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INTRODUCTION 
 

Colorectal cancer (CRC) is the third most common type 

of malignant tumor with poor prognosis in the world [1]. 

Nowadays, it is still difficult to make an early diagnosis 

for CRC. Therefore, most patients were diagnosed as 

advanced CRC at their first interview with a doctor. 

Furthermore, because of the high invasion and early 

metastasis of CRC, the success rate of surgery is not 

satisfactory [2]. For the advanced CRC patients whose 

tumors are unresectable, systematic chemotherapy is 

irreplaceable and valuable [3–5]. However, CRC cells  

 

usually acquire drug resistance through the repeated use 

of chemotherapeutic drugs [6–8]. It is urgent to explore 

the potential mechanisms of the development of drug 

resistance. 

 

Oxaliplatin, a third-generation of platinum compound, 

is known to induce cross-linking of cancer cell DNAs 

and thus causes their apoptotic cell death [9–12]. 

Although oxaliplatin is the first-line platinum-based 

compound to show efficacy in the treatment of CRC, 

virtually all metastatic CRC cells eventually become 

resistant to oxaliplatin [13–16]. Thus, intervention that 
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ABSTRACT 
 

Oxaliplatin is a platinum-based chemotherapeutic drug that is effective and commonly used in the treatment of 
colorectal cancer (CRC). However, long-term use of oxaliplatin usually induces significant drug resistance. It is 
urgent to develop strategies to reverse the oxaliplatin resistance to CRC cells. In the present study, we 
established the model of oxaliplatin-resistant CRC cell lines (SW480/R and HT29/R) through continuous 
treatment of SW480 and HT29 cells with oxaliplatin. Results of qRT-PCR analysis showed that expression of 
miR-19a was significantly increased in SW480/R and HT29/R compared to their parental SW480 and HT29. 
However, combination treatment with anti-miR-19a, an antisense oligonucleotide of miR-19a, was found to 
resensitize SW480/R and HT29/R cells to oxaliplatin treatment. In the mechanism research, we found that anti-
miR-19a increased the expression of PTEN and thus inhibited the phosphorylation of PI3K and AKT in SW480/R 
and HT29/R cells. As a result, mitochondrial apoptosis induced by oxaliplatin was expanded. We demonstrated 
that PTEN was the target of miR-19a and inhibition of miR-19a partially reversed the resistance of colorectal 
cancer to oxaliplatin via PTEN/PI3K/AKT pathway. 
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attenuates the resistance of oxaliplatin is required in the 

treatment of CRC. 

 

MicroRNAs (miRNAs) are small and endogenous non-

coding RNAs that negatively regulate the expression of 

downstream targeted mRNAs through binding to the 3′ 

untranslated region (3′ UTR) of the mRNAs [17–19]. 

Previous studies have proved that dysregulation of 

miRNA expression leads to the proliferation, metastasis 

and drug resistance of cancer cells [20–26]. Among 

these cancer-related miRNAs, miR-19a is reported to 

act as an important factor that is responsible for drug 

resistance in several cancers. Thus, miR-19a may be a 

promising target for improving the chemotherapy [27, 

28]. In the present study, we established the oxaliplatin 

resistance models on SW480 and HT29 which are the 

CRC cell lines. We aimed to explore the potential 

association between oxaliplatin resistance and the 

specific miRNA of miR-19a in CRC. 

 

RESULTS 
 

Establishment of oxaliplatin-resistant CRC cells 
 

To study the resistance of oxaliplatin on CRC, we 

continuously exposed the CRC cell lines SW480 and 

HT29 to oxaliplatin. The obtained cells were named as 

SW480/R and HT29/R. We then treated these SW480/R 

and HT29/R cells and their parental SW480 and HT29 

cells with different concentrations of oxaliplatin to 

compare their drug sensitivity. Compared to the SW480 

and HT29 cells, the SW480/R and HT29/R cells 

exhibited significant lower sensitivity to various 

concentrations of oxaliplatin (Figure 1A). We then 

calculated that IC50 of oxaliplatin to SW480/R was 

10.3 fold higher than that to SW480 cells. Meanwhile, 

IC50 of oxaliplatin to HT29/R was 7.2 fold higher than 

that to HT29 cells (Figure 1B). We confirmed that our 

established SW480/R and HT29/R were resistant to 

oxaliplatin. 

