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Abstract: Antigen Presenting Cells (APC) are immune cells that recognize, process, and present
antigens to lymphocytes. APCs are among the earliest immune responders against an antigen. Thus,
in patients with COVID-19, a disease caused by the newly reported SARS-CoV-2 virus, the role of
APCs becomes increasingly important. In this paper, we dissect the role of these cells in the fight
against SARS-CoV-2. Interestingly, this virus appears to cause a higher mortality among adults
than children. This may suggest that the immune system, particularly APCs, of children may be
different from that of adults, which may then explain differences in immune responses between these
two populations, evident as different pathological outcome. However, the underlying molecular
mechanisms that differentiate juvenile from other APCs are not well understood. Whether juvenile
APCs are one reason why children are less susceptible to SARS-CoV-2 requires much attention.
The goal of this review is to examine the role of APCs, both in adults and children. The molecular
mechanisms governing APCs, especially against SARS-CoV-2, may explain the differential immune
responsiveness in the two populations.

Keywords: Antigen Presenting Cells (APC); SARS-CoV-2; COVID-19; juvenile immunity; cytokine
storm; IFN-signaling

1. Introduction

In December 2019, several cases of pneumonia with unknown etiology were identified
in Wuhan, China. These cases of pneumonia were later associated with a novel virus called
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). On 11 March 2020, the
World Health Organization announced that SARS-CoV-2 was causing the disease Coron-
avirus Disease (COVID-19), now considered a pandemic. This disease is characterized by
respiratory tract infections that, depending on the severity, can precipitate acute respiratory
stress disorder. Since this pathological outcome can lead to lung injury and multi-organ
dysfunction, elders with medical problems have a higher risk of developing the worst
symptomatology, while children have been sporadically affected [1].

SARS-CoV-2 is a single-stranded-RNA virus that belongs to the family of coron-
aviruses, characterized by the peculiar presence of spike-like projections on their surface
that gives them a crown-like appearance [2]. Coronaviruses usually circulate among ani-
mals, but can sometimes “jump” to other species, including humans. This process is called
“spillover event”, and seems that it happened in Wuhan with SARS-CoV-2 [3].

SARS-CoV-2 bears many similarities to other coronaviruses like Severe Acute Respira-
tory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Virus Syndrome
Coronavirus (MERS-CoV), which respectively share 79% and 50% sequence identity to
SARS-CoV-2. Notably, SARS-CoV causes Severe Acute Respiratory Syndrome (SARS),
and MERS-CoV causes Middle East Respiratory Syndrome (MERS) [4]. Both syndromes
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are respiratory diseases that have been considered as epidemics. Because of the resem-
blance between the different coronaviruses, identifying their differences and similarities is
instrumental for a better understanding of the novel SARS-CoV-2.

The principal products encoded by SARS-CoV-2 genome are two large poly-proteins,
named pp1a and pp1ab, and four groups of structural proteins: S (spike), E (envelope),
M (membrane and accessory proteins), and N (nucleocapsid) proteins [5]. All these pro-
teins are important for the establishment of the virus-host interactome as well as for the
virus survival.

Pp1a and pp1ab are involved in viral replication. They are processed into 16 non-
structural proteins, named nsp1-nsp16, which form the viral complex of the replicase
transcriptase. The other proteins, S, E, M, and N, are implicated in viral infection and
replication [5]. The S protein is vital for SARS-CoV-2 entry into host cells because it recog-
nizes and binds to the cell surface protein Angiotensin-Converting Enzyme 2 (ACE2) [3].
The S protein mediates viral attachment to the host cell and membrane fusion through
its subunits, S1 and S2. S1, which encompasses the Receptor Binding Domain (RBD),
specifically recognizes the peptidase domain (PD) of ACE2, whereas S2 is important for
the membrane fusion. After S1 binds to the host ACE2, proteolytical cleavage is needed in
order to fuse membranes [6]. Indeed, TMPRSS2, a host serine-protease, cleaves a site at the
S1/S2 boundary, inducing a conformational change in the S2. This cleavage leads to viral
infection via endocytosis or direct fusion of the viral envelope with the host membrane [7]
(Figure 1).

The virulence ability of SARS-CoV-2 is achieved by the E proteins, which are small
hydrophobic membrane proteins that can form cation-selective ion channels [8,9]. Indeed,
when new virions are produced, E proteins promote Ca2+ transport activity at the ER-Golgi
Intermediate Compartment (ERGIC). This increase in Ca2+ concentration in the ERGIC
could activate NLRP3 inflammasome [10], which is a multiprotein complex that induces
an inflammatory form of cell death and the release of pro-inflammatory cytokines, as
IL-1β. This latter is critical for the host response to infections, and can trigger an auto-
inflammatory loop that promotes the typical COVID-19 hyper-inflammatory status [11,12].

