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ABSTRACT Genomic selection (GS) is becoming an important selection tool in crop breeding. In this study,
we compared the ability of different GS models to predict time to young microspore (TYM), a flowering
time-related trait, spike grain number under control conditions (SGNC) and spike grain number under
osmotic stress conditions (SGNO) in two wheat biparental doubled haploid populations with unrelated
parents. Prediction accuracies were compared using BayesB, Bayesian least absolute shrinkage and
selection operator (Bayesian LASSO / BL), ridge regression best linear unbiased prediction (RR-BLUP),
partial least square regression (PLS), and sparse partial least square regression (SPLS) models. Prediction
accuracy was tested with 10-fold cross-validation within a population and with independent validation in
which marker effects from one population were used to predict traits in the other population. High
prediction accuracies were obtained for TYM (0.51–0.84), whereas moderate to low accuracies were ob-
served for SGNC (0.10–0.42) and SGNO (0.27–0.46) using cross-validation. Prediction accuracies based on
independent validation are generally lower than those based on cross-validation. BayesB and SPLS out-
performed all other models in predicting TYM with both cross-validation and independent validation.
Although the accuracies of all models are similar in predicting SGNC and SGNO with cross-validation,
BayesB and SPLS had the highest accuracy in predicting SGNC with independent validation. In indepen-
dent validation, accuracies of all the models increased by using only the QTL-linked markers. Results from
this study indicate that BayesB and SPLS capture the linkage disequilibrium between markers and traits
effectively leading to higher accuracies. Excluding markers from QTL studies reduces prediction accuracies.
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Identification of molecular markers that can be used for predicting
phenotypes is a major research area in plant and animal breeding.
Traditionally, QTLmapping has been used to identifymarkers linked to
traits. Another approach used to identify markers linked to traits is
associationmapping inwhichpopulationswithbroaddiversity areused.
Although these methods are useful in identifying markers linked to

traits, their application inbreedingprograms is limited (Bernardo 2008).
This is mainly because the individual marker effects are often small for
predicting traits, especially quantitative traits, which are influenced by
many genes. In a landmark article, Meuwissen et al. (2001) proposed
a new method termed genomic selection (GS), which uses information
from genome-wide markers to predict phenotypes. GS has been widely
used by animal breeders (Hayes et al. 2009b).More recently, GS studies
have been conducted in crop breeding as well as in forest tree popula-
tions (Crossa et al. 2010, 2013 Heffner et al. 2011; Burgueno et al. 2012;
Ornella et al. 2012; Resende et al. 2012a,b,c). GS is currently operational
in animal breeding programs in several countries (Schefers and Weigel
2012; Pryce and Daetwyler 2012). However, GS is still new to plant and
tree breeding programs.

In GS, large numbers of markers randomly distributed across the
genome are genotyped in small effective populations with high levels of
LD. A high density of markers is required tomaximize the chances of at
least onemarker being in LDwith theQTL. Effects of all themarkers are
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used simultaneously to develop prediction models in “training” pop-
ulations (Heffner et al. 2009). Because the number of predictors
(markers) is generally much higher than the sample size (P . . n),
fixed regression methods using ordinary least squares cannot be used
for developing prediction models. Statistical methods that treat marker
effects as random, such as ridge regression best linear unbiased pre-
diction (RR-BLUP) and various Bayesian models, are used for devel-
oping prediction models. The estimated model is then used to predict
phenotypes in a “testing” population using only the marker genotype
information. The predictions generated using marker genotypes [ge-
nomic estimated breeding values (GEBVs)] are used to select individ-
uals without phenotypic data. The accuracy of GS is assessed by
correlating GEBVs with the breeding values predicted using traditional
methods that utilize phenotypic data (Heffner et al. 2009).

