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Abstract: Chagas disease is a major neglected tropical disease, transmitted predominantly by tri-
atomine insect vectors, but also through congenital and oral routes. While endemic in the Americas,
it has turned into a global disease. Because of the current drug treatment limitations, a vaccine
would represent a major advancement for better control of the disease. Here, we review some of
the rationale, advances, and challenges for the ongoing development of a vaccine against Chagas
disease. Recent pre-clinical studies in murine models have further expanded (i) the range of vaccine
platforms and formulations tested; (ii) our understanding of the immune correlates for protection;
and (iii) the extent of vaccine effects on cardiac function, beyond survival and parasite burden. We
further discuss outstanding issues and opportunities to move Chagas disease development forward
in the near future.
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1. Background

Chagas disease is a major neglected tropical disease, transmitted predominantly by
triatomine insect vectors, but also through congenital and oral routes. It is endemic in the
Americas, from southern Brazil and Chile to the US, but human migrations have turned it
into a global disease with a significant number of cases in non-endemic regions such as
Canada or Europe, among others [1,2]. There are at least 6 million cases in the Americas [3],
but these estimates suffer from important uncertainties, as disease surveillance and report-
ing are highly heterogeneous among countries, and the disease burden could be higher.
For example, recent estimates for Mexico, one of the most affected countries, range from
less than 1 million [3] up to over 4 millions cases [4], and uncertainty is significant with
potential publication bias [5].

Chagas disease control has so far relied on two main strategies—vector control and
patient treatment. Vector control is mostly based on indoor spraying of residual insec-
ticides to eliminate or at least reduce domestic triatomine populations inside dwellings,
thereby reducing the incidence of new human cases. Despite some key achievements
to control major vector species, and even eliminating transmission caused by Triatoma
infestans and Rhodnius prolixus in some countries/regions [6,7], the continued presence
of many other vector species able to transiently invade houses and maintain a low-level
transmission implies a continued risk for human transmission and a challenge for effective
vector control [8]. Therefore, there is growing recognition that a complete interruption of
transmission to humans is not a feasible goal, and modeling suggests that vector control
should be combined with other efforts to improve access to better care for patients in
order to effectively reach the goals of the World Health Organization (WHO) 2020 London
declaration, which call for a 100% certified interruption or control of Chagas disease [9].

The disease develops as an initial acute phase associated with a high parasitemia
and non-specific signs of infection. Next, patients enter a chronic phase that is initially
asymptomatic, with an apparent control of the parasitemia. However, 20−40% of patients
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will slowly develop clinical manifestations many years after the initial infection, the most
common of which is chronic Chagasic cardiomyopathy (CCC). CCC is characterized by
arrhythmias of increasing severity, leading to cardiac failure and death [1,10,11]. Other clin-
ical manifestations include megaesophagus and megacolon, affecting about 10% of patients.
The treatment of infected patients with trypanocidal drugs is being promoted to reduce
morbidity and mortality associated with Chagas disease [10]. Benznidazole and nifurtimox
are the two drugs of choice, and a 60-day treatment regimen is required for benznidazole,
while a 60–90-day treatment regimen is required for nifurtimox. Such prolonged treat-
ment courses present a logistic and economic burden in vulnerable populations where
healthcare is limited. Both drugs are also associated with side effects that can be very
severe, leading to frequent treatment interruptions [12,13]. Treatment is contraindicated in
pregnancy and for patients with kidney or liver disease. Furthermore, treatment efficacy is
questionable in the chronic stage of the disease, as it can reduce the blood parasite load but
does not improve cardiac function [14–16]. Indeed, almost 20% of CCC patients will die
within five years following their cardiac diagnosis, despite the efficacy of the benznidazole
clearance of trypanosomes in the blood [15,16]. Thus, patient care is often only palliative,
and significant mortality is observed [17–19].