M proteins are viral envelope and accessory proteins. They interact with N proteins,
which tightly bind to the viral RNA genome, packing it into a nucleocapsid [13]. This
interaction enhances genome condensation, nucleocapsid stabilization, and viral envelope
shape. In addition to being the most abundant proteins in coronaviruses, N proteins are
also highly immunogenic and are implicated in the modulation of several cell signaling
pathways. This suggests that one of SARS-CoV-2 immune escape mechanisms could be
accomplished by the N protein, contributing to the disease’s pathogenesis [14].

SARS-CoV-2 surface epitopes are recognized by the host immune system. A recent
study highlighted a T helper response against S, M, and N proteins in samples from 20
convalescing COVID-19 patients [15]. In COVID-19, the humoral immune response is
primarily directed against the S-RBD region [16] and the N proteins [17]. Moreover, even
in SARS-CoV-2-infected pediatric patients, neutralizing antibodies directed against the
same proteins were also observed, but in a lower number than adults. [18,19]. Interestingly,
recognition of these antigenic structures and the proper activation of T lymphocytes by
APCs is necessary. In the below section, we discuss the role of APCs in the immune
response against SARS-CoV-2.
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brane (M)—are translocated to the Endoplasmic Reticulum (ER) and then to the Endoplasmic Retic-
ulum-to-Golgi Intermediate Compartment (ERGIC), while the nucleocapsid (N) protein is released 
into the cytoplasm once translated and interacts with the newly produced genomic viral RNA. Pass-
ing through the ERGIC, S, E, and M proteins combine with the nucleocapsid, assembling a mature 
virion that is secreted from the cell via exocytosis. 
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bound to an antigen, each PRR is able to induce a different response. The effectiveness of the 
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Figure 1. Host cell entry mechanism of SARS-CoV-2. Angiotensin-converting Enzyme 2 (ACE2)
and Transmembrane Protease/Serine subfamily 2 (TMRPSS2) are proteins in the host cell surface
that are exploited by SARS-CoV-2 viral spike (S) protein for its entry. Once inside the host cell, the
viral genome of SARS-CoV-2 is released, uncoated, and translated to form the viral replication and
transcription complex. The SARS-CoV-2 structural proteins—namely, spike (S), envelope (E), and
membrane (M)—are translocated to the Endoplasmic Reticulum (ER) and then to the Endoplasmic
Reticulum-to-Golgi Intermediate Compartment (ERGIC), while the nucleocapsid (N) protein is
released into the cytoplasm once translated and interacts with the newly produced genomic viral
RNA. Passing through the ERGIC, S, E, and M proteins combine with the nucleocapsid, assembling a
mature virion that is secreted from the cell via exocytosis.

2. Innate Immunity Response to SARS-CoV-2

Entry of SARS-CoV-2 into host cells activates the immune response via pattern recog-
nition receptors (PRRs) of APCs. These PPRs recognize pathogen-associated molecular
patterns (PAMPs), which are molecular structures belonging to and produced by pathogens,
as well as damage-associated molecular patterns (DAMPs), endogenous molecules pro-
duced or released by damaged cells. In SARS-CoV-2, viral RNA and spike proteins are
the virus’s principal PAMPs [20]. It therefore becomes of particular interest to determine
which PRRs respond to a viral infection like SARS-CoV-2’s.

In general, PRRs are divided into two major classes: membrane-bound and cytoplas-
mic. Viral infections can be detected by both membrane-bound PRRs, such as the family of
Toll-Like Receptors (TLRs) or C-type Lectin-Like Receptors (CLRs), as well as by cytosolic
ones, such as RIG-I-Like Receptors (RLRs) or NOD-Like Receptors (NLRs) [19]. When
bound to an antigen, each PRR is able to induce a different response. The effectiveness of
the molecular signaling is important for the proper activation of the immune system.
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Interaction of a TLR with an antigen induces two TLRs to come into direct physical
contact. This enhances the recruitment of different cytoplasmic molecular adapters, such
as MyD88, known for promoting the activation of inflammatory pathways [21,22].