Amajor advantageof usingGS in crop breeding is the acceleration of
genetic improvement per unit-time through the reduction in time
required to complete breeding cycles (Hickey et al. 2014). Several GS
models have been developed for predicting phenotypes using large
numbers of markers. These models mainly differ in the assumptions
of marker effects contributing to total variance. Methods such as RR-
BLUP assume thatmarker effects are homogeneously distributed across
the loci, whereas Bayesmethods allow for heterogeneity amongmarkers,
with some markers having higher effects than others (Goddard and
Hayes 2007; Pérez et al. 2010). In methods such as BayesB, priors
are used to select the number of markers with large effects; in LASSO
(least absolute shrinkage and selection operator) models, penalties are
used to select for the markers with major effects (Daetwyler et al.
2010). BayesB and Bayesian LASSO (BL) methods can identify a sub-
set of markers with large effect (variable selection) and use them for
making predictions. Reduced dimension regression methods such as
principal components regression (PCR) and partial least squares
(PLS) extract the latent variables for making predictions on the re-
sponse (Jannink et al. 2010). Although PLS uses response variable of
the regression for selecting latent components (supervised method),
PCR does not take into account the dependent variable when selecting
latent components (unsupervised method); therefore, it is not optimal
for making predictions (Boulesteix and Strimmer 2007). PLS is
mainly developed to deal with many correlated predictors and rela-
tively few samples (Mevik and Wehrens 2007). Although dimension
reduction with PLS is effective for dealing with the problems of small
samples compared to predictors (P . . n) and multi-collinearity
among the predictors, all predictors are used in the final model.
Chung and Keles (2010) have proposed sparse partial least square
regression (SPLS), a variant of PLS that can simultaneously reduce
the dimensions and subselect the variables in prediction models.

We testedfivemodels (BayesB, BL, RR-BLUP, PLS, and SPLS) to test
prediction accuracies for time to young microspore (TYM) stage and
spike grain number (SGN) in two hexaploid wheat biparental doubled
haploid (DH) populations. The data used in this study were obtained
from two QTL mapping experiments, where a wheat DH population
from a biparental Cranbrook · Halberd (C·H) cross was phenotyped
under controlled environment conditions using a hydroponics infra-
structure (R. Dolferus, X. Ji, S. Thavamanikumar, E. Tanaka, J. Edlington,
K. Forrest, G. Rebetzke, M. Hayden, and B. Cullis, unpublished
data) and where QTL mapping for a second DH population from
a Sundor · AUS30604 (S·A) cross, which was phenotyped for the
same traits, is currently in progress (Dolferus et al., unpublished data).
The aim of the experiment was to identify QTL for maintenance of
SGN under osmotic stress conditions. The young microspore stage of
pollen development is the stage of reproductive development that is
most sensitive to abiotic stresses (Ji et al. 2010). Because the lines of the

DH population segregate for flowering time, plants were treated at the
same youngmicrospore stage independent of flowering time. The traits
that were phenotyped for the individual lines of the DH populations
were SGN under control and osmotic stress treatments (SGNC and
SGNO), as well as the time for the individual plants to reach the young
microspore stage of pollen development (TYM).

The main objectives of this study are to compare the accuracies of
different GS prediction models and to compare the accuracies of two
traits with contrasting genetic architecture using several hundreds of
random markers and a few QTL-linked markers.

MATERIALS AND METHODS

Plant materials and trait measurements
Two wheat doubled haploid (DH) populations were used in this study.
This includes a population of 165 DH lines from a cross between
Cranbrook and Halberd (C·H) (Chalmers et al. 2001) and 159 DH
lines from a cross between Sundor and AUS30604 (S·A) (Dolferus,
unpublished data). These two populations were subjected to osmotic
stress experiments using a hydroponics facility andNaCl as osmoticum
in a glasshouse to identify QTL for osmotic stress and drought resis-
tance in two separate studies (R. Dolferus, X. Ji, S.Thavamanikumar,
E. Tanaka, J. Edlington, K. Forrest, G. Rebetzke,M.Hayden, andB.Cullis,
unpublished data). The date when the plants had reached a stage where
the auricle distance was between 21 and +4 was recorded as TYM.
From this day, the plants were stressed for 5 d with NaCl as an osmoti-
cum using a hydroponics system (R. Dolferus, X. Ji, S. Thavamanikumar,
E. Tanaka, J. Edlington, K. Forrest, G. Rebetzke, M. Hayden and
B. Cullis, unpublished data). Unstressed control plants were kept in the
master tank, and plants for stress treatments were treated with salt in
a smaller tank in the same glasshouse. At maturity, stressed and control
spikes were harvested individually and SGN (SGNO and SGNC) were
determined. Two biological repeat experiments were performed be-
tween October and December in 2009 and 2010 to get independent
estimates. A mixed model was fitted in ASReml 3.0 (VSN International
2009) by fitting the response variable (TYM or SGNC or SGNO) as
a fixed effect and by fitting the line effects and effects due to repeated
measurements as random effects. Using this model, best linear unbiased
predictions (BLUP) were estimated for the three traits. BLUP for TYM,
SGNC, and SGNO were used in genomic prediction models.

