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Coronary artery diseases (CAD), as a leading cause of mortality around the world, has attracted the researchers’ attention for years
to find out its underlying mechanisms and causes. Among the various key players in the pathogenesis of CAD cytokines,
microRNAs (miRNAs) are crucial. In this study, besides providing a comprehensive overview of the involvement of cytokines,
growth factors, and miRNAs in CAD, the interplay between miRNA with cytokine or growth factors during the development of
CAD is discussed.

1. Introduction

Coronary artery disease (CAD) involves all diseases in
which blood flow to the heart muscles is restricted. Plaque
formation resulting from coronary atherosclerosis is the
main reason for blood flow restriction. Destabilization and
subsequent rupture of plaque might produce acute coronary
syndrome (ACS), which is classified into unstable angina
(UA), ST-segment elevation myocardial infarction (STEMI),
and acute myocardial infarction (AMI) which differ in the
extent of involvement of cardiac muscles and release of car-
diac markers [1].

Cytokines, a broad category of small polypeptides of less
than 80 kDa including chemokines and growth factors that
are released from cells locally and potentially contribute to
the initiation of coronary artery disease [2]. Inflammatory
cytokines and growth factors are involved in various path-
ways involved in the development of CAD including STAT,
MAPK, and SMAD [3, 4].

miRNAs are a class of small (20-25 nucleotides) noncod-
ing RNAs which affects various molecular pathways, altering
gene expression and regulating cytokine production [5]. The
mechanism by which miRNA regulates gene expression
includes miRNAs binding to the 3′ untranslated region
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(UTR) of the target gene, destabilizing the mRNA, transla-
tion repression thereby inhibiting protein synthesis [6]. To
protect miRNA from degradation by plasma enzymes, they
are packed in exosomes, proteins, and most abundantly in
CD31+ microparticles, which are released from the endothe-
lial cells (ECs) and platelets [7–9]. Besides this packaging
mechanism, miRNAs which are highly stable in plasma
makes it a suitable choice for use as diagnostic biomarkers
for various disorders [10].

Both cytokines and miRNAs are components of the sig-
naling pathways that carry out essential cellular functions,
and in some cases, drive disease progression. In this review,
the distinct contribution of cytokines, growth factors, and
miRNAs in CAD is presented, and then the relationship
between miRNA and cytokine or growth factors in CAD pro-
gression is reviewed.

2. CAD-Related Cytokines and Growth Factor

It is well established that inflammation is an integral part of
CAD. Therefore, inflammatory cytokines in the peripheral
blood produced after caspase-1 pathway activation from
macrophages and lymphocytes, are important players in the
progression of CAD [11]. Serum levels of T helper cytokines,
including proinflammatory Th1 type and anti-inflammatory
Th2 type cytokines, are good CAD risk indicators. In general,
stimulation of Th1 and Th2 suppression contributes to the
development of CAD following type 2 diabetes mellitus
[12]. Th1 type, especially interferon-gamma (IFN-γ), has a
prominent role in the initiation of CAD and transforming
stable angina to unstable angina via macrophage activation,
weakening of the atherosclerotic plaque’s fibrous cap and
plaque rupture [13, 14]. In contrast, Th2 cytokines such as
interleukin IL-4 and IL-10 deactivate macrophages and stabi-
lize the plaque [15].

Circulating levels of IL-1β and its receptor are a signifi-
cant marker of atherogenesis and CAD [11, 16]. IL-18 is
another cytokine that is related to the severity of CAD [17].
In one clinical study, patients with ACS had not only higher
IL-1β and IL-18 but also IL-6, a downstream cytokine to the
two cytokines above than in patients with stable CAD [18].
However, the role of IL-6 in CAD is complex since elevated
plasma levels of IL-6 are associated with cardiovascular risk
and formation of atherosclerotic plaque, it could exert an
inhibitory effect on other inflammatory cytokines such as
IL-1 [19]. An in vitro study on the peripheral blood mononu-
clear cells of patients with CAD showed that expression of
cytokines including CCL2, CXCL8, CXCL9, CXCL10, IFN-
γ, and IL-10 increase in both stable or unstable angina
(UA) groups. The only difference between these two groups
was lower IL-10 mRNA expression in the UA group [20].
The ratio of IL-18/IL-10, as well as levels of C-reactive pro-
tein (CRP), a cytokine mediator, is considered diagnostic
tools for premature CADwith high sensitivity and specificity.
An elevated CRP represents more severe CAD [21].

