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ABSTRACT

Contrast in electron cryo-microscopy (cryo-EM) is limited by the weak phase and radiation sensitive
nature of biologic samples embedded in vitrified ice. We have recently shown that a new contrast
enhancement technique utilizing the Volta phase plate can be combined with single particle
analysis to determine the structure of a small chromatin complex, the nucleosome core particle, at
near-atomic resolution. Here, we discuss advantages and limitations of the technique in terms of
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chromatin structure.

The “phase-strip method for observing phase objects
in good contrast” was discovered by Fritz Zernike in
the 1930s.! By introducing a 90° phase shift between
the direct and diffracted light, Zernike’s phase contrast
microscope enabled scientists to image live cells and
their internal structures with enhanced contrast with-
out the need for cytotoxic stains.” The idea to use
phase plates in transmission electron microscopy was
first proposed in 1947 by Hans Boersch.? This was fol-
lowed in 1958 by the construction of the first Zernike
phase plate (ZPP), a thin carbon film with a central
hole,* and the first wire-type electrostatic phase plate
constructed from spider thread in 1970.>° In 2001
Danev and Nagayama applied the ZPP to visualize
negatively stained ferritin particles.” The method was
subsequently applied to single particle cryo-EM, elec-
tron diffraction, and electron tomography.*” How-
ever, the resolution was limited to 10 A and collection
of high quality images was challenging due to charg-
ing, contamination, and alignment problems'® (an
overview of EM phase plate development and designs
is reviewed in ref. 11).

The development of the Volta phase plate (VPP) in
2014 solved many of the practical challenges of the
ZPP."? Danev et al. discovered that pre-irradiating a

thin continuous film of amorphous carbon with the
electron beam caused the build-up of a local Volta
potential. This potential would introduce a phase shift
between the central and diffracted electrons, thereby
generating phase contrast.'> Furthermore, beam-
induced contamination could be reduced by heating
the plate to ~200°C. The ability to create phase shifts
“on the fly” could then be combined with semi-auto-
mated data collection routines for single particle anal-
ysis. This was applied successfully to obtain a 4.4 A
reconstruction of the 257 kDa peroxiredoxin-3 protein
complex"® and a 3.2 A reconstruction of the 700 kDa
20S proteasome.'*

We were excited by the potential of the VPP for
imaging challenging protein-DNA complexes, such as
small particles (100-200 kDa) that have low contrast
in ice, as well as structurally heterogeneous macromo-
lecular assemblies. We first tested the VPP to image
an object of known structure, the 200 kDa nucleosome
core particle (NCP). We found that one important
advantage of using the VPP was that low contrast
views (disk views) of the NCP could easily be detected.
Fig. 1A shows the angular distribution of NCP views
in micrographs recorded with and without the VPP
on a 200 kV FEI Tecnai Arctica. A more isotropic
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Figure 1. Phase plate imaging and analysis of nucleosome core particles and DNA in ice. (A) Angular distribution of views in micro-
graphs recorded without (-VPP) and with (+VPP) the Volta phase plate. The size of each sphere is proportional to the number of par-
ticles per view. (B) Phase plate cryo-EM image of nucleosome core particles (NCPs) and excess DNA in ice. (C) 3.9 A phase plate
structure of the NCP. (D) Representative phase plate images of straight (left) and bent DNA (right). DNA trace (cartoon in white).

reconstruction was obtained from micrographs
recorded with the VPP. Particles were picked in
EMAN2" and processed in RELION 1.3.'° Next we
recorded a high-resolution in-focus VPP data set on a
300 kV FEI Titan Krios, in counting mode on a K2
detector (Fig. 1B). From only 26,060 particles and
after applying C2 symmetry, we obtained an electron
density map at a resolution of 3.9."” Consistent with
the attained resolution, the electron density map
clearly showed amino acid side chains and DNA phos-
phate groups. Individual base pairs, however, could
not be resolved (Fig. 1C). Moreover, we observed
slightly lower local resolution at the DNA termini
compared with the rest of the NCP. We interpreted
this to be an indicator of DNA breathing. Forster reso-
nance energy transfer studies have shown that at a
given point in time, 3% of NCPs undergo transient
DNA unwrapping at the termini, with a lifetime of
10-120 ms.'®" Extrapolating this to our 26,060 par-
ticles, ~780 particles would be in an unwrapped state.
However, we did not observe 2D classes of NCPs with
unwrapped DNA. This might be due to the small
number of particles analyzed and/or the low ionic
strength buffer (no salt) used. We hypothesize that at
least a 10x increase in the number of particles and
~50 mM NaCl in the buffer would be required to
observe classes with DNA breathing at the termini.