SNP genotyping
DH lines from both crosses were genotyped using a 90K SNP chip
developed using gene-specific SNPs, which provides a dense coverage of
the wheat genome (Wang et al. 2014). After removing monomorphic
sites, totals of 17,328 and 17,293 SNPs were obtained in C·H and S·A
populations, respectively. After removing SNPs that are in complete LD
(redundant markers), only 1975 and 1483 were left in C·H and S·A
populations, respectively. Of these nonredundant SNPs, 808 SNPs are
common to both the populations. Both sets of SNPs (population-
specific and common SNPs) were used in the genomic prediction anal-
yses. The main reason for removing these redundant markers is that
they provide redundant information and will not add any power to
genomic prediction analyses. Moreover, including these redundant
SNPsmay increase the computing time of genomic prediction analyses.
Missing genotypes were imputed with mean imputation with the
RR-BLUP package as well as with “rfImpute,” which uses a proximity
matrix to fill-in missing values using the R package “randomForest”
(Liaw and Wiener 2002).

Rawgenotypedataandtrait (BLUPs)dataareprovided in supporting
information, File S1, File S2, File S3, File S4, and File S5.
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Genomic prediction models

Prediction models: We used different statistical models that treat
marker effects as random. Five predictionmodels were used: RR-BLUP,
BL, BayesB, PLS, and SPLS. All prediction models were tested using
differentpackages in theRstatistical environment (RDevelopmentCore
Team 2011). The basic prediction model is represented as

yi ¼
Xp

k¼1

xikbk þ ei;

where yi is the phenotype of individual i, xi is the 1 · p vector of SNP
genotypes of individual i at locus k of p loci, and bk is the effect of SNP
k, and ei is the residual term.

The RR-BLUP model assumes homogenous variance of all
markers and shrinks all marker effects equally to zero. RR-BLUP is
equivalent to BLUP and uses the realized relationship matrix estimated
from the markers. RR-BLUP was implemented using the “rrBLUP”
package (Endelman 2011). The BL model assumes marker-specific
shrinkage related to the absolute value of the estimated regression co-
efficient. BLmodels shrinkmarkers with zero effectmore than those with
large effects, leading to variable selection when making predictions. BL
models were implemented using “BLR” (Pérez et al. 2010) and “BGLR”
packages (Pérez and de los campos 2014).

The BayesB model, which was proposed by Meuwissen et al.
(2001), assumes unique variance for each marker and a proportion
(p) of markers to have large effects while most of the markers have
zero effect. Marker effects are estimated with Monte Carlo Markov
Chain (MCMC) simulations. We used a value of 0.95 for p, and the
model was run for 5000 iterations with a burn-in period of 1000
iterations. We used “BGLR” and “GenSel” packages to implement
BayesB model. PLS is a dimension reduction regression that iden-
tifies the latent components that explain most of the variation in the
response variable to make predictions. The optimum number of
components that minimized the prediction error was selected by
10-fold cross-validation using the training samples. The optimum
number of components selected from the previous step was used to
predict traits in the testing population. PLS model was implemented
using the “PLSR” package (Mevik and Wehrens 2007). In SPLS, in
addition to the number of components, the optimum number of
variables was selected based on mean squared prediction error by
10-fold cross-validation (CV) of the training samples. The selected

optimum components and variables were used to predict traits
in testing population. SPLS models were implemented using the
“SPLS” package (Chung et al. 2013).

Estimating accuracy of genomic predictions

Cross-validation: Predictionaccuraciesof themarkerswithineachof the
two DH populations were evaluated using a 10-fold CV process (Pérez
et al. 2010). Each population (C·Hor S·A)was divided into 10 folds and
individuals from the population were assigned to each fold randomly.
Marker and phenotype data (BLUPs) from the nine folds were collec-
tively used to predict the phenotypes (GEBVs) of individuals assigned to
the tenth fold using only the marker data. This process was repeated 10
times. At each step, the predictive accuracy of the markers was assessed
by Pearson’s correlation between the predicted values and the pheno-
types. Average of the 10 left out folds was reported as accuracy of the
prediction. SEs were estimated from 10 estimates of accuracies.

Independent validation: In independent validation, the prediction
model developed using the marker and phenotype data in one pop-
ulation (C·H, training population) was used to predict the phenotypes
in the other population using only the marker information (S·A, test-
ing population). Prediction accuracy of the markers was estimated by
Pearson’s correlation between the GEBVs and the phenotypic data in
the testing population.