Bolez et al. demonstrated that increased plasma level of
INF-γ, tumor necrosis factor-alpha (TNF-α), IL-1β, and IL-
8 cytokines, as well as reduced secretion of IL-2 from acti-
vated T-cells and IL-4 from T helper cells (Th2 type), is a

characteristic of coronary artery ectasia, a kind of CAD dis-
tinguished by at least 1.5-fold expansion of the artery [22].
TNF-α with genetically altered promoter region affects the
development of CAD in patients suffering from nonalcoholic
fatty liver disease. Patients carrying TNF-α-238 guanine to
alanine (GA) polymorphism are more prone to the develop-
ment of CAD [23].

A study of 180 patients with stable angina showed
NOGO-B/NUS1 and TL1A/DR3 cytokines were increased
in CAD. The ADAMTS-5 cytokine, which is expressed in
the macrophages during the differentiation of monocytes to
macrophages, were increased in CAD while it was reduced
in patients with peripheral artery disease (PAD). TNF-like
cytokine 1A (TL1A) axis, after interaction with its receptor,
death receptor 3 (DR3), initiates proinflammatory pathways
in atherosclerosis [24].

Clinical studies also showed there is a direct correlation
between increased levels of proinflammatory cytokines
(IFN-γ, TNFα, IL-2, IL-6, IL-9, and IL-17) and anti-
inflammatory cytokines (IL-4 and IL10) with the severity
of CAD determined by coronary angiography [25, 26]. In
a retrospective case-control study, IL-5 level was associated
with coronary heart disease. The cytokine, which was most
strongly associated with the risk of coronary heart disease,
was IL-6 [27]. Increased number of Th9 cells and its related
cytokine, IL-9, were also associated with atherosclerosis
through mediating infiltration of inflammatory cells into
the atherosclerotic plaques [28]. Suppression of transform-
ing growth factor-beta (TGF-β) cytokine is another charac-
teristic feature of CAD [29]. A meta-analysis of prospective
studies showed that there was no significant correlation
between heart disease and the levels of soluble forms of
CD40 ligand (sCD40L) and matrix metalloproteinase
(MMP)-9 cytokines [30].

3. CAD-Related miRNAs

Numerous studies have shown that miRNAs are involved in
CAD and related conditions owing to the role of miRNAs in
regulating the function of cells, including endothelial cells
(EC), smooth muscle cells (SMC), and macrophages, as well
as in inflammation and other metabolic processes. The
expression of miRNAs is specific to the cell type. For exam-
ple, miRNA-222 is expressed in endothelial cells and vascular
SMCs, 126-3p, and miR-21 are detected in ECs of vascular
tissues, platelets, and bone marrow-derived cells and miR-
499 and miR-133a are expressed in muscle cells [31–33]. In
CAD and related diseases, expression of these miRNAs is
up or downregulated. An example is the upregulation of
fibrosis-related miRNAs (miR-29b) and inflammation-
related miRNAs (miR-124a, miR-146a, miR-155, and miR-
223) in abdominal aortic aneurysm (AAA) [34]. After upreg-
ulation, some miRNAs are released into the circulation. For
example, miR-499 and miR-133a are released into the blood
following myocardial injury [32, 33]. The circulating levels of
miRNAs, as illustrated in Table 1, increase or decrease in
response to various coronary diseases. These changes in the
level of miRNAs in extracellular fluids and circulation open
new doors for the early detection of CAD. A number of these
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Table 1: miRNAs, cytokines and growth factors involved in the coronary artery disease.