This recruitment initiates a signaling cascade that induces nuclear re-localization of
cytoplasmic transcription factors such as NF-κB, IRF3, and IRF7, which are among the
most critical factors responsible for COVID-19 progression [23]. In particular, NF-κB is a
complex system of proteins in the cytoplasm which, once activated upon induction, can
translocate to the nucleus and promote the expression of genes involved in both innate
and adaptive immune response. NF-κB also plays a pivotal role in the establishment of the
so-called cytokine storm, via MyD-88-dependent and independent pathways [24]. IRF3
and IRF7, on the other hand, are master regulators of the Type 1 IFN (IFN-1) response, a
cellular line of defense which promotes viral clearance. They can also be activated upon
phosphorylation induced by MyD88 or other molecular adapters of PRRs [25].

These factors promote expression programs related to antiviral responses, including
signaling molecules involved in inflammatory response like cytokines, chemokines, adhe-
sion molecules, and type I Interferons (IFN-1). These molecules, which are released from
cells as a defensive response to a virus, are actually inhibited by SARS-CoV-2 [26].

TLRs have varying affinities to viral components. TLR3, for example, recognizes
viral RNA and is highly expressed on dendritic cells (DCs). By activating NF-κB and
IRF3 signaling pathways, this TLR enhances protective responses against SARS-CoV and
MERS [27]. Similarly, TLR3, TLR7, and TLR8 recognize viral RNA and appear to be
implicated in coronaviruses’ response. Once activated, these TLRs promote the MyD88
pathway, which increases the expression of inflammatory cytokines, especially IL-6, IL-12,
TNF-α, and IFN-α. Interestingly, levels of these cytokines is usually very high in severe
COVID-19 patients [28]. TLR4, on the other hand, recognizes oxidized phospholipids
produced after SARS-CoV-2 infection and the ensuing hyper-inflammatory response.

C-type Lectin-Like Receptors (CLRs), which can bind the glycosylated moiety of S
proteins, are also possibly involved in the response against SARS-CoV-2. Interestingly, these
receptors are mostly expressed by APCs of air mucosa and lung tissue [29], suggestive of
being a route to expedite SARS-CoV-2 spreading. This is especially so, since the interaction
with such receptors promotes virus transfer to ACE2-expressing cells. Another important
role of CLRs is modulation of TLR signaling as well as PRR-mediated responses [30].

Cytosolic receptors like RLRs can also recognize viral RNA [31]. For instance, one of
these RLRs, namely RIG-1, binds to viral 5′-PPP RNA and short dsRNA, enhancing the
function of NF-κB, IRF3, and IRF7. Although SARS-CoV-2 is a positive single-stranded
RNA, it is likely to have similar replication intermediates which can be recognized by
RLRs [32]. The signaling pathways emanating from these receptors lead to the production
of inflammatory cytokines and IFN-1. While IFN-1 establishes an antiviral state through
the expression of Interferon-Stimulated Genes (ISGs) [33], inflammatory cytokines promote
systemic inflammation. In spite of the importance of the cytokines in promoting the
immune system to eradicate a pathogen, imbalances in their production and/or activation
of their receptors culminate in damaging inflammatory events [34]. Moreover, even if
IFN-1 have an important role protecting against the infection, SARS-CoV-2 can inhibit its
signaling by virtue of its ability to express multiple interferon antagonists [35].

2.1. Cytokines

Cytokines are a group of small signaling molecules secreted by immune cells [36].
They can act in autocrine, paracrine, or endocrine fashions. Moreover, they modulate the
activity of other cytokines in an additive, synergistic, or antagonistic manner. Recent studies
described the role of cytokines on host immune response during the SARS-CoV-2 infection.
Some of these cytokines includes interferons (IFNs), interleukins (ILs), chemokines and
Tumor Necrosis Factor (TNF) [36,37]. Some of these cytokines that are involved in SARS-
CoV-2 are provided in the Table 1.
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Table 1. List of cytokines, with their respective families, functions and cellular origin.

Cytokine Family Type and Function Cell Sources

IL-1β IL-1
Pro-inflammatory cytokine; Pyrogenic cytokine;

Induction of Macrophages and T cells proliferation
and differentiation;

Macrophages, monocytes, fibroblasts

IL-1Ra IL-1 Anti-inflammatory cytokine; Inhibition of
IL-1 activity Macrophages, monocytes, fibroblasts

IL-2 IL-2 Major growth factor and effector of T cells T cells

IL-6 IL-6 Pro-inflammatory cytokine; Pyrogenic function; Macrophages, T cells, endothelial cells

IL-10 IL-10 Anti-inflammatory cytokine; Inhibition of cytokine
release and inflammatory response Monocytes, T cells, B cells