 

Overexpression of miR-19a is responsible for the 

oxaliplatin resistance of SW480/R and HT29/R 
 

Results of qRT-PCR analysis showed that SW480/R 

and HT29/R cells expressed significantly higher level of 

miR-19a compared to their parental SW480 and HT29 

cells (Figure 2A). To investigate the association 

between miR-19a and oxaliplatin resistance of CRC, we 

overexpressed the miR-19a in routine SW480 and HT29 

cells through transfection with miR-19a mimics (Figure 

2B). We then found that overexpression of miR-19a 

 

 
 

Figure 1. Oxaliplatin resistance of SW480/R and HT29/R. (A) MTT assays were performed to evaluate the cytotoxicity of different 
concentrations of oxaliplatin (0~30 μM) to SW480, SW480/R, HT29 and HT29/R. *P<0.05. (B) IC50 of oxaliplatin to SW480, SW480/R, HT29 
and HT29/R. *P<0.05. 
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decreased the sensitivity of routine SW480 and HT29 

cells to oxaliplatin treatment (Figure 2C). On the other 

hand, we inhibited the function of miR-19a in SW480/R 

and HT29/R cells through transfection with miR-19a 

antisense oligonucleotide (Figure 2D). We then found 

that knockdown of miR-19a obviously increased the 

sensitivity of SW480/R and HT29/R cells to oxaliplatin 

treatment (Figure 2E). Taken together, these data 

indicated overexpression of miR-19a is responsible for 

the induction of oxaliplatin resistance of CRC. 

Furthermore, inhibition of miR-19a function was 

conducive to reverse the oxaliplatin resistance of CRC. 

 

Anti-miR-19a increases the expression of PTEN in 

SW480/R and HT29/R cells 

 

To explore the mechanism by which miR-19a partially 

determined the oxaliplatin resistance of CRC, we 

searched the potential target of miR-19a through the 

public miRNA prediction databases of TargetScan, 

miRanda, and PicTar. Among the candidate targeted 

genes, PTEN was commonly predicted by all of these 

databases. The potential complementary site paired with 

miR-19a and PTEN was shown in Figure 3A. On the 

other hand, we detected obviously lower level of PTEN 

in SW480/R and HT29/R cells compared to the routine 

SW480 and HT29 cells (Figure 3B). Together the 

results of Figure 2A, we predicted that PTEN was the 

target of miR-19a. To test this prediction, we changed 

the level of miR-19a before evaluation of PTEN 

expression in CRC cell lines. In SW480 and HT29 cells, 

overexpression of miR-19a was found to decrease the 

expression of PTEN, and in SW480/R and HT29/R cells, 

knockdown of miR-19a was found to increase the 

expression of PTEN (Figure 3C). On the other hand, 

results of luciferase reporter assays showed that 

transfection with miR-19a significantly inhibited the 

luciferase activities of the reporters contained wild type 

PTEN 3′-UTR, whereas transfection with anti-miR-19a 

increased the luciferase activities of the reporters 

(Figure 3D). Taken together, we demonstrated that 

PTEN was the target of miR-19a. SW480/R and 

HT29/R cells overexpressed the miR-19a to reduce the 

expression of PTEN. 

 

Expression level of PTEN partially determines the 

oxaliplatin sensitivity of CRC 
 

To explore the role of PTEN in determining the 

oxaliplatin sensitivity of CRC, we directly knockdown 

the PTEN in SW480 and HT29 cells by using its 

specific siRNA (siRNA-PTEN) (Figure 4A). We then

 

 
 

Figure 2. Effect of miR-19a on regulating the oxaliplatin sensitivity of CRC cells. (A) QRT-PCR analysis was performed to detect the 
expression of miR-19a in SW480, SW480/R, HT29 and HT29/R. *P<0.05. (B) Transfection with miR-19a mimics (50 pmol/ml) increased the 
cellular level of miR-19a in SW480 and HT29 cells. *P<0.05. (C) Transfection with miR-19a mimics (50 pmol/ml) decreased the sensitivity of 
SW480 and HT29 cells to oxaliplatin (10 μM) treatment. *P<0.05. (D) Transfection with anti-miR-19a (50 pmol/ml) decreased the cellular level 
of miR-19a in SW480/R and HT29/R cells. *P<0.05. (E) Transfection with anti-miR-19a (50 pmol/ml) increased the sensitivity of SW480/R and 
HT29/R cells to oxaliplatin (10 μM) treatment. *P<0.05. 
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found that treatment with siRNA-PTEN significantly 

decreased the sensitivity of SW480 and HT29 cells to 

oxaliplatin (Figure 4B). On the other hand, we 

overexpressed the expression of PTEN in SW480/R and 

HT29/R cells by using the eukaryotic expression vector 

(plasmid-PTEN) (Figure 4C). Interestingly, treatment 

with plasmid-PTEN obviously reversed the oxaliplatin 

resistance of SW480/R and HT29/R cells (Figure 4D). 