To prevent chromatin precipitation, we used excess
DNA in our NCP reconstitution. As shown in Fig. 1D,
individual DNA molecules can be clearly seen in
micrographs recorded with the VPP. Measuring the
DNA dimensions, we obtained a maximum DNA
length of 480 A, and a diameter of about 20 A, which
is expected for 145 base pairs of B-form DNA. Shorter
DNA lengths were also observed, which we interpret
as DNA molecules that are pointing slightly down-
wards in ice (not parallel to the image plane). We also
observed a variety of DNA conformations that we
classify as being straight, bent, or wavy. This demon-
strates that cryo-EM imaging with the VPP offers a
complementary technique to AFM and rotary-shad-
owing EM to visualize the solution structure of DNA.
A clear advantage of cryo-EM is that the sample does
not have to be immobilized on a substrate such as
mica. We note that DNA can also be visualized in
cryo-EM without the VPP, by applying a defocus that
enhances the 20 A frequency range. However, at this
particular defocus value and acceleration voltage, it
may be difficult to detect a small protein bound to
DNA. In summary, we found that imaging of protein-
DNA complexes in ice with the VPP enables direct
interpretation of structure and composition without
the need to apply CTF (contrast transfer function)
correction or 2D class averaging.



The VPP has recently been used to reconstruct a
3.2 A structure of hemoglobin,* which at 64 kDa is
thus far the smallest molecule to be successfully recon-
structed to near-atomic resolution. Defocused data
collection with the VPP followed by CTF correction
has now been implemented, removing the require-
ment for highly accurate focusing and enabling recon-
structions to 2.2 A.*' We note that the VPP is not
required to obtain high-resolution structures by single
particle cryo-EM. Defocus cryo-EM has been success-
fully applied to relatively small particles, such as the
2.8 A and 3.8 A reconstructions of the 145 kDa lactate
dehydrogenase and 98 kDa isocitrate dehydrogenase
enzymes.”” Furthermore, for the proteasome, phase
plate cryo-EM only marginally improved resolution
compared with defocus cryo—EM.14 However, we
believe that phase plate cryo-EM is of great value, as it
allows the user to directly interpret raw micrographs
and hence more accurately determine the identity of
particles. This is particularly helpful for imaging new
proteins, small and low contrast molecules, samples
that are flexible or heterogeneous in structure and
composition, as well as those that require embedding
in thick ice.

A current disadvantage of data collection with the
VPP is its lack of automation; several steps of the data
collection process still require manual adjustments.
This includes the change of phase plate position, acti-
vation (conditioning) of the phase plate, and correc-
tion of astigmatism at each phase plate position used.
Furthermore, the performance of the VPP can vary
markedly on different microscopes, and even on a
given microscope different phase plate positions can
have slightly different properties. This may be due to
contamination build-up over time and/or the quality
of the carbon film. Complete automation of the data
collection process will be required to render the tech-
nique more user-friendly.

The increase in contrast from using the VPP has
also been shown to be useful for electron cryo-
tomography of macromolecules and cellular struc-
tures in situ.”>> Imaging of nuclear pore com-
plexes in situ by VPP-cryo-ET*> demonstrated that
the technique can be applied in the future to visu-
alize nucleosome arrays and chromatin inside the
nucleus. We expect, therefore, that phase plate
cryo-EM will continue to drive the resolution revo-
lution in cryo-EM for structural analyses of small,
flexible and challenging protein and chromatin
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complexes, and for visualizing native cellular struc-
tures in situ.
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