IL-12 IL-12
Pro-inflammatory cytokine; Promotion of the Th1

pathway; Suppression of the Th2 pathway;
Activation of NK cells

DCs, Macrophages, Neutrophils

IL-17 IL-17 Promotion of neutrophilic inflammation Activated T cells, NK cells

IFN-α IFN-I Induction of antiviral immunity pDCs, Monocytes, Leukocytes

IFN-β IFN-I Induction of antiviral immunity pDCs, Monocytes, Fibroblasts

IFN-γ IFN-II Pro-inflammatory cytokine; Activation of
Macrophages and NK cells Th1 cells, CTLs, NK cells, activated B cells;

IFN-λ IFN-III Induction of antiviral immunity Activated T cells, NK cells, DCs, Macrophages

TNFα TNF Pro-inflammatory cytokine; Pyrogenic cytokine;
Induction of the expression of adhesion molecules Macrophages, T cells, NK cells

IP-10 CXCL10 Interferon-induced chemokine; Induction of
recruitment of Macrophages, NK cells and T cells Monocytes, Endothelial cells

DCs: Dendritic Cells; pDCs: Plamacytoid Dendritic Cells; NK cells: Natural Killer cells; Th1 cells: cell type 1 T cells.

IFNs are a family of cytokines which play a primary role in defense against pathogens,
particularly viruses. IFNs may be divided into three major classes: type 1, type 2 (IFN-2),
and type 3 (IFN-3). Type 1, represented by IFNα and β, and type 3, represented by IFN-
λ1 and IFN-λ2/3 subtype, are produced by innate immune cells after sensing pathogens
components. They exhibit important antiviral effects primarily through the inhibition of viral
replication. IFN-1 and IFN-3 also promote and amplify antigen presentation to T cells through
the induction of MHC I expression by infected cells. On the other hand, IFN-II (represented
only by IFN-γ) are secreted by activated lymphocytes and NK cells and have different
immunomodulant properties both in innate and adaptive immune responses. Indeed, type 2
IFNs activate macrophages by upregulating MHC II molecules as well as genes involved in
the phagocytosis. In this way, IFN-2 promotes direct antiviral and antimicrobial mechanism,
as well as antigen presentation. Moreover, it regulates Immunoglobins (Igs) class switching in
B lymphocytes to improve pathogens clearance [38–40].

ILs comprise a large family of cytokines, and are mainly involved in cell proliferation,
maturation, differentiation, and may exert both pro- and anti-inflammatory effects [41].
Pro-inflammatory cytokines, such as IL-1β and IL-6, enhance the host defense against
antigens through the promotion of inflammation, signaling the immune system to fight off
invaders. Anti-inflammatory cytokines, such as IL-1Ra or IL-10, dampen the inflammatory
cytokine response [42,43]. As a result of their ability to balance the inflammatory response,
ILs may also modulate immune responses.

Chemokines are cytokines that promote chemotaxis or recruitment of responsive cells
by guiding their migration. For instance, chemokines are needed for the migration of
lymphocytes to the lymph nodes to interact with APCs, or for the recruitment of leukocytes
to the site of infection [44].
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TNFs comprise a superfamily of cytokines, of which TNF-α is the principal member,
eliciting an important role in inflammation as well as in the equilibrium between survival
and death of specific target cells [45]. Indeed, through the stimulation of a class of receptors
containing death domains, TNF-α is responsible for promoting programmed cell death.
TNF-α binds to other classes of receptors, allowing the transcription of adhesion molecules
on vascular endothelial cells and inducing chemokine-mediated recruitment of leukocytes
to the site of inflammation [46].

2.2. Type I IFN Response and SARS-CoV-2

Once the PRRs of APCs have recognized the viral structures, an antiviral, IFN-1
based program is established. IFNs produced at the early stage of SARS-CoV-2 infection
can either bind to receptors present on the same cell and therefore protect this cell from
subsequent infections, or they can bind to receptors on adjacent cells, inducing an antiviral
state [4]. ISGs can then act at different levels, inhibiting the transcription of the viral RNA,
its translation, or post-translational modifications, as well as its entry to other cells [47].
They can also induce pro-apoptotic genes, repress anti-apoptotic genes, and stimulate the
expression of MHC I molecules to potentiate recognition of infected cells by the immune
system. As such, expression of viral genes can be attenuated, and the virus replication
inhibited [48].