Data availability
File S1 contains genotype data for 1975 SNPs and trait data for CxH
population. File S2 contains genotype data for 1483 SNPs and trait data
for SxA population. File S3 contains genotype data for common 808
SNPs and trait data for both CxH and SxA population. File S4 contains
genotype data for 42 SNPs from chromosome 5A and trait data for both
CxH and SxA population. File S4 contains genotype data for 766 SNPs
excluding 42 SNPs from chromosome 5A and trait data for both CxH
and SxA population.

RESULTS
Estimates of broad sense heritability were generally higher for TYM
(0.74 in S·A and 0.96 in C·H) and lower for SGNC (0.39 in C·H
and 0.29 in S·A) and SGNO (0.40 in C·H and 0.24 in S·A). CV and
independent validation methods were used to test the accuracy of

Figure 1 Prediction accuracies obtained for TYM in
C·H and S·A populations using 10-fold CV. Analyses
were conducted with population-specific SNPs (1975
SNPs for C·H and 1483 SNPs for S·A) as well as 808
SNPs that are common to both the populations. Error
bars are standard errors of mean from 10 repeats.
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genomic predictions. CV was used to test accuracies within a pop-
ulation and independent validation was used to test accuracies
across the populations. Independent validation was performed us-
ing the marker effects from the C·H training population to estimate
GEBVs of the S·A testing population.

Prediction accuracy of TYM

Cross-validation: We used genotype data of 1975 SNPs in the C·H
population and 1483 SNPs in the S·A population for testing within-
population prediction accuracies. Missing genotypes were estimated
with themean imputationmethod implemented in the “rrBLUP” pack-
age and the proximity matrix method implemented in the “random-
Forests” package. We observed similar accuracies with both methods.
To be able to compare within-population accuracies (CV) with across-
population accuracies (independent validation), we used 808 markers
that were common to both populations for testing accuracies in each
population. Therefore, in each population CV accuracies were tested
with full as well as reduced set of 808 markers.

For TYM, prediction accuracies ranging from 0.61 to 0.82 were
observed in the C·H population using the 1975 SNPs in CV. Slightly
lower accuracies (ranging between 0.55 and 0.78) were observed with
the common 808 markers compared to a full set of markers (Figure 1).
In the S·A population, prediction accuracies ranged between 0.51 and
0.84 with all 1483 SNPs. Accuracies with the common 808 markers are
similar to those with full set of markers ranging between 0.52 and 0.84
(Figure 1). In all these analyses, BayesB and SPLS models yielded the
highest accuracies, followed by BL, whereas RR-BLUP and PLS models
yielded the lowest accuracies.

Independent validation: In independent validation, marker effects of
TYM estimated in the C·H population were used to develop the pre-
diction model that is then used to predict the GEBVs in the S·A
population. We used C·H population as a training population because
this population was used in our earlier QTL studies to identify the QTL
linked to the two traits used in this study. The S·A population was used
as a testing population because it is an independent population not used
in our previous QTL studies and the parents of this population are
different from C·H population. In independent validation, prediction
accuracies were tested with the 808 common markers.

Prediction accuracies of TYM in the S·A population were generally
lower than CV and ranged between 0.32 and 0.70 (Table 1). Similar to
the results from CV, higher accuracies were observed with BayesB
(0.70) and SPLS (0.66), followed by BL (0.59), whereas RR-BLUP
(0.36) and PLS (0.32) produced the lowest accuracies. Next, we tested
the accuracies of prediction models using only the 42 markers from
chromosome 5A, which harbored the main TYMQTL observed in our
previous study. Higher accuracies were observed with 42 QTL-linked
SNPs compared to the 808 common markers (Table 1). Accuracies
among all the five models were similar (ranging between 0.68 and
0.71). However, the increase in accuracy using the QTL-linkedmarkers
compared to 808 commonmarkers was large for PLS (0.69 vs. 0.32) and
RR-BLUP (0.68 vs. 0.36) compared to BL (0.70 vs. 0.59), SPLS (0.70 vs.
0.66), and BayesB (0.71 vs. 0.70). BayesB and SPLS had the least im-
provement in accuracy, indicating the ability of these models to accu-
rately select the large effect markers from 808 markers when making
prediction. To test the importance of the QTL-linked SNPs in predic-
tions, we analyzed the accuracies by excluding the 42 QTL-linked
markers from the 808 common markers. Prediction accuracies were
very low and close to zero for all models when the QTL-linkedmarkers
were excluded from the models (Table 1).