2. The rationale for a Vaccine

Based on the above, new drugs and/or alternative strategies are still needed to
improve the care of Chagasic patients, and a therapeutic vaccine would represent an
attractive opportunity. An initial target product profile for such a therapeutic vaccine has
been proposed [20]. It aims at preventing (desired target) or at least delaying (minimally
acceptable target) the progression of CCC in patients with indeterminate Chagas disease
(determined by antibody seropositivity), or in patients with early-stage evidence of clinical
CCC (as determined by antibody seropositivity and cardiac clinical manifestations), to be
used alone or in combination with drug therapy. An economic analysis of a therapeutic
vaccine alone showed that it is highly cost-effective and frequently saves costs under a wide
range of efficacy conditions by delaying CCC outcomes and side effects, and is also likely to
provide a positive return on investment [21]. Furthermore, its combined use with current
drugs could help bridging their toxicity gap, as it may allow for reducing drug doses
and the associated severe side effects without compromising treatment efficacy. Indeed,
modeling studies indicated that combining a therapeutic vaccine with a reduced dose drug
treatment would result in more patients completing the treatment and would prevent more
deaths than drug treatment alone [22]. Vaccines are economically dominant in a wide range
of conditions, even when reducing the risk of disease progression as low as 5% [22]. Thus,
it is expected that such a therapeutic vaccine would complement and help overcome the
shortcomings of current vector control and drug treatments.

Furthermore, this initial indication may be expanded, as multiple additional uses of a
vaccine have been proposed. Its potential use as a preventative vaccine is rather obvious
and is supported by multiple pre-clinical studies (see below), although there are some
concerns in terms of efficacy and cost-effectiveness that need to be considered. Nonetheless,
alternative uses for a preventative vaccine may be for dogs, as these are considered to
be a major domestic reservoir of the parasite, and they significantly increase the risk of
human infection in many countries, as well as epidemiological conditions [23–25]. Thus,
decreasing T. cruzi infection in dogs through vaccination may help reduce parasite domestic
circulation. Another potential indication of a vaccine could be the prevention of congenital
transmission [26]. Indeed, parasite transmission from an infected mother to her baby occurs
in about 5% of pregnancies, and parasitemia is a key risk factor for the transmission of
parasites [27,28]. Observational studies suggest that infected women treated at a young
age do not transmit the parasite when pregnant later in life [29–33], which has led to the
current recommendation of treating infected women of reproductive age [30,34]. Inducing
a decrease in parasitemia with a therapeutic preconceptional vaccine in these women
would thus be expected to reduce congenital transmission. Again, economic modeling
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confirmed that even a 25% efficacious vaccine would significantly reduce the number of
congenital cases and would be cost-effective [35]. In addition, it may also provide an easy
endpoint for the rapid clinical evaluation of vaccine efficacy, which could help accelerate
vaccine development [26]. Thus, these additional indications for a Chagas disease vaccine
further strengthen the rationale for its development.

3. Current Vaccine Platforms

An extensive variety of Chagas disease vaccine platforms have been tested in ani-
mal models over the years, ranging from live attenuated vaccines, DNA, recombinant
virus or bacteria, and recombinant proteins, with a diverse range of formulations and
adjuvants [36–38]. Initial studies served as a proof-of-concept to illustrate that controlling
T. cruzi infection in mouse models is possible by inducing an immune response against
parasite proteins. In the past few years, studies have further expanded (i) the range of
platforms and formulations tested, (ii) our understanding of the immune correlates for pro-
tection, and (iii) the extent of vaccine effects beyond survival and parasite burden (Table 1).
What emerges from these studies is that a substantial decrease in parasite burden (in the
blood, cardiac, and skeletal muscle tissues) and improved survival can be achieved in mice
through preventative vaccination with multiple vaccine platforms. A smaller number of
studies have also shown a similar effect for the therapeutic administration of a vaccine
in infected mice during the acute phase, as well as during the chronic phase. These re-
sults confirmed earlier proof-of-concept studies, but because of the diversity of methods
and animal models, direct comparisons of immunogenicity and efficacy are not feasible.
A notable new approach targets the immune response against an immunodominant α-Gal
glycotope from T. cruzi mucin surface glycoproteins, which induce high antibody levels in
Chagasic patients [39].

Table 1. Recent Chagas Disease Vaccine Platforms and Formulations.

Antigens
and Use

Adjuvants and
Delivery
Systems

Immune
Response

Efficacy
Against
Parasite

Efficacy
Against
Cardiac

Damage and
Dysfunction

References

Therapeutic vaccines

DNA

TcG2+TcG4,
therapeutic

during acute
phase

Plasmids or
nano plasmids

CD4+ and CD8+

producing
IFNg, PRF, and

GRZ

Decreased
parasite burden
in cardiac and
skeletal muscle

Decrease in
fibrosis in heart

and skeletal
muscle,

decrease in
oxidative stress

[40,41]

DNA

Cruzipain and
Chagasin

plasmids with
Salmonella

carrier,
therapeutic

during acute
phase

GM-CSF
expression

plasmid

Increased IFNγ

and antibodies

Decreased
parasite burden

in blood and
heart, and
increased
survival

Decreased
cardiac

inflammation
[42]

Peptides

10 peptide
epitopes
mixture,

therapeutic
during acute

phase

TLR4 agonist
(MPLA) Increased IFNγ

Decreased
cardiac parasite

burden,
increased
survival

N/A [43]
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Table 1. Cont.