IFN-1 and IFN-3 possess antiviral activity and share many immune activities [49].
However, their action and expression are more compartmentalized and restricted to certain
cells, such as DCs, neutrophils, hepatocytes and tissue epithelial cells, typically those of
the respiratory and gastrointestinal tracts [50]. IFN-3 binds to specific cell receptors, called
Interferon Lambda Receptors (IFNLRs) [51], but the signaling pathways following their
stimulation overlaps those triggered by IFN-1. Indeed, both IFN types can induce the
transcription of the same overall repertoire of ISGs [52]. Nonetheless, type 3 IFNs are
secreted at lower concentrations, thus providing a lower potency in the antiviral function.
For this reason, type III IFNs are considered less potent than type I IFNs. However,
ISGs expression by IFN-3 is more sustained and long-lasting, probably because of the
intrinsic characteristics of the IFNLR signaling pathway [53,54]. Moreover, they induce less
inflammatory damage, hence keeping the integrity of epithelial barriers. For this reason,
their action can be more appreciated in infections with low viral loads. SARS-CoV-2, as well
as other human coronaviruses, being highly pathogenic, induce a robust IFN-1 response to
improve antiviral defenses [55,56]. Indeed, it has been demonstrated that viral load has
to7 be considered the cardinal point determining the different contribution of the different
types of IFNs [57].

In order to promoting their own survival and infection, several viruses including SARS-
CoV-2 can, however, overcome IFN-mediated mechanisms [58]. Indeed, coronaviruses
produce multiple interferon antagonists, such as the structural and nonstructural proteins
like nsp1, nsp3, nsp13, nsp14, nsp15, nsp16, ORF3b, ORF6, M and N that interact with
downstream signaling molecules of PRRs, resulting in a non-productive inflammation [59].
For example, nsp1, ORF6, and M protein inhibit the activity of different transcription factors
related to the establishment of an inflammatory response [60]. Thus, during the early stage
of infection, by overcoming IFN responses, SARS-CoV-2 promotes its dissemination and
the continuous stimulus of an hyper-inflammatory innate immune response [61]. This is
responsible for the pathophysiology of COVID-19, whose main symptom is a high titer of
pro-inflammatory cytokines. Moreover, a recent study demonstrated that ACE2 is in fact a
human ISG. This suggests that SARS-CoV-2 could exploit ACE2 upregulation interfering
with IFN responses to promote infection [47].

As such, during the incubation phase, SARS-CoV-2 increases its viral load and impairs
IFN response, eventually leading to inflammation and hypercytokinemia [62,63]. This is
mainly due to the direct activation of NF-κB by the viral N protein, which then leads to in-
creased release of pro-inflammatory cytokines and chemokines. More importantly, delayed
IFN response enhances the recruitment of myeloid immune cells, such as monocyte-derived
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macrophages, leading to their accumulation and activation in lungs, aggravating cytokine
secretion and impairing the pro-repair functions of airway macrophages [62]. Since IFN
signaling also controls the activity of NK cells and stimulates T cells proliferation [64,65],
its deficiency will precipitate other consequences in the early clearance of infected cells
and in the establishment of an adaptive immune response. Taken together, the decreased
antiviral response and hyper-inflammatory immune response can be considered the main
causes for COVID-19 severity [66].

2.3. Cytokine Storm in SARS-CoV-2

COVID-19 disease is mostly characterized by the release of a great amount of inflam-
matory cytokines, an event known as cytokine storm. While pro-inflammatory cytokines
promote pathogen clearance [67], their unbalanced release, along with an unregulated acti-
vation of their respective receptors, can precipitate a deleterious hyper-inflammation [68].
This hyper-inflammation is largely due to the activation of cellular PRRs and the consequent
potentiation of NF-κB, IRF3, and IRF7.

In COVID-19 patients, IL-1, TNF-α, and IL-6 play critical roles in recruiting macrophages,
neutrophils, and lymphocytes to the site of infection. This is then followed by a wave of
pro-inflammatory cytokines that damage endothelial cells, the vascular barrier, and the
alveoli [69]. In affected patients, the outcome of such mounted levels of cytokines is the
development of Acute Respiratory Distress Syndrome (ARDS), a severe lung condition
which can cause respiratory failure, a major cause of COVID-19 mortality [70]. The intense
production of inflammatory cytokines, along with the early delayed production of IFN-1
due to SARS-CoV-2 immunoevasion mechanisms, may modulate some intrinsic functions
of APCs. In particular, modulating their principal activity can compromise a virus-specific
adaptive immunity response [71] (Figure 2).
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(PRRs), localized in the host cell membrane and cytoplasm, sense the viral RNA, triggering the
Interferon (IFN) and NF-κB pathways that lead to the expression of type I IFN (IFN-α and IFN-β) and
pro-inflammatory mediators, like the pro-inflammatory cytokines. However, several components of
SARS-CoV-2 can interfere with these mechanisms: N and M proteins impairs the TLRs activation
through the inhibition of the recruitment of TRIF to the TLR and the inhibition of the nuclear
translocation of NF-κB. They also interfere with the IFN-signaling, along with several viral ORFs and
Nsp3. This leads to the reduced expression of Interferon Stimulated Genes (ISGs). Nsp1, Nsp6, Nsp13,
ORF7a, M proteins, ORF7b and ORF6 can also inhibit the IFN signaling interfering respectively with
the activity of the transcription factor STAT1 and its nuclear translocation.