Prediction accuracy of SGN

Cross-validation—SGNC: Ten-foldCVwas used to test the prediction
accuracies for SGN under control (SGNC) and osmotic (SGNO) con-
ditions in each population separately.

Prediction accuracieswere lower with high error rates in the S·A
population compared to the C·H population under control conditions
(Figure 2). In the C·H population, accuracies ranged between 0.40 and
0.42, whereas in the S·A population they are between 0.10 and 0.14
using the full set of markers. When only the 808 common SNPs were
used in prediction models, accuracies were either similar or slightly
lower than those with all markers in the C·H population (ranging
between 0.32 and 0.41). However, in the S·A population accuracies
with the 808 common markers are higher than those using all markers
(ranging between 0.11 and 0.21) for all models except for SPLS. Pre-
diction accuracies with either a full set or a reduced set of markers are
similar among all the five models in both populations except for SPLS.
Prediction accuracy for SPLS is lower compared to other models with
a reduced set of markers in the S·A population.

Cross-validation—SGNO: In stress treatment, the prediction accura-
cies in contrast to the control treatment are lower in theC·Hpopulation
than those in the S·A population with both a full set of markers and
commonmarkers (Figure 3). In the C·H population accuracies ranged
between 0.27 and 0.30 with a full set of markers (1975 SNPs), whereas
in the S·A population they ranged between 0.43 and 0.45 with a full set
of markers (1483 SNPs). Accuracies with the common 808 markers are
similar to a full set of markers in both populations. In the C·H pop-
ulation, accuracies ranged between 0.30 and 0.32, whereas in the S·A
population the accuracies ranged between 0.41 and 0.46. Similar to the
control treatment, the accuracies among all five models are very similar
in stress treatment (Figure 3).

Independent validation—SGNC: In independent validation, marker
effects of SGN in the C·H population were used to develop the pre-
diction model for control (SGNC) and osmotic (SGNO) treatments
separately with the 808 common markers. This model was then used
to predict GEBVs in the S·A population. Under control conditions,
SPLS and BayesB had the highest accuracies (0.24 and 0.22, respec-
tively), followed by the BL (0.16), whereas PLS and RR-BLUP had the

n Table 1 Prediction accuracies of TYM and SGN in the S3A
population using the models developed in the C3H population

Trait BayesB SPLS BL RR-BLUP PLS

TYM (808 SNPs)a 0.70 0.66 0.59 0.36 0.32
TYM (42 SNPs)b 0.71 0.70 0.70 0.68 0.69
TYM (766 SNPs)c 20.03 0.06 20.07 20.06 20.03
SGNC (808 SNPs)a 0.22 0.24 0.16 0.13 0.12
SGNC (42 SNPs)b 0.21 0.21 0.21 0.20 0.19
SGNC (766 SNPs)c 0.001 0.03 0.000 0.003 0.000
SGNO (808 SNPs)a 0.06 0.10 0.05 0.07 0.11
SGNO (42 SNPs)b 0.26 0.23 0.28 0.31 0.30
SGNO (766 SNPs)c 0.00 0.06 20.04 0.01 0.00

TYM, time to young microspore; SGNC, spike grain number under control
conditions; SGNO, spike grain number under osmotic conditions; SPLS, sparse
partial least squares; BL, Bayesian LASSO; RR-BLUP, Ridge regression best linear
unbiased prediction; PLS, partial least squares.
a

808 SNPs are common to both C·H and S·A biparental populations.
b

42 SNPs from chromosome 5A where QTL were identified for TYM and SGNO
in a separate study.

c
42 QTL associated SNPs were excluded from 808 common SNPs.
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lowest accuracies (0.12 and 0.13, respectively; Table 1). We then com-
pared the accuracies of independent validation (across population) with
CV (within population) obtained with the 808 common markers. Ac-
curacies with independent validation were lower than those with CV in
the S·A population for all models except for SPLS and BayesB (Table 1
and Figure 2). For SPLS, the accuracy has increased from 0.11 in CV to
0.24 in independent validation, and for BayesB there is a slight increase
in the accuracy with independent validation compared to CV (Table 1
and Figure 2) in the S·A population. Similar to TYM, we observed
a QTL associated with SGNO on chromosome 5A in our previous QTL
studies. To test if the 42 markers from chromosome 5A that are asso-
ciated with SGN under osmotic conditions can predict SGN under
control conditions, we used only these 42 markers in the prediction
models. Prediction accuracies have slightly increased for BL, RR-BLUP,
and PLS but decreased for SPLS and BayesB with QTL-linked markers
compared to all 808 common markers (Table 1). However, when the
QTL-linked markers were excluded from the 808 common marker set,
accuracies were close to zero for all five models (Table 1).