Antigens
and Use

Adjuvants and
Delivery
Systems

Immune
Response

Efficacy
Against
Parasite

Efficacy
Against
Cardiac

Damage and
Dysfunction

References

Recombinant
proteins

Tc24, TSA-1 and
their optimized

variants,
therapeutic

during acute
phase

TLR4 agonists
(E6020, MPLA,

GLA), TLR9
agonist (CpG),
nanoparticles

Antibodies,
IFNγ, and

CD4+ and CD8+

activation

Decreased
cardiac parasite

burden,
increased
survival

Decrease in
cardiac

inflammation
and fibrosis

[44–47]

Recombinant
proteins

Tc24,
therapeutic

during chronic
phase

TLR4 agonists
(E6020)

High IFNγ and
low IL4, and
antibodies

Decreased
parasitemia

Decrease in
cardiac

inflammation
and fibrosis

[48]

Recombinant
proteins

Tc24-C4,
therapeutic

combined with
low dose

Benznidazole

TLR4 agonist
(E6020)

Increased IFNγ,
IL12, TNFa, IL2,

IL4 and IL10,
and CD4+ and

CD8+ T cell
activation

Decreased
parasitemia,

increased
survival

N/A [49]

Viral vectors

Recombinant
Adenovirus
expression

ASP2,
therapeutic

during acute
phase

TNFa, iNOS,
TLR4, and IL-10

expression in
the liver

Increased
survival,

decreased
parasite burden

in liver

N/A [50]

Viral vectors

Recombinant
adenovirus
expressing

ASP2 and TS,
therapeutic

during chronic
phase

IFNγ and CD8+

T cells
Increased
survival

Decreased
cardiac fibrosis

and
dysfunction

[51]

Preventative vaccines

Live parasites

Drug-cured
primary
infection,

preventative

N/A N/A

Sustained
decrease in

parasite burden
in all body

N/A [52]

Live parasites

Live attenuated
parasite

(inducible
expression of
alpha-toxin,

and cecropin
A), preventative

N/A

IFNγ, TNFa,
CD4+ and CD8+

T cell activation,
antibodies, and

NK cells

No detectable
parasites

Decrease in
cardiac

inflammation
[53,54]

Live parasites

Live attenuated
parasite (TCC

attenuated
strain),

preventative
short term

IFNγ

expressing
plasmid

Antibodies and
mixed Th1/Th2

response

Decreased
parasitemia and

increased
survival

N/A [55]
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Table 1. Cont.

Antigens
and Use

Adjuvants and
Delivery
Systems

Immune
Response

Efficacy
Against
Parasite

Efficacy
Against
Cardiac

Damage and
Dysfunction

References

DNA
TcG2+TcG4,
preventative
short term

Plasmids alone
or with

Trypanosoma
rangeli and/or

Quil A as
adjuvants

Antibodies,
CD4+ and CD8+

producing
IFNγ, TNFa,

and PRF

Decreased
parasite burden
in cardiac and
skeletal muscle

[56]

DNA

Cruzipain
plasmid,

preventative
short term

GM-CSF
plasmid

Antibodies and
DTH

Decreased
parasitemia,

increased
survival

Decreased
cardiac tissue

damage
[57]

DNA

Cruzipain, Tc52,
Tc24 plasmids,
preventative
short term

Salmonella
enterica carrier

Trypanolytic
antibodies,
DTH, IFNγ,

IL12, and IL10

Decreased
parasitemia,

increased
survival

Decreased
cardiac tissue
inflammation,

necrosis

[58]

Recombinant
proteins

Cruzipain
fused with

staphylococcal
superantigen,
preventative
short term

TLR9 agonist
(CpG)

Neutralizing
antibodies and

DTH

Decreased
parasitemia and

increased
survival

N/A [59]

Recombinant
proteins

Recombinant
Traspain,

Cruzipain and
ASP-2 fusion

protein,
preventative
short term

c-di-AMP
adjuvant
(STING
agonist)