We demonstrated that expression level of PTEN 

partially determined the oxaliplatin sensitivity of CRC. 

Increase of PTEN expression was conducive to reverse 

the oxaliplatin resistance of CRC. 

 

Anti-miR-19a partially reverses the oxaliplatin 

resistance of CRC through upregulation of PTEN 

 

Results of MTT assays showed that transfection with 

anti-miR-19a reduced the IC50 of oxaliplatin to 

SW480/R by 81.7 percent and HT29/R by 75.9 percent 

(Figure 5A). We thus demonstrated that co-treatment 

with anti-miR-19a can partially reverse the oxaliplatin 

resistance of CRC. To investigate whether the 

mechanism by which anti-miR-19a resensitized 

SW480/R and HT29/R cells to oxaliplatin was 

dependent on the upregulation of PTEN, we knocked 

 
 

Figure 3. MiR-19a targeted PTEN in CRC. (A) Multiple regions of PTEN mRNA 3’ UTR exist potential binding sites paired with miR-19a. (B) 
Western blot assays were performed to test the expression of PTEN in SW480, SW480/R, HT29 and HT29/R cells. (C) Western blot assays 
were performed to test the effect of miR-19a (50 pmol/ml) and anti-miR-19a (50 pmol/ml) on changing the expression of PTEN in SW480, 
SW480/R, HT29 and HT29/R cells. (D) Luciferase reporter assays were performed to test the effect of miR-19a (50 pmol/ml) and anti-miR-19a 
(50 pmol/ml) on changing the luciferase activities of the pMIR reporters containing PTEN 3’-UTR in SW480, SW480/R, HT29 and HT29/R cells. 
*P<0.05 vs. miR-c group. 
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down the PTEN in SW480/R and HT29/R cells by 

using siRNA-PTEN when they were co-treated with 

oxaliplatin and anti-miR-19a. Results of MTT assays 

showed that knockdown of PTEN abolished the effect 

of anti-miR-19a on sensitizing the SW480/R and 

HT29/R cells to oxaliplatin treatment (Figure 5B). 

Specifically, siRNA-PTEN significantly increased the 

IC50 of oxaliplatin to anti-miR-19a-treated SW480/R 

and HT29/R cells (Figure 5C). Taken together, these 

results indicated that co-treatment with anti-miR-19a 

can partially reverse the oxaliplatin resistance of CRC 

through upregulation of PTEN. 

 

Anti-miR-19a targets the PTEN/PI3K/AKT pathway 

to resensitize the oxaliplatin-induced apoptosis in 

SW480/R and HT29/R 
 

Since the PTEN is a natural inhibitor of PI3K and AKT 

[29], we next tested the association between the anti-miR-

19a and the PTEN/PI3K/AKT signaling pathway. As 

shown in Figure 6A, single treatment with oxaliplatin can 

not alter the activity of PI3K or AKT. However, treatment 

with anti-miR-19a inhibited the phosphorylation of PI3K 

and AKT. Furthermore, we observed that transfection 

with anti-miR-19a significantly promoted the activation of 

caspase-9, -7, -3 in the oxaliplatin-treated SW480/R and 

HT29/R cells (Figure 6B). As a result, we showed that 

anti-miR-19a significantly enhanced the oxaliplatin-

induced apoptosis in SW480/R and HT29/R cells (Figure 

6C). These results demonstrated that anti-miR-19a can 

sensitize the oxaliplatin-induced apoptosis through the 

PTEN/PI3K/AKT pathway in the oxaliplatin-resistant 

CRC cells. 

 

DISCUSSION 
 

Oxaliplatin is a third-generation of platinum-based 

antineoplastic drug that is commonly used for the 

treatment of gastrointestinal cancers including CRC. 