3. Role of APCs in SARS-CoV-2

As a consequence of impaired adaptive immunity response, one of the most typical
clinical features displayed by COVID-19 patients at the early onset of the disease is lym-
phopenia [72,73]. This is probably due to mechanisms of immune evasion mediated by
SARS-CoV-2 [66].

It is known that the beginning of an adaptive response by T and B lymphocytes is
elicited only if a proper antigen presentation by APCs is carried out. The ability to detect a
pathogen almost instantly at its entry makes these cells the critical determinants of the viral
pathogenicity. Interestingly, DCs are abundant in the respiratory tract, and they probably
play a key role in the antigen presentation of SARS-CoV-2. However, SARS-CoV-2 infection
is characterized by a diminished activity of DCs, both in acute and chronic COVID-19
cases [74], and infected DCs do not exhibit an IFN response, probably due to the viral
inhibition of the transcription factor STAT1 [75,76]. As such, the early capacity to eradicate
the pathogen is severely limited.

Decreased production of IFN-1 by DCs undermines their ability to limit the initial viral
replication and as a consequence weakens the activity of NK cells. Because NKs destroy
virus-infected cells [77], responses of innate immunity are severely suppressed when NK
activities are attenuated. Moreover, low production of IFN-1 evokes reduced maturation
of other DCs. This reduction leads to an unsuccessful T cell activation, and a failure in
initiating a proper response against the virus. Moreover, altered levels of cytokines and
chemokines due to an altered response in DCs’ activity induce a massive up-regulation
of chemotactic messengers, as well as cytokine and chemokine receptors [78]. This event
may drive a high recruitment of inflammatory cells, resulting in hyper-inflammation.
Indeed, despite the lack of an IFN response, pro-inflammatory molecules seem to be widely
expressed by DCs, especially the IP-10 chemokine, whose increased levels are associated
with the exacerbation of ARDS [79].

In addition to DCs, macrophages are key producers of pro-inflammatory cytokine,
and, accordingly, autopsies of COVID-19 patients revealed a more consistent presence of
macrophages and monocytes [80]. As a matter of fact, SARS-CoV-2 can infect monocyte and
macrophages in both an ACE2 dependent and independent way. The latter is possible due to
the viral binding on cell surface molecules, such as CD147, DC-specific intercellular adhesion
molecule 3-grabbing-non-integrin (DC-SIGN)lor Liver/Lymph node-SIGN (L-SIGN) [81].

In monocytes and macrophages infected by SARS-CoV-2, IFN-mediated responses are
suppressed because of the inactivation of the transcription factor IRF-3. This leads to an
alteration in the secretion of key pro-inflammatory molecules [14]. Impaired IFN-responses
could also be due to the interaction of SARS-CoV-2 protein Nsp5 with an epigenetic regula-
tor that regulates MHC II expression, which then limits antigen presentation and cytokine
production [82–84]. Indeed, an excessive upregulation of neutrophils and monocyte-
attractant chemokines was reported in COVID-19 patients [85]. These chemokines play
a crucial role in promoting local inflammation and contribute to the clinical outcome of
SARS-CoV-2 infection [80], potentiating the cytokine storm.

In macrophages, SARS-CoV-2 could also induce a form of cell death called pyroptosis
via a viral accessory protein known as ORF-8 [86]. Indeed, this protein largely determines
the activation of NLRPs in SARS-CoV infections and leads to the secretion of IL-1β, an
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inductor of pyroptosis [87]. Given that ORF-8 is highly similar in both SARS-CoV and
SARS-CoV-2, it is possible that similar mechanisms occur in macrophages of COVID-19
patients [26]. However, this requires more research to be validated.