Increase in level Decrease in level

miRNA
Cytokine &
growth factor

miRNA
Cytokine &
growth factor

CAD

miR-1 miR-17-5p miR-93 INF-γ miR-10a miR-29a/b

TGF-β

miR-21 miR-133a-3p miR-502 TNF-α miR-17 miR-30e-5p

miR-23a miR-146a/b miR-486 IL-1β miR-19a miR-92a/b

miR-24 miR-191-3p miR-454 IL-18 miR-22 miR-93-5p

miR-25 miR-361-5p miR-765 NogoB/Nus1 miR-23a miR-126-5p

miR-33a miR-560-5p miR-487a IL-8 miR-31 miR-140-3p

miR-34a miR-574-5p miR-221 TL1A/R miR-126 miR-181d

miR-92a miR-615-5p miR-222 Adamts5 miR-133 miR-199a

miR-122 miR-313-5b miR-223 CRP miR-145 miR-195

miR-133a miR-370 miR-206 miR-147 miR-222

miR-126 miR-106b miR-340 miR-149 miR-342

miR-134 miR-103a miR-451 miR-150 miR-378

miR-135 miR-199a miR-624 miR-155 miR-424

miR-191 miR-208a miR-545 miR-182 miR-584

miR-197 miR-502 miR-215 miR-720

miR-2861

CA

miR-21 miR-99a IL-1β miR-100 miR-1181

—miR-92a miR-370 IL-6, IL-9 miR-8059 miR-6816-3p

miR-486-5p TNF-α miR-138-2-3p

UA

miR-320a miR-92a miR-1 IL-1β miR-19a/b IL-2

miR-133a miR-186 miR-126 IL-2, IL-8 miR-126 IL-4

miR-208b miR-210 miR-451 IL-9, IL-10 miR-132 IL-10

miR-135a miR-483 miR-486a INF-γ miR-147

miR-140-3p miR-499 IL-17 MCSF miR-150

miR-142-5p miR-134a-5p MCP-1

AMI

miR-208 miR-133a miR-21 IL-6 miR-106

—

miR-34a miR-320a miR-92a IL-1Ra miR-197

miR-423 miR-486a miR-1 TNF-α miR-223

miR-126 miR-126-5p miR-133

miR-29b miR-145-3p miR-192

miR-194 miR-17-5p miR-328

miR-499

STEMI

miR-1 IL-2 miR-15a-5p miR-320a

IL-6

miR-30d IL-6 miR-19a-5p miR-134-5p

miR-133 IL-8 miR-30e-5p miR-25-5p

miR-208 IL-10 miR-30a-5p miR-16-5p

miR-423 miR-101-3p miR-183-5p

miR-499 miR-101-5p miR-10a

miR-328-5p miR-107

miR-744-5p miR-375

miR-103a-3p

miR-1307-5p

miR-409-5p

miR-181b-5p

miR-181a-5p

CAD: coronary artery disease; CA: coronary atherosclerosis; UA: unstable angina; AMI: acute myocardial infarction; STEMI: ST-segment elevated myocardial
infarction; Ra: receptor antagonist; MCSF: macrophage colony-stimulating factor; MCP-1: monocyte chemoattractant protein-1; INF-γ: interferon-gamma,
TNF-α: tumor necrosis factor-alpha; IL: interleukin; CRP: C-reactive protein.
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miRNAs and their alteration in response to disease are eval-
uated clinically for diagnostic purposes.

Among these miRNAs, some have more sensitivity and
specificity to the disease model. For example, increased
levels of miR-21, miR-92, miR-126, and miR-132 are highly
specific to the UA [35–40], while a combination of miR-126,
miR-197, and miR-223 is specific for AMI [41]. There are
confounding factors in the measurement of miRNA levels
that should not be forgotten. Studies have shown that many
factors, including administration of heparin, aspirin, anti-
platelet agents, statins, and angiotensin-converting enzyme
(ACE) inhibitors before blood sampling from patients, as
well as endogenous heparin can affect miRNA quantification
[42–47].

Measuring the circulating levels of some miRNAs enables
the assessment of disease severity. For example, expression of
miR-574-5p in CAD increases proportionally to the severity
of the disease [48]. Furthermore, coronary artery calcification
leads to reduced expression of miR-138-2-3p, miR-1181,
miR-6816-3p, and miR-8059, among them the correlation
between miRNA-8059 expression and the level of coronary
calcification predicts the severity of the disease [49].

Some miRNAs, such as miR-126-3p, miR-132, miR-140-
3p, miR-197, miR-210, and miR-223 are not only involved in
the various coronary diseases but also could predict the mor-
tality in angiographically documented CAD patients [50].

Some miRNAs are correlated to the composition of ath-
erosclerotic plaques. For example, miR-100 is released from
vulnerable coronary plaques, and its plasma levels are associ-
ated with plaque composition as determined by integrated
backscatter intravascular ultrasound (IB-IVUS). miR-100 is
strongly correlated with the percentage of lipid volume and
negatively correlated with fibrous volume [51].