Neutralizing
antibodies,

CD4+ and CD8+

T cell activation,
IFNγ, TNFa,
IL2, and IL17

Decreased
parasitemia and

increased
survival

Decreased
cardiac damage
(CK, CK-MB),

decreased
necrosis and

inflammation in
the heart and

skeletal muscle

[60]

Recombinant
proteins

Recombinant
Tc52 fragment,
preventative
short term

c-di-AMP
adjuvant
(STING
agonist)

Antibodies,
CD4+ and CD8+

T cell activation,
IFNγ, and IL17

Decreased
parasitemia and

increased
survival

N/A [61]

Recombinant
proteins

TcTASV,
preventative
short term

Unlipidated
Outer

Membrane
Protein

19 of Brucella
abortus

(U-Omp19) as
adjuvant

Trypanolytic
antibodies,

IFNγ, and IL17

Decreased
parasitemia and

increased
survival

N/A [59]

Recombinant
proteins

Enolase,
preventative
short term

Freund com-
plete/incomplete

adjuvant

Antibodies,
IFNγ, and IL2

Decreased
parasitemia and

increased
survival

Decreased
cardiac and

skeletal muscle
inflammation

[62]

Recombinant
proteins

Trans-Sialidase
fragment,

Preventative
short term

ISPA lipidic
cages,

ISCOMATRIX,
or Freund
adjuvant

Trypanolytic
antibodies,
IFNγ, CD4+

and CD8+ T cell
activation, Treg

activation

Decreased
cardiac parasite

burden,
increased
survival

Decreased
cardiac

inflammation
[63,64]
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Table 1. Cont.

Antigens
and Use

Adjuvants and
Delivery
Systems

Immune
Response

Efficacy
Against
Parasite

Efficacy
Against
Cardiac

Damage and
Dysfunction

References

Glycotope
αGal glycotope,

preventative
short term

TLR4 agonist
(Liposomal-

monophosphoryl
lipid A)

Trypanolytic
antibodies,

CD4+ and CD8+

T cell activation

Decreased
parasite burden

in multiple
tissues,

increased
survival

Decreased
cardiac

inflammation
and necrosis

[39]

Viral vectors

Recombinant
Adenovirus

and modified
Vaccinia

Ankara virus
expressing
ASP-2 and

Trans-sialidase,
preventative
vaccination

PBS

Decreased
parasite burden

during the
acute phase in

all body, but no
impact on
long-term

burden during
chronic phase

N/A [52]

Bacterial
vectors

Recombinant
Mycobacterium

bovis (BCG)
expressing

trans-sialidase
and cruzipain

fragments,
preventative
short term

Trypanolytic
antibodies, and

DTH, CD4+

expressing
IFNγ, IL17,

IL10, and CD8+

Increased
survival

Decreased
cardiac

inflammation
and fibrosis

[65]

Heterologous
prime-boost
combination

Salmonella
enterica

expressing
Traspain and

ASP-2

TLR9 agonist
(CpG)

Increased IFNγ,
IL17, low IL4,

CD4+, and
CD8+ T cell
activation

Decreased
parasite burden
in blood, heart

and skeletal
muscle, and

increased
survival

Decreased
inflammation
and improved

EKG

[66]

Heterologous
prime-boost
combination

Recombinant 80
kDa prolyl

oligopeptidase
(Tc80) and

plasmid DNA

TLR9 agonist
(CpG)

Increased IFNγ,
IL2, TNFa,
CD4+, and
CD8+ T cell
activation

Decreased
parasitemia,

and increased
survival

Decreased
cardiac

inflammation,
damage (CK
and CK-MB),

improved EKG

[67]

Heterologous
prime-boost
combination

Recombinant
Tc52 and

plasmid DNA
with Salmonella

carrier,
preventative
short term

TLR9 agonist
(CpG)

Trypanoplytic
antibodies,

Increased IFNγ,
IL10, CD4+,

and CD8+ T cell
activation

Decreased
parasitemia,

and increased
survival

Decreased
cardiac

inflammation
[68]

Heterologous
prime-boost
combination

TcG1, TcG2, and
TcG4 expression

plasmids and
recombinant

proteins,
preventative

long term

IL2 and
GM-CSF
plasmids

Increased IFNγ,
TNFa, CD4+

and CD8+ T cell
activation

N/A N/A [69]