However, development of acquired drug resistance of 

CRC usually leads to the failure of oxaliplatin treatment 

[30–32]. Therefore, it is urgent to explore the potential 

mechanism of the formation of drug resistance. In the 

present study, we continuously exposed the CRC cell 

lines to oxaliplatin. We then found that long-term 

exposure to oxaliplatin can induce significant drug 

resistance in CRC. 

 

Studies have reported that dysregulation of miRNA 

expression leads to the drug resistance and poor 

prognosis in various digestive tract cancers including 

CRC, oral cancer and gastric cancer [33–36]. Among 

these cancer-related miRNAs, miR-19a was found to be 

significantly upregulated in our established oxaliplatin-

 

 
 

Figure 4. Effect of PTEN on regulating the oxaliplatin sensitivity of CRC cells. (A) Transfection with siRNA-PTEN (50 pmol/ml) 
decreased the expression of PTEN in SW480 and HT29 cells. (B) Transfection with siRNA-PTEN (50 pmol/ml) decreased the sensitivity of 
SW480 and HT29 cells to oxaliplatin (10 μM) treatment. *P<0.05. (C) Transfection with plasmid-PTEN (2 μg/ml) increased the expression of 
PTEN in SW480/R and HT29/R cells. (D) Transfection with plasmid-PTEN (2 μg/ml) increased the sensitivity of SW480/R and HT29/R cells to 
oxaliplatin (10 μM) treatment. *P<0.05. 
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resistant CRC cell lines. Previous studies have reported 

that miR-19a acts as a tumor promoter in multiple 

cancers. For instance, miR-19a was overexpressed in 

bladder cancer cells. It promoted invasion and epithelial 

to mesenchymal transition of bladder cancer cells by 

targeting RhoB [37]. Furthermore, overexpression of 

miR-19a was an underlying risk of poor prognosis in 

many human malignancies, especially in osteosarcoma. 

 

 
 

Figure 5. Anti-miR-19a partially reversed the oxaliplatin resistance of CRC cells through the PTEN pathway. (A) Combination 
treatment with anti-miR-19a (50 pmol/ml) decreased the IC50 of SW480/R and HT29/R to oxaliplatin. *P<0.05 vs. miR-c group. (B) 
Transfection with siRNA-PTEN (50 pmol/ml) increased the cell viability of SW480/R and HT29/R cells which were co-treated with anti-miR-19a 
(50 pmol/ml) and oxaliplatin (10 μM). *P<0.05 vs. oxaliplatin+miR-c group. #P<0.05 vs. oxaliplatin+anti-miR-19a group. (C) Transfection with 
siRNA-PTEN (50 pmol/ml) abolished the effect of anti-miR-19a on reducing the IC50 of oxaliplatin to SW480/R and HT29/R. *P<0.05 vs. anti-
miR-19a+siRNA-c group. 



 

www.aging-us.com 5646 AGING 

Elevated miR-19a expression was linked to the 

potential of lymph node metastasis [38]. More 

importantly, studies indicated that overexpression of 

miR-19a contributed to chemoresistance to multiple 

cancers including ovarian cancer and non-small cell 

lung cancer [39, 40]. Therefore, miR-19a was a 

potential target that may be responsible for the drug 

resistance of CRC. 

 

As miR-19a has been proven to a potent tumor 

promoter, we next explored the association between 

miR-19a overexpression and resistance of oxaliplatin to 

CRC. For this purpose, we knocked down the miR-19a 

in oxaliplatin-resistant CRC cells. We then found that 

knockdown of miR-19a partially reversed the 

oxaliplatin resistance of CRC. On the other hand, 

increasing the expression of miR-19a in routine CRC 

cells induced the oxaliplatin resistance of CRC. These 

results indicated that miR-19a expression level was 

closely associated with oxaliplatin sensitivity to CRC. 

Furthermore, anti-miR-19a can be used as a sensitizer to 

reverse the resistance of oxaliplatin. 

 

Phosphatase and tensin homologue (PTEN) has been 

fully proved to be a potent tumor suppressor in multiple 

cancers. However, PTEN is downregulated in many 

cancers. Moreover, change of PTEN expression is one 

of the critical factors for cancer development and drug 

resistance [41–43]. In the PTEN signaling pathway, 

PTEN can inhibit the phosphorylation of PI3K and the 

subsequent generation of phosphatidylinositol-3,4,5-

trisphosphate (PIP3), which in turn triggers the AKT. 

