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Abstract

Common variable immunodeficiency disorder (CVID) is the commonest cause of primary antibody failure in adults and
children, and characterized clinically by recurrent bacterial infections and autoimmune manifestations. Several innate
immune defects have been described in CVID, but no study has yet investigated the frequency, phenotype or function of
the key regulatory cell population, natural killer T (NKT) cells. We measured the frequencies and subsets of NKT cells in
patients with CVID and compared these to healthy controls. Our results show a skewing of NKT cell subsets, with CD4+ NKT
cells at higher frequencies, and CD8+ NKT cells at lower frequencies. However, these cells were highly activated and
expression CD161. The NKT cells had a higher expression of CCR5 and concomitantly expression of CCR5+CD69+CXCR6
suggesting a compensation of the remaining population of NKT cells for rapid effector action.
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Introduction

Patients with common variable immunodeficiency disorder

(CVID) share characteristics including hypogammaglobulinemia,

impaired B cell function, cytopenia, a low frequency of naive

CD4+ T cells, an increase in cellular activation, and a skewed

distribution of circulating B cell subsets [1–6]. Other immunolog-

ical defects in CVID patients include a reduction in the absolute

numbers of natural killer cells [7], and defective functions of

dendritic cells [8]. Around 30% of CVID patients develop

autoimmune diseases [9,10]. The complex immunological dys-

functions in this disease are still being elucidated.

NKT cells are lymphocytes that express a rearranged Va14-

Ja18 semi-invariant TCR, and recognize a glycolipid (for example

the prototypic a-Galactosyl-Ceramide (a-