4. Regulating CAD-Related miRNAs by
Cytokines and Growth Factors

While many studies dealt with the role of miRNAs or cyto-
kines in CAD, it should be noticed that the contribution of
both miRNA and cytokine in CAD is more complicated since
these two factors affect each other’s expression (see Figure 1).
Researchers have been trying to elucidate the mechanism by
which miRNAs affects CAD and related disease processes by
studying the most probable target genes for CAD-related
miRNAs using targetscore algorithm [52]. Paying attention
to the relationship between miRNA, cytokines, and growth
factors not only shed light on these mechanisms but also
leads to a better understanding of whether miRNA or cyto-
kine and growth factors are more suitable targets for CAD
therapeutics.

4.1. Growth Factors. Growth factors are important cytokines
that could alter miRNA expression. Treatment of ECs with
vascular endothelial growth factor (VEGF) results in the
induction of miR-17–92 cluster and alteration of miRNA
expression [53]. Treatment of human umbilical vein endo-
thelial cells (HUVECs) with VEGF and beta fibroblast
growth factor (bFGF) upregulated miR-132 3–6h after treat-
ment via induction of cAMP-response element-binding pro-

tein (CREB), an essential element for miR-132 transcription
[54]. Suarez et al. showed that treatment of HUVECs with
proinflammatory cytokine, TNF, increased the expression
of miR-17-5p, miR-31, miR-155, and miR-191 [55]. Expo-
sure of ECs to IL-3 or bFGF, activators of the STAT5 signal-
ing pathway, decreased the expression of miR-222 [56].

4.2. Inflammatory Cytokines. A correlation exists between
miRNAs and proinflammatory cytokines so that signal inten-
sity of monocyte chemoattractant protein (MCP-1) cytokine
decreased with increasing expression of miR-22, miR-124,
miR-146a, and miR-223 [34, 57]. Likewise, such relation
exists between TNF-α and miR-126 and miR-19b, or TGF-
β and miR-146a [34, 58]. Additionally, IL-1β induce miR-
146a/b expression in ECs [59]. THP-1 cells, a monocytic cell
line, when treated with IL-1β, activated TLR/IL-1R signaling
which leads to NF-κB activation and increased miR-146a
expression up to 15-fold during 24 h [60]. Stimulating miR-
29 mimics-transfected immortalized human bronchial epi-
thelial cells (BEAS-2B) as a model of allergic inflammation
with TNF-α and IL-4 cytokines for 48 hours lead to both
upregulation of endogenous miR-29 expression and increas-
ing soluble ST2, an inflammation-related gene and a receptor
for IL-33. However, miR-29 overexpression decreased solu-
ble ST2 mRNA expression [61].

5. Regulating CAD-Related Cytokines and
Growth Factors by miRNAs

miRNAs regulate cytokine and growth factors production
and release by two distinct mechanisms: they directly bind
to 3′UTR target site in cytokine, or they affect binding pro-
teins containing adenine and uridine elements (ARE-BPs)
and consequently affect cytokine or growth factors stability
and production. Some ARE-BPs include tristetraprolin
(TTP), AU-rich binding factor 1 (AUF1) and members of
the Hu protein R (HUR) family, which exist in some, but
not all cytokines [62].

5.1. VEGF. miRNAs might directly target growth factors.
CAD-related miRNAs including miR-16, miR-20a, miR-
20b, let-7b, miR-17-5p, miR-27a, miR-106a, miR-106b, miR-
107, miR-193a, miR-210, miR-320, and miR-361, have been
recognized to target VEGF and bind VEGF 3′UTR through
nt160–195 binding site [63]. Among CAD-related miRNAs,
miR-15a, miR-16, miR-93, miR-200b, miR-361-5p, and
miR-424 repress VEGF expression by affecting VEGF recep-
tors, while miR-23, miR-126, miR-132, and miR-221 nega-
tively regulate VEGF signaling pathway by targeting
downstream of VEGF [64, 65]. In addition, miR-23a secreted
from endothelial progenitor cells (EPCs) of CAD patients
targets epidermal growth factor receptor (EGFR) and sup-
presses VEGF [66]. miRNA-31 and miRNA-720 block
FAT4 and thromboxane A2 receptors of EPCs in CAD
patients [67]. Since thromboxane A2 receptors have an
inhibitory effect on VEGF signaling [68], miRNA-31 and
miRNA-720 indirectly increase VEGF-induced angiogene-
sis. Fish et al. found that the response of ECs to VEGF is
regulated by miR-126. The beneficial effect of miR-126 on
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this cytokine is the inhibition of Sprouty-related protein
SPRED1 and phosphoinositol-3 kinase regulatory subunit
2 (PIK3R2/p85-beta), two inhibitors of VEGF pathway,
and therefore preserving VEGF signaling and maintaining
vascular integrity [69]. In other disease models, such as
tumor angiogenesis, the elevation of VEGF expression and
secretion is observed following transfection of miR-181a in
chondrosarcoma cell line JJ [70]. It worth to notice that
the levels of miR-181a reduction in ACS is not in favor of
angiogenesis. miR-103 also decreased VEGF expression
and vascular density in rats which underwent middle cere-
bral artery occlusion [71]. Transfecting SK-N-AS cell line
with miR-93-5p altered expression of VEGF and IL-8, show-
ing that the 3′UTR region of these cytokines is a target for
miR-93-5p [72].