Independent validation—SGNO: In contrast to the control treatment,
accuracies in osmotic treatment were very low for all five models using
the 808 common markers (Table 1). The accuracies ranged from 0.11
(PLS) to 0.05 (BL). However, using only the QTL-linked markers the
accuracies have increased for all five models (Table 1). Accuracies with
QTL-linked markers ranged from 0.23 (SPLS) to 0.31 (RR-BLUP).
These accuracies are higher than those observed under control condi-
tions (Table 1). Similar to control conditions, accuracies obtained after
excluding the QTL-linked markers were close to zero for all models.

DISCUSSION

Prediction accuracies among different models
In this study, we used different prediction models to compare the
accuracies of flowering time and grain number traits in wheat. BayesB
and SPLS outperformed all other models, followed by BL in predicting
TYM (Figure 1). The performance of all five models is similar in pre-
dicting SGNC and SGNO (Figure 2 and Figure 3) with CV. The dif-
ferences in prediction performance of different models reflect the
underlying genetic architecture of the traits. TYM is a trait influenced
by a few loci with major effects. In a recent QTL study, we identified
a major QTL on chromosome 5A explaining 72% of phenotypic var-
iation in TYM. SPLS, BayesB, and BL are regarded as variable selection

models (Pérez et al. 2010). Because of the different underlying assump-
tions of these models compared to others, BayesB and BL identify
a subset of markers with large effects to make predictions that increase
the prediction accuracy of the traits, especially those controlled by a few
large QTL. SPLS combines variable selection and modeling in one step
(Le Cao et al. 2008). For traits that are influenced by several loci, such as
SGN, the performance of all models was similar with CV (Figure 2 and
Figure 3). Several studies have shown better performance of BayesB in
predicting traits influenced by a few genes of large effect (VanRaden
et al. 2009; Daetwyler et al. 2010; Jannink et al. 2010). Studies have also
shown that accuracies from GBLUP, which is equivalent to RR-BLUP
and BayesB, are similar in predicting quantitative traits (Clark et al.
2011). Daetwyler et al. (2010) have shown through simulations that
BayesB has an advantage over GBLUP when the number of QTL un-
derlying a trait are small, and this advantage is diminished when the
number of QTL increased similar to the results observed in this study.
However, Riedelsheimer et al. (2012) did not find anymajor differences
between BayesB, RR-BLUP, and other models in predicting several
traits, including traits with large QTL effects. They attributed this to
the high level of LD among the diverse maize lines used in their study.
Results from our study, however, show that even when LD is high
within a population the performance of BayesB and SPLS is higher
than that of other models, especially for traits with large QTL effects.

Prediction accuracies of TYM
Accuracies fromCVare higher than those from independent validation,
where the prediction model developed in C·H was used to predict
flowering time in S·A. In independent validation, prediction accuracies
using the 42 chromosome 5A SNPs from QTL region are higher than
those from the 808 common SNPs for all models except BayesB and to
some extent for SPLS. For BayesB and SPLS, however, there is no big
change in the accuracy using either 42 SNPs from the QTL region or all
the 808 common SNPs (Table 1). This indicates that BayesB and SPLS
are able to correctly select the subset of markers with a large effect from
all the SNPswhen predicting the trait. This trend is also seen to a certain
extent with BL, which is another variable selection model. With RR-
BLUP and PLS, there is more than 80% improvement in accuracies
using the linked markers compared to the random markers (Table 1).
RR-BLUP assumes equal variance and shrinks all the marker effects
to zero, leading to lower accuracy, especially when there are some
large-effect QTL present among the markers. Although PLS reduces

Figure 2 Prediction accuracies for SGNC in C·H and
S·A populations using 10-fold CV. Analyses were con-
ducted with both population-specific SNPs (1975 SNPs
in C·H and 1483 SNPs in S·A) and 808 SNPs that are
common to both the populations. Error bars are stan-
dard errors of mean from 10 repeats.
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dimensions, it does not automatically select variables and uses all
markers in the model (Chung and Keles 2010).