In COVID-19 patients, B cells release virus-specific antibodies that last for at least
12 weeks, and this is followed by release of virus-specific IgGs that lasts for longer
times [88,89]. This is one way by which B cells are decisive components in the resolu-
tion of the disease [89]. Higher titers of antibodies against SARS-CoV-2 N- and S-proteins
are reported in severely affected patients. Indeed, severe COVID-19 patients have been
successfully treated with convalescent plasma, which appears to improve lung function
and reduce the inflammatory response [90]. Now that the number of convalescent patients
has increased, the FDA issued on 23 August 2020 an emergency use authorization for the
use of this approach to treat hospitalized patients. Nevertheless, after the isolation and
characterization of blood samples from eight different COVID-19 patients, a surprising
new report identified anti-SARS-CoV-2 neutralizing antibodies which could be considered
species-specific viral inhibitors. The crystal structure analysis revealed that their binding to
the SARS-CoV-2 RBD causes a steric hindrance which inhibits viral particles from binding
to ACE2 receptors. These findings suggest that these neutralizing antibodies may be new
candidates for the development of new treatments for SARS-CoV-2 [91] Figure 3.
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SARS-CoV-2. A macrophage (A), a Dendritic Cell (B) and a B cell (C) are represented, as well as the
effects that SARS-CoV-2 induces in their activity. (A) In Macrophages, the entry of SARS-CoV-2 can
also be mediated DC-specific intercellular adhesion molecule 3-grabbing-non-integrin (DC-SIGN) or
Liver/Lymph node-specific intercellular adhesion molecule 3-grabbing integrin (L-SIGN). The viral
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ORF6 inactivates the transcription factor IRF3, suppressing IFN-mediated responses and inducing an
altered secretion of pro-inflammatory mediators. This results in an excessive release of chemokines,
which attracts pro-inflammatory cells and other monocytes, also promoting other cells infection.
Nsp5, instead, acts against an epigenetic regulator which regulates the expression of Major Histo-
compatibility Complexes II (MHC II), limiting antigen presentation. Moreover, the ORF8 induces
pyroptosis through the activation of the inflammasome. (B) In Dendritic Cells, the inhibition of the
activity of STAT1 reduces the expression of ISGs and increases the expression of the chemokine IP-10.
This leads to the recruitment of inflammatory cells, and also alters their capacity to activate T cells.
(C) B cells release proteins against N and S proteins.

4. APCs and Children Response to SARS-CoV-2: Any Relation?

Molecular mechanisms governing APCs’ activity following SARS-CoV-2 infection,
and suggests a possible incapacity of these cells to inhibit the spreading of the virus.
This consequently plays a central role in the establishment of the most common features
of COVID-19. Interestingly, although people of all ages are susceptible to SARS-CoV-2,
previously healthy children seem to sustain a milder form of COVID-19, resulting in lower
morbidity or mortality.

However, different hypotheses were suggested to explain the lower susceptibility
of children. It was proposed that, compared to adults, children have a lower density or
different conformation of ACE2 in their airways [92–94]. Therefore, these differences could
then mean that the probability of its binding are reduced, leading to a lower spreading of
the virus. Interestingly, ACE2 expression increases with age, with adults showing higher
expression than adolescents, who in turn has haveh igher expression than children [93].

Another hypothesis suggests that the immature immune system of children and could
be helpful in developing a less violent specific immune response. Ultimately, an important
role of cross-protection was shownb y vaccinations was hypothesized. For example, and it
was shown that BCG vaccination, a vaccine primarily used against tuberculosis, could be
responsible for an increased expression of PRRs [95]. This could be beneficial in facilitating
the detection and elimination of the virus or even allowing a certain amount of antiviral
response despite viral immuno-evasion mechanisms [96]. This is due to the fact that
innate immune cells may have a memory phenotype following the encounter with an
antigen, a phenomenon referred to as trained immunity (TRIM). Contextually, metabolic,
mitochondrial and epigenetic reprogramming prime immune cells to better respond to
different pathogens for as long as they last [97]. Thus, frequent vaccination of children
could decrease the risk of SARS-CoV-2 infections in children.

Despite the fact that SARS-CoV-2 infection has a mild or uncomplicated course in
juveniles, multisystem inflammatory syndrome in children (MIS-C) is a rare clinical man-
ifestation which may arise in the pediatric COVID-19 patients [98–100]. MIS-C usually
occurs four to six weeks after the infection, and it is marked by an increase in inflammatory
markers and consequent high fever as well as organ dysfunction, partially suggestive of
Kawasaki disease. MIS-C is not characterized by severe respiratory symptoms, and it has a
clinical outcome that is very different from ARDS, which could be developed by adults fol-
lowing SARS-CoV-2 infection. The different innate immune response could be responsible
for the development of such different conditions, following the same infection, in adults
and children [101]. Another glancing difference between adults and children infected by
SARS-CoV-2 is represented by the reduced antibody response in children. As a matter of
fact, adults produce high titers of anti-spike (S) IgG, IgM, and IgA, and anti-nucleocapsid
(N), whereas children commonly display a lower level of specific antibodies [15,102,103].
Children predominantly generate anti-S IgG, with lower titers of anti-N IgG than the adults,
low titers of anti-S IgM and varying titers of anti-S IgA antibodies.