As activation of AKT inhibits apoptosis, cellular PTEN 

can promote the cell death of cancer cells through the 

PI3K/AKT pathway [44–46].  

 

In this study, we found that PTEN was downregulated 

in oxaliplatin-resistant CRC cells. Absence of PTEN 

increased the phosphorylation of PI3K and AKT. 

Therefore, oxaliplatin-resistant CRC cells exhibited 

lower response to oxaliplatin-induced cell death 

compared to the routine CRC cells. Furthermore, we 

found that the mechanism by which PTEN was 

downregulated in oxaliplatin-resistant CRC cells was 

dependent on the overexpression of miR-19a. That is 

to say, PTEN was the target of miR-19a in CRC. Our 

results indicated that treatment with anti-miR-19a can 

increase the PTEN expression and thus inhibit the 

phosphorylation of PI3K and AKT in the oxaliplatin-

resistant CRC cells. Finally, treatment with anti-miR-

19a resensitized the oxaliplatin-resistant CRC cells to 

oxaliplatin-induced apoptosis. 

 

CONCLUSIONS 
 

This study indicated the effect of anti-miR-19a on 

reversing the oxaliplatin resistance of CRC. Inhibition 

of PI3K/AKT pathway through the miR-19a/PTEN axis 

may represent a potential strategy for attenuating the 

oxaliplatin resistance of CRC. 

 

 
 

Figure 6. Anti-miR-19a enhanced the oxaliplatin-induced apoptosis through the PTEN/PI3K/AKT pathway. (A) Western blot 
assays were performed to evaluate the effect of anti-miR-19a (50 pmol/ml) and siRNA-PTEN (50 pmol/ml) on affecting the phosphorylation of 
PI3K and AKT in SW480/R and HT29/R cells. (B) Western blot assays were performed to evaluate the effect of anti-miR-19a (50 pmol/ml) and 
siRNA-PTEN (50 pmol/ml) on affecting the activation of caspase-9, -7 and -3 which was dependent by oxaliplatin in SW480/R and HT29/R 
cells. (C) Anti-miR-19a (50 pmol/ml) increased the apoptotic rate of SW480/R and HT29/R cells which were treated with oxaliplatin (10 μM). 
*P<0.05 vs. oxaliplatin+miR-c group. #P<0.05 vs. oxaliplatin+anti-miR-19a group. 
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MATERIALS AND METHODS 
 

Cell culture 

 

The human CRC cell lines SW480 and HT29 were 

purchased from the Institute of Biochemistry and Cell 

Biology, Chinese Academy of Sciences (Shanghai, 

China). Cells were cultured in RPMI-1640 medium 

(Gibco, Carlsbad, CA, USA) supplemented with 10% 

fetal bovine serum (FBS). Oxaliplatin-resistant SW480 

and HT29 (SW480/R and HT29/R) cells were obtained 

by continuous exposure of HT29 and SW480 cells to 

increasing concentrations of oxaliplatin from 0.2 μM to 

2 μM for 6 months. All of the cells were cultured at 

37°C in a humidified incubator with 5% CO2. 

 

Transient transfection 
 

Human miR-19a mimics, miR-19a antisense 

oligonucleotide (anti-miR-19a), control oligonucleotides 

(miR-c), siRNA targeted PTEN (siRNA-PTEN), control 

siRNA (siRNA-c) were purchased from Genechem Co., 

Ltd. (Shanghai, China). PTEN eukaryotic expression 

plasmid was generated by cloning the open reading frame 

of the PTEN gene into the pcDNA3.1 plasmid (Life 

Technologies, Carlsbad, CA, USA). For transfection, cells 

were seeded into six-well plates, with the density of 4×105 

cells/well. Subsequently, the above RNA oligonucleotides 

or plasmid was transfected into cells with 

Lipofectamine®2000 (Thermo Fisher Scientific, Inc., 

Carlsbad, CA, USA) according to the manufacturer’s 

instruction. 