Prediction accuracies for SGN
Accuracies for SGN are generally lower compared to TYM, reflecting the
lowerheritability estimatesobserved forSGNcompared toTYM.Thismay
also reflect the differences in genetic architecture of these traits. Our earlier
QTL studies in the C·H population have shown that TYM is influenced
by amajor QTLwith large effects, whereas SGNO is influenced by several
QTL with smaller effects (R. Dolferus, X. Ji, S. Thavamanikumar, E.
Tanaka, J. Edlington, K. Forrest, G. Rebetzke, M. Hayden and B. Cullis,
unpublished data). Of these QTL, one QTL from chromosome 5A has
accounted for a significant portion of variation in TYM (71%) and SGN
(30%). Accuracies for SGNC are lower in independent validation than CV
using the 808 common markers in the S·A population for all models
except for SPLS and BayesB (Figure 2; Table 1). For SPLS and BayesB,
there was an increase in accuracy with independent validation compared
to CV in the S·A population. However, when only the 42 QTL-linked
markers from chromosome 5A are used in independent validation, pre-
diction accuracies were higher than those with 808 common SNPs for all
models (Figure 2). These results indicate that SPLS, BayesB, and to some
extent BL are able to select a subset of markers with large effects when
predicting SGNC similar to TYM. For cross-population predictions, pre-
diction models that capture LD between markers and QTL are more
important than those capturing genetic relationships.

For SGNO, accuracies were substantially lower with independent
validation compared to CV with 808 markers in the S·A population
(Table 1 and Figure 3). This could be due to these two populations
responding to osmotic stress differently because of the differences in the
genetic background, leading to differences in marker effects between
the two populations. Similar to control treatment, accuracies using 42
SNPs from chromosome 5A are higher than those from 808 markers
with independent validation (Table 1). However, none of the models
were able to identify the large-effect markers correctly from 808
markers, leading to lower accuracies with 808 markers compared to
42 QTL-linked markers. The improvement in accuracies when using
QTL-linked markers is higher for osmotic treatment compared to con-
trol conditions (Table 1). This may reflect themethod used to detect the
QTL in our previous study. We used contrast BLUPs (difference be-
tween control and stress treatment) estimated with a mixed model
analysis for detecting QTL for SGNO. Therefore, these QTL maintain
grain number under osmotic conditions.

Within population vs. across population accuracies
There are several studies inwheatwhereGSwas studiedusing biparental
populations (Heffner et al. 2011), elite breeding lines (Poland et al.
2012; Storlie and Charmet 2013; Crossa et al. 2010), and diverse land-
races (Daetwyler et al. 2014). In all these studies, the prediction accu-
racy of GS was assessed by using CV methods in which the same
population was used for training as well as testing the accuracies.
Although CVmethods are useful to assess the accuracies in populations
of the same genetic background, these accuracies may not be general-
ized to other populations with different genetic backgrounds. CVmeth-
ods in general overestimate the potential of genomic prediction
(Hofheinz et al. 2012). This is reflected by the high accuracies observed
in general with CV compared to independent validation in this study.

In addition to CV, we used independent validation to assess the
prediction accuracies. In independent validation, prediction models
developed in one population (C·H, training population) are applied
in a different population (S·A, testing population) to estimate the
GEBVs. The training population (C·H) was used in our previous
QTL studies to identify QTL linked to the traits studied in this study,
whereas the testing population (S·A) is an independent population.
The two DH populations used in this study do not have the same
parents. Yet, the accuracies observed with independent validation
are as good as CV in the S·A population for TYM and SGNC (Table
1, Figure 1, and Figure 2). This is in contrast to the findings of
Riedelsheimer et al. (2013), who observed zero or negative accuracies
when training and validation populations were unrelated. Several other
studies have also shown low accuracy when training and testing pop-
ulations are unrelated (Hickey et al. 2014; Hayes et al. 2009a; Asoro
et al. 2011). Differences between our study and other studiesmay reflect
the difference in the factors that contribute to prediction accuracy of GS
models. Within a biparental population, the accuracy of GS is deter-
mined by the relationships captured by the markers and markers that
are linked to QTL (Riedelsheimer et al. 2013). Different models use
these two types of information differently. RR-BLUP mainly captures
the genetic relationships, whereas BayesB uses LD between markers
and QTL in making predictions (Habier et al. 2007). Accuracies of
the models using genetic relationships decay over generations. How-
ever, accuracies of the models using LD between markers and QTL
persist for several generations (Habier et al. 2007). In the populations
used in this study, it seems that the accuracy is influenced more by LD
between the markers and QTL than the genetic relationships. In CV
within a population, the performance of all the models is similar,