PRF—perforin; GZN—granzyme; DTH—delated type hypersensitivity; TLR—Toll-like receptor; IL—interleukin; IFN—interferon; TNF—
tumor necrosis factor; EKG—electrocardiogram; N/A—not applicable.
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These studies have also confirmed the central role of IFNγ and the activation of
CD4+ and CD8+ T cells in mediating parasite control, and a balanced Th1/Th2 response
seems to provide a better outcome compared with a hyperpolarized response (Table 1).
Additional specific subpopulations of immune cells are also emerging as complementary
contributors that can mediate parasite elimination, including Th17 and NK cells, as well
as trypanolytic/neutralizing antibodies [53,59–61,65]. While the confirmation of earlier
results is encouraging, a major limitation of these approaches is that they remain limited
in the breadth of the immune response assessed. Therefore, more integrative approaches
from system immunology, such as those used for malaria, influenza, or yellow fever
vaccines [70–72], may help reach a more comprehensive understanding of responses to
vaccines and the correlates for protection against T. cruzi.

In terms of protection/prevention of tissue damage, several of these studies have
shown that vaccination can reduce cardiac damage and dysfunction, in addition to parasite
burden (Table 1). This is key because, as mentioned above, these are not necessarily corre-
lated, as drug treatment administered during the chronic stage of the disease in humans
can reduce the blood parasite burden, without improving cardiac function [14,15]. Delay-
ing damage or improving cardiac function is indeed a central goal of vaccines. For example,
an adenoviral vaccine expressing ASP-2 and TS [51], a DNA vaccine encoding TcG2 and
TcG4 [40,41], or a recombinant Tc24 vaccine [48] can prevent the development of fibrosis
when administered as therapeutic vaccines following infection. Similarly, the preventative
vaccination with recombinant Mycobacterium bovis expressing trans-sialidase and cruzipain
fragments [65], or with a DNA vaccine encoding cruzipain, Tc52, and Tc24 antigens [58],
can prevent fibrosis and necrosis. A few studies have also shown improvements in cardiac
function in response to vaccination, as assessed by electrocardiogram (EKG) [51,66,67].
It seems particularly remarkable that the therapeutic vaccination of mice with recombinant
Adenovirus encoding ASP-2 and TS antigens during the chronic phase not only delayed
the progression of cardiac damage and dysfunction, but even reversed these, as assessed
by the extent of fibrosis and EKG alterations [51]. Thus, cardiac damage and CCC may be
at least partially reversible, which provides strong support to further explore therapeutic
vaccination against T. cruzi and its effects on cardiac function.

4. Challenges and the Way Forward

While the studies presented above are highly encouraging, some gaps in knowledge
remain that need to be addressed. A first major limitation is that most studies have focused
on assessing short term vaccine efficacy (acute phase), which is unlikely to be of relevant
clinical use, and it is unclear how these results can translate into long term efficacy. A few
studies of therapeutic vaccination administered during the chronic phase do support the
conclusion that some of these vaccine formulations can control the parasite and prevent
cardiac damage at this stage [48,51]. Similarly, preventative vaccination may provide long-
term protection against infection [73]. Nonetheless, some vaccine effects may be transients,
as observed following preventative vaccination with recombinant Adenovirus and MVA
vectors encoding ASP-2 and TS, which decreased the parasite burden in the short term
(acute phase), but not in the long term (chronic phase)[52]. In that respect, parasite tissue
distribution remains a challenge, and studies using whole-body imaging in mice to detect
fluorescent/bioluminescent parasites have been very valuable to address this point [52].
Thus, while measuring parasite burden in cardiac and skeletal muscle is key for vaccine
efficacy, the assessment of additional tissues and longer follow-up times will be needed for
a more reliable evaluation of vaccine efficacy.

Parasite diversity represents another rarely addressed issue, although the potential
lack of heterologous protection following vaccination has been demonstrated [74]. Indeed,
T. cruzi presents extensive parasite diversity that is of a comparable magnitude to that
observed among Leishmania species [75,76]. Thus, antigenic variation can be a significant
issue for vaccine development. Epitopes from vaccine antigen TSA-1 were found to be
conserved among parasite DTUs [77]. Similarly, analysis of Tc24 diversity among multiple
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strains from all DTUs indicated a high conservation and a strong purifying selection,
which may limit antigen diversity [78]. Thus, these antigens may be effective against a wide
diversity of strains, although this remains to be investigated. Nonetheless, another issue
is that a large proportion of Chagasic patients harbor multiple parasite strains. This has
been evidenced by changes in parasite genotypes following drug treatment, as well as
direct genotyping [79–81]. While it is unclear if this represents sequential or simultaneous
infections, interactions among parasite strains are likely to occur, as suggested by some
co-infection studies in mice [82–84]. Further modelling suggests that co-infections in
humans may result, in part, from insufficient immunity [85]. Thus, vaccine efficacy may be
affected by co-infections, but this will be challenging to evaluate in a laboratory setting,
given the limitations imposed by extrapolating from a necessary limited number of strain
combinations. Field studies of natural infections should help assess this point.