5.2. TGF-β. TGF-β signaling, a critical factor for putting the
stable atherosclerotic plaques at the risk of rupture, is affected
by CAD-related miRNAs such as miR-21, miR-25, and miR-
106b via the mechanism of affecting CDKN1A/p21 and
BCL2L11/Bim [73–75]. miR-21 targets TGF- β and bone
morphogenic protein (BMP) which results in the induction
of contractility in vascular smooth muscle cells [76, 77].
Increasing miR-133a expression suppresses TGF-β1 and

connective tissue growth factor (CTGF) expression. CTGF
is an important cytokine produced from fibroblasts and
downstream for TGF-β1 profibrotic pathway [78]. There-
fore, miR-133a exerts a cardioprotective effect via suppress-
ing this pathway and reducing fibrosis in MI [79].

5.3. Interleukins. Some CAD-related miRNAs, including
miR-21, miR-126, miR-146a, miR-155, and miR-223 are
considered to be inflammatory-related miRNAs [80]. There-
fore, it is highly probable that these miRNAs affect the
inflammatory cytokines to pull the inflammatory processes
together. During atherosclerosis, apoptotic bodies are
released from ECs which contain miRNAs such as miR-
126. The release of these apoptotic bodies (or miR-126)
stimulates CXCL12 production [81]. miR-146a/b affects
toll-like receptor 4 (TLR4) signaling through regulating IL-
1 receptor-associated kinase 1 (IRAK1) and TNF receptor-
associated factor 6 (TRAF6), two downstream molecules to
TLR4 [60, 82]. TLR4 stimulation by miRNAs is necessary
since activation of this protein initiates signaling cascades,
which lead to proinflammatory cytokine production [83]
which is the reason behind the regulatory role of miR-146a
in inflammation during CAD progression [84]. Transfecting
human vascular endothelial cell line (EA.hy926 cells) with

3′UTR region

Cytokine receptor

Cytokine

Thromboxane A2 
receptor

Cytokine
inhibitor

CREB

ARE-BPs

CDKN1A/p21

STAT5

RCL2L11/Bim

TLR-4

HIF-1a

IRS-1

mTOR

NF-𝜅B

miRNA

ARRB2/PPE4

IKKB

EPC

Figure 1: The interplay between miRNAs and cytokines involved in CAD. Cytokines can alter the expression of miRNAs through the
induction of miRNA transcription factors such as CREB or activating signaling pathways such as STAT5 and NF-κB. Conversely, miRNAs
change the production, stability, and release of cytokine via direct targeting of 3′UTR region of cytokine or cytokine receptors, affecting
ARE-BPs, CDKN1A/p21, BCL2L11/Bim, IRS-1, and mTOR mediators, and activating or blocking signaling pathways such as IKKβ/NF-
κB, IRRB2/PPE4/NF-κB, TLR4, and HIF-1a. An indirect effect of miRNA on cytokines is mediated by blocking thromboxane A2 receptors
of EPCs which inhibits cytokine signaling. CREB: cAMP-response element-binding protein; ARE-BPs: binding proteins containing
adenine and uridine elements; TLR4: toll-like receptor 4; IKKβ: IκB kinase β; IRS-1: insulin receptor substrate 1; mTOR: mammalian
target of rapamycin.