 

Quantitative real-time polymerase chain reaction 

(qRT-PCR) 

 

Cellular total RNAs were extracted by using Trizol 

reagent (Invitrogen, Carlsbad, CA, USA). cDNA was 

reversely transcribed by using the extracted RNAs and 

One Step PrimeScript miRNA cDNA Synthesis Kit 

(TaKaRa, Dalian, China). Expression of miR-19a was 

detected through qRT-PCR assay by using SYBR Green 

PCR kit (Toyobo, Japan). QPCR primer of miR-19a is 

as follows: 5′-TGTGCAAATCTATGCAAAACTGA-

3′. U6 small nuclear RNA (snRNA U6) was used as the 

internal reference to determine the relative expression of 

miR-19a through the 2−∆∆CT method. 

 

Cell viability assay 
 

Cells were transfected and seeded into 96-well plates at 

a density of 5×103 cells/well with 100 μl culture 

medium. After overnight incubation, cells were then 

treated with different concentrations of oxaliplatin 

(0~30 μmol/L) (Sigma-Aldrich, St. Louis, MO, USA) 

for 48 h. Subsequently, 20 μl MTT reagent (5 mg/mL; 

Sigma-Aldrich) was added to the culture medium and 

the cells were incubated for another 4 h. The cells were 

then suspended in 150 μl dimethyl sulfoxide followed 

by detection of the absorbance at 570 nm on a 

microplate reader (Bio-Tek Instruments, Inc., Norcross, 

GA, USA). Half maximal inhibitory concentration 

(IC50) of oxaliplatin was calculated according to the 

cell viability curve. 

 

Luciferase reporter assay 
 

PTEN 3′ UTR fragment which was predicted as miR-

19a binding site was amplified from cDNA of CRC 

cells and inserted into pMIR Firefly luciferase reporters 

(Ambion, Carlsbad, CA, USA). pMIR reporter with 

mutant PTEN 3′ UTR was conducted by using 

QuikChange Site-Directed Mutagenesis kit (Stratagene, 

Missouri, TEX, USA). For luciferase reporter assay, 

cells were co-transfected with pMIR reporter and miR-c, 

miR-19a or anti-miR-19a. 24 h after transfection, cells 

were collected and lysed. Luciferase activities were then 

confirmed by using dual-luciferase reporter assay 

system (Promega, Madison, WI, USA) according to the 

manufacturer’s instruction. 
 

Western blot analysis 
 

Cellular total proteins were extracted by using RIPA lysis 

buffer (Cell Signaling Technology Inc., Danvers, MA, 

USA). 50 μg of the extracted proteins were separated by 

10 % sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) and transferred to a PVDF 

membrane (Millipore, Billerica, MA, USA). Membranes 

were then probed with primary antibodies (anti-PTEN 

(dilution: 1:1000, catalog number: #9188), anti-PI3K 

(dilution: 1:1000, catalog number: #4249), anti-AKT 

(dilution: 1:1000, catalog number: #4691), anti-p-

PI3K(Tyr458) (dilution: 1:1000, catalog number: 

#17366), anti-p-AKT(Ser473) (dilution: 1:1000, catalog 

number: #4060), anti-cleaved caspase-9 (dilution: 1:1000, 

catalog number: #20750), anti-cleaved caspase-7 

(dilution: 1:1000, catalog number: #8438), anti-cleaved 

caspase-3 (dilution: 1:1000, catalog number: #9664)  

and anti-GAPDH (dilution: 1:1000, catalog number: 

#5174)) (Cell Signaling Technology Inc) overnight. 

Subsequently, the membranes were incubated with a 

horseradish peroxidase-conjugated secondary antibody 

for 2 h at room temperature. Blots were visualized by 

using enhanced chemiluminescence detection kit (Pierce, 

Rockford, IL, USA). 

 

Cell apoptosis detection 
 

Cells were collected and washed with PBS. 

Subsequently, cells were stained with Annexin V-FITC 

and propidium iodide (BD Pharmingen, San Diego, CA, 
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USA) away from light. Samples were then analyzed by 

flow cytometry. Annexin V-positive cell population was 

calculated as the apoptotic cells. 

 

Statistical analysis 

 

All data are obtained from at least three independent 

experiments and represented as the mean ± standard 

deviation (SD). Non-paired t test was used to estimate 

the statistical differences between two groups. One-way 

analysis of variance (ANOVA) was applied to verify 

differences among three or more groups. Statistical 

analysis was performed by using SPSS 16.0 software 

(SPSS Inc., Chicago, IL, USA). P < 0.05 was 

considered to be statistically significant. 
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