Figure 3 Prediction accuracies for SGNO in C·H and
S·A populations using 10-fold CV. Analyses were con-
ducted with both population-specific SNPs (1975 SNPs
in C·H and 1483 SNPs in S·A) and 808 SNPs that are
common to both populations. Error bars are standard
errors of mean from 10 repeats.
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especially for SGN (Figure 2 and Figure 3), suggesting accuracies of the
models that predominantly use the genetic relationships (RR-BLUP)
and those that use marker–trait associations (BayesB and SPLS) are
similar. In independent validation, with unrelated training and test
populations, accuracy of BayesB and SPLS is higher than all other
models. BayesB and SPLS capture the LD between markers and QTL,
leading to higher accuracy, whereas RR-BLUP, which captures genetic
relationships, performed poorly when the training and testing popula-
tions are unrelated. This is further evidenced by the zero or negative
accuracies (Table 1) observed for both TYMand SGNwhen themarkers
from the 5A chromosome linked to the QTL are excluded from the
prediction model in independent validation.

Our earlier QTL study indicated that chromosome 5A harbors the
strongest QTL for both TYM and SGN. Results from this study validate
these results in an independent population (S·A population). Higher
accuracies observed in the S·A population with the 42 QTL-linked
SNPs compared to the random SNPs indicate that the QTL observed
in our earlier study are mainly due to LD betweenmarkers and traits. In
this study, we have observed higher accuracies withQTL-linkedmarkers
compared to the randommarkers, especially in independent validation.
Improvement in prediction accuracies by using “prior information”
from association and QTL studies has been suggested previously
(Thavamanikumar et al. 2013; Zhang et al. 2014). Several studies have
shownhigher accuracies withQTL-linkedmarkers compared to random
markers (Zhang et al. 2014; Westbrook et al. 2013). In a recent study in
rice, it was suggested to use markers detected with genome-wide asso-
ciation studies in GS rather than random markers to increase the effi-
ciency and accuracy of GS (Spindel et al. 2015). Similarly, in a recent
study of wheat, Zhao et al. (2014) observed higher accuracies for heading
time with marker-assisted selection using functional markers compared
to genomic selection with randommarkers. They developed amethod in
which functional markers were given more weightage compared to ran-
dommarkers, which increased the prediction accuracy. The importance
of including markers identified from QTL and association studies in
prediction models is demonstrated in this study by the low accuracy
observed when theQTL-linkedmarkers were excluded from themodels.

Although a few studies have shown higher accuracies with QTL-
linked markers, especially for traits influenced by a few loci with large
effects (Zhao et al. 2014 and Spindel et al. 2015), several studies have
shown that the prediction accuracies with marker-assisted selection or
marker-assisted recurrent selection in which only a few QTL-linked
markers are used for prediction (Bernardo 2008) were lower than those
with GS (Heffner et al. 2011; Guo et al. 2012; Lorenzana and Bernardo
2009). These findings are in contrast to the results from this study. We
observed higher accuracies with a few QTL-linked markers compared
to several randommarkers for both TYM and SGN in this study (Table
1). This may be due to the differences in relatedness between training
and testing populations in our study compared to other studies. Inmost
of the previous studies, prediction accuracies of marker-assisted selec-
tion and GS were compared using CV with related training and testing
populations. In this study, however, accuracies were estimated with
unrelated training and testing populations. When training and testing
populations are related, capturing relationships with GS may lead to
higher accuracy than using only the significant markers in marker-
assisted selection. However, when training and testing populations
are unrelated, accuracy of marker-assisted selection is higher because
there would be fewer relationships to be captured with GS and the
nonsignificant markers may add to the noise, thus decreasing the ac-
curacy of the GS. Including QTL-linked markers in the panel of GS
markers therefore may increase the prediction accuracies, especially
when the training and testing populations are unrelated.

CONCLUSIONS
In this study, we compared the accuracies of flowering time and grain
number traits in wheat using different GS models. BayesB and SPLS
outperformed other models in predicting time to young microspore,
whereas their performance is similar to othermodels in predicting grain
number per spike when training and testing populations are related.
However, when the training and testing populations are unrelated,
BayesB and SPLS are effective in capturing LD between markers and
QTL, leading to higher accuracy for both simpler and complex traits
compared to other models. Results from this study indicate that the
accuracy of the GSmodels can be increased by usingmarkers identified
from linkage and association studies.
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