5Journal of Immunology Research



miR-146 mimic showed that this miRNA contributes to
the inflammatory processes in sepsis disease via decreasing
expression of inflammatory cytokines, including TNF-α,
IL-6, and intercellular adhesion molecule (ICAM)-1, and
E-selectin [85]. Transfecting natural killer cells with lentiviral
vectors expressing miR-155 decreased the pro-inflammatory
cytokines such as IL-1, IL-6, TNF-α, and IFN-γ [86]. A pos-
itive correlation also exists between IL-17 production by CD4
+ T cells and miR-155 expression [87].

A study on human nasal epithelial cells (JME/CF15)
treated with IL-13 as an in vitro model of allergic rhinitis
showed there is association between miR-16 and inflamma-
tory reactions so that miR-16 upregulation in JME/CF15 cells
leads to inhibition of cytokines including granulocyte-
macrophage colony-stimulating factor (GM-CSF), eotaxin,
IL-1β, IL-6, and IL-10. The mechanism of the effect of
miR-16 on inflammatory cytokines is governed by blocking
IKKβ/NF-κB signaling pathways because miR-16 inhibit
either IκB kinase β (IKKβ) expression or NF-κB activation
[88]. Intranasal administration of an inhibitor of miR-21
(anti-miR-21 antagomir) to ovalbumin sensitized BALB/c
mice, as a model of acute bronchial asthma, reduced the
levels of IL-4 and airway inflammation [89]. A recent study
found that transfecting CD4 T cells with miR-31 reduce the
expression levels of IL-2 and IL-4 via targeting NF-κB and
HIF-1α [90]. miR-150 is a negative regulator of IL-2 due to
targeting ARRB2, repressing ARRB2/PDE4 and inhibiting
NF-κB pathway [91].

5.4. IFN-γ.miR-21 transfected w.t. B6 T cell showed upregu-
lation of proinflammatory cytokines including TNF-α and
IFN-γ [92]. IFN-γ expression is also negatively regulated by
miR-24 and miR-29 due to the presence of a target site for
these miRNA on IFN-γ-3′UTR [93, 94]. Systemic adminis-
tration of miR-17 or miR-19b also produces inhibition of
IFN-γ [95]. In addition, expression of IFN-γ in CD4+ T cells
increase after knockdown of miR-126 via the mechanism of
enhancing the expression of insulin receptor substrate 1
(IRS-1) as a target for miR-126 [96].

5.5. TNF-α. miR-19b attenuate levels of TNF-α suggesting
that this miRNA decrease TNF-α-induced apoptosis of ECs
[58]. In HIV-infected cardiovascular disease patients, miR-
210 is positively related to the expression of TNF-α [97].
miR-17-3p and miR-31 target ICAM-1 and E-selectin pro-
teins so that transfecting HUVECs with these miRNAs
mimics and then stimulation with TNF decreased TNF-
induced expression of these two cell surface adhesion mole-
cules [55]. Another miRNA that inhibits ICAM-1 expression
to mediate inflammation in atherosclerosis is miR-222 which
is carried by endothelial microparticles [98]. Increased miR-
451 expression downregulates macrophage migration inhib-
itory factor (MIF), a multipotent cytokine with regulatory
roles in inflammatory processes, in tumor biopsies of gastric
cancer patients [99, 100]. miR-100 indirectly affects cyto-
kines so that it inhibits the mammalian target of rapamycin
(mTOR) in mice with hindlimb ischemia [101]. As it was
previously shown that suppression of mTOR by rapamycin
reduces cardiac TNF-α concentration, miR-100 might exert

the same decreasing effect on TNF-α during CAD [102].
Some CAD-related miRNAs including miR-1, miR-133,
miR-146a, miR-155, miR-206, miR-208, miR-431, miR-486,
miR-499, and miR-181a alter the gene expression of proin-
flammatory cytokines such as IL-6 and TNF-α during
inflammation in sarcopenia [103].

6. Conclusions

Although a large number of studies confirmed that alter-
ation in the levels of specific cytokines, growth factors, and
miRNAs represent CAD diseases, developing new therapeu-
tics targeting cytokines and growth factors or miRNA has
not been promising since cytokines and miRNA have a
complicated network of interactions in CAD. In this review
of CAD-related cytokines, growth factors, and miRNAs, the
interaction of cytokines such as growth factors and inflam-
matory cytokines on CAD-related miRNAs is elucidated,
which could act as biomarkers or potential targets for
therapeutics.
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