An additional challenge is that the large majority of vaccine studies described above
focus on mouse models, and the extent to which the strong vaccine immunogenicity and
efficacy observed can be extrapolated to humans remains unknown. Studies in dogs
have shown promise in reducing the T. cruzi parasite burden [86–90], but their limited
scope does not provide sufficient evidence supporting vaccine efficacy to delay or prevent
cardiac dysfunction. Infectiousness of dogs may nonetheless be reduced by vaccination [91].
More recent studies have detected a recall cellular response by Tc24 and TSA1 vaccine
antigens in Chagasic patients, indicating that they are processed during natural infection,
supporting the potential use of these antigens in humans [92]. Furthermore, the first
evaluation of this vaccine candidate in non-human primates indicated that it is safe, with no
hepatic or renal alterations, and immunogenic, with humoral and cellular responses [93].
Thus, these encouraging results should spur additional studies to expand the work on
murine models, and pave the way to clinical trials.

An additional aspect to be considered for developing a Chagas disease vaccine is
the potential for scaling-up GMP production and regulatory issues of potential vaccine
candidates and their further evaluation in clinical trials. So far, production processes for
recombinant Tc24 and TSA-1 antigens are the only ones to undergo extensive process
development and quality control. Specific mutations of cysteine residues were engineered
in both antigens, to increase protein stability and yield, without compromising antigenicity,
and scalable fermentation and purification steps have also been optimized and may be
transferred for GMP production [45,46,94,95].

An overview of the current clinical development landscape for vaccines provides
further insight on the potential of different platforms for further development (Table 2).
Most vaccine platforms are amendable to large scale GMP production, although live at-
tenuated and recombinant protein production may face variable hurdles, depending on
specific organisms or antigens, respectively. In the case of T. cruzi, the large-scale produc-
tion, storage, and distribution of a potential live attenuated vaccine would certainly be
most challenging because of the multiple constraints of cultivating a eukaryotic parasite
under GMP guidelines and consistently maintaining its viability. Additional regulatory
limitations may be faced for clinical trials. While multiple vaccine platforms against
infectious diseases are undergoing clinical development in Phase 1 studies, only live at-
tenuated and recombinant protein vaccines are readily progressing to Phase 2 and Phase
3 studies (Table 2). An important concern of DNA vaccines for example is their limited
immunogenicity in humans, although multiple strategies are being investigated to boost
their efficacy [96]. On the other hand, Adenovirus and other viral-based vaccines may
face safety issues, and pre-existing immune cross-reactivity against the virus vector may
interfere with vaccination [97,98]. Based on these data, a Chagas disease vaccine based on
recombinant proteins may represent the quickest path toward clinical trials, and Tc24 and
TSA-1 antigens are well poised for such a development.
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Table 2. Production and Clinical Development of Vaccines against Infectious Diseases.

Vaccine Type Ease of Production Clinical
Development * Potential Issues

Attenuated Variable
140 Phase 1
71 Phase 2
43 Phase 3

Reversal of
attenuation, storage,
and distribution of

a live vaccine

DNA ++++
207 Phase 1
61 Phase 2
0 Phase 3

Limited
immunogenicity

in humans

Adenovirus +++
69 Phase 1
21 Phase 2
1 Phase 3

Risk of adverse
effects and immunity

to vector

Recombinant
proteins ++++ or variable

195 Phase 1
76 Phase 2
55 Phase 3

Most widely
accepted, safe and

immunogenic
* Number of vaccine studies of the different phases registered in ClinicalTrials.gov, excluding COVID-19 vaccines
(as of 30 October 2020).

In conclusion, recent advances have confirmed the potential of vaccines against Chagas
disease and have solved some of the key challenges. A remaining challenge is the political
will and investment needed to move a vaccine into clinical development for a neglected
tropical disease such as Chagas disease. Indeed, despite its large health burden [99],
it remains one of the most neglected of the neglected diseases, and further steps will
require bold decisions from multiple stakeholders and partners to move this vaccine
candidate into clinical trials [100–102].
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