It should be pointed out that the lack of nucleocapsid-specific antibodies suggests
a lower spreading of the virus in juveniles [19]. This evidence implies a more robust
innate immune response in children, which does not need the boost of a strong adaptive
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response [104]. This consideration is also supported by the fact that a strong T cell response
for SARS-CoV-2 is not usually developed in children.

For all the above-mentioned reasons, the different nature of the innate immune re-
sponse should be considered a determinant of the organism response to the virus. Particu-
larly, the primitive status of children’s immune system should be considered as a potential
significant contributor to their lower susceptibility to SARS-CoV-2. Indeed, this system is
often considered too immature to properly fight most diseases, but immunological imma-
turity, and consequently APCs’ immaturity, could be considered a benefit in those diseases
characterized by excessively uncontrolled immune response. For instance, neonatal APCs
show immature markers, and often inhibited by regulatory T cells, and produce low levels
of cytokines. Since the main symptom of COVID-19 is the establishment of an uncontrolled
cytokine storm, it could be hypothesized that the presence of immature APCs in juveniles
may be responsible for a mild inflammatory response that is less severe compared to adults.
In fact, children are not immune to the virus; they just control it better. Interestingly,
neonatal DCs are characterized by lower MHC II levels and co-stimulatory molecules
with the consequent reduction of endocytic activity, which could decrease the number of
viral particles involved in the entry, infection, and presentation to T cells [105]. Neonatal
DCs show a defective production of cytokines in response to TLR activation, probably
because of some differences in its downstream signaling pathway [106]. Contextually, T
cell co-stimulation after antigen presentation, needed for APC full activation, is weak, with
a consequent reduced clinical severity of SARS-CoV-2 infection in children. However, these
diminished activities are usually overcome with age [106,107].

In this context, SARS-CoV-2 infected juvenile DCs expressed slightly higher levels
of IFN genes than adult DCs. This could promote a more efficient antiviral response
in children even during COVID-19, assisting the viral clearance of infected cells and
reducing the number of cell infiltrate in lungs [78]. Juvenile macrophages can also play an
important role in children immune response against SARS-CoV-2. They are characterized
by a defective downstream signaling pathways of TLRs, where a lower expression of
MyD88 decreases the production of TNF-α and IL-6 [108].This could be due to the role
of macrophages at the earliest stages of life, when they are mainly necessary for tissue
remodeling rather than immune response [109]. Moreover, neonatal monocytes are also
capable of acting like suppressor cells towards T lymphocytes, since they have a distinct
reactivity to inflammatory stimuli as compared to adult monocytes [110–112]. However,
the most striking feature found in children with SARS-CoV-2 is that peripheral blood
lymphocyte levels remain in a normal range. This suggests that an active adaptive immune
response seems to be promoted, although its magnitude is lower than in adults [113,114].
This could be due to the constitutively higher presence of lymphocytes in children, probably
due to the frequent infections contracted in childhood and the high number of lymphoid-
based hematopoietic stem and progenitors cells, which promote lymphopoiesis [115]. For
this reason, higher levels of T and B cells probably have a considerable suppression capacity
in children. Moreover, B lymphocytes producing IL-10 and IgM-type antibodies promote
protection through the IgMs, while IL-10 reduce immune-mediated tissue damage [116].
Particularly, it has been shown that memory B Cells developed during previous infections,
when properly stimulated, differentiate into plasma cells and rapidly secrete IgMs which
can bind and react to different pathogens. Differently, adult MBCs are likely to promote
the secretion of antigen-specific antibodies, therefore being less able to adapt to new
antigens [106,115,117].

Notwithstanding, all these assumptions given are far from being final or conclusive.
A closer look at the characteristics of thjevenile immune system, together with a compre-
hensive understanding of the viral pathogenic mechanisms acting in such an immature
system, could be the key to fully understand COVID-19 pathophysiology in children, and
the consequent differential mortality rates. It is only the beginning of our understanding
of COVID-19, which appears to not only be a respiratory disorder, but rather a systemic
disease involving many organs. Indeed, in the context of SARS-CoV-2 infection and the
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immune system function, more research is critically needed, and more efforts need to be
concerted in order to have a better understanding of, and eventually develop a treatment
for SARS-CoV-2.
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