appendix31). The other terms
e{iJIa

a Ib
a t are equivalent up to some local unitary rotations, and their eigenvalue spectra

of Ia
a Ib

a , which are 1/4 and 21/4, are the same; the eigenvalues are symmetrical about
zero. This means that, in order to simulate each term for a time interval t, we can
always find a shorter time t such that e{iJIa

a Ib
a t~e{iJIa

a Ib
a t , where t 5 8np/J 1 t for some

non-negative integer n which is determined by the condition: 0 # Jt # 8p.
Now, denote the eigenvalue, vk ; 2pJ 3 0.x1x2x3…, by a string of decimal digits

{x1,x2,x3…}. The first digit x1 can be determined by a short time evolution by a probe
qubit described in equation (5). Once x1 is known, the second digit x2 can be itera-
tively determined by simulating the evolution for ten times longer than the previous
ones:

10|vkt~2p Jt|x1:0z2p Jt|0:x2x3 . . . ð21Þ
Note that the first term on the right hand side is known. The second term is now

amplified, and can be resolved by the probe qubit. This means that the eigenvalue vk

can then be determined to two digits of precision. By repeating this scheme iteratively
for x3 and so on, the eigenvalue vk can be determined subsequently for one digit after
the other (cf. Fig. 4). The accuracy of the eigenvalues is improved from about 22%
to about 0.003%. The upper bounds of errors of eigenvalues are shown in Fig. 4b.
We note that in the IPEA performed in Refs. 23, 32, the final unitary matrices are

Figure 7 | (Color online) Experimental results from the quantum state tomography procedure (real parts are shown, imaginary parts shown in the
Appendix31). (a) The initial state | y*æ. (b),(c), and (d) Three final states (equation (7)) for the cases, respectively, h 5 0, h 5 0.75hc, and h 5 1.25hc. (e),(f),

and (g) The first 4 3 4 section of each density matrix above (after re-normalization), in the subspace where the probe qubit is projected to the | 0æ state.
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decomposed directly for each value of t. Therefore, one can in principle determine the
eigenvalues to an arbitrary accuracy. However, the resources required for decom-
posing the unitary matrices grow exponentially with the system size; the methods
implemented there are certainly unrealistic for larger systems. Here, we exploited the
symmetry of the Hamiltonian, and simulate the time evolution without performing
the decomposition of the unitary matrices. The accuracy of the IPEA is limited by
some natural constraints. The details about the limitation of this method are dis-
cussed in the Appendix31.

Generalization to the cases of multiple eigenvalues. In this experiment, we have
chosen the case of the trial state jy*æ that captures two out of four eigenstates of the
two-spin Hamiltonian. Therefore, we can use a single qubit (two states) to resolve the
two distinct eigenvalues, and map the final state into the form defined in equation (7),
which is then analyzed by a quantum state tomography to extract the information
about the ground state je0æ.

In general, a trial state may capture more than two eigenvalues. In this case, our
procedure needs to be generalized. However, there is nothing fundamentally new,
except for a more laborious repetition of the same procedures. This is the reason we
decided to work on the specific case of the trial state being the linear combination of
two eigenstates only.

To explain the details of how it works, we assume the ground-state energy of H is
unique. Define the first excited state as je1æ. Then, any trial state can be decomposed
into the following form:

y�j i~a0 e0j iza1 e1j iza2 e2j i , ð22Þ
where ja0j2 1 ja1j2 1 ja2j2 5 1, and je2æ represents the linear combination of all

higher energy states captured by jy*æ. Then, we perform the phase estimation algo-
rithm, using a single probe qubit (cf. equation (5)), and obtain all of the eigenvalues.
Performing the same procedure for getting equation (7), we can obtain the following
state:

b0 e0j izb20 e2j ið Þ 0j iz b1 e1j izb21 e2j ið Þ 1j i, ð23Þ

where jb0j2 1 jb1j2 1 jb20j2 1 jb21j2 5 1. Now, if we perform a state tomography, and
extract the first part of the state, we obtain a new state

b0 e0j izb20 e2j i ð24Þ

which contains no eigenstate je1æ. If we use this new state as the new trial state for
another cycle, we get one less eigen-energy. Therefore, we can in principle eliminate
the higher eigenstates one after each other, and obtain the ground state in the end,
using a single probe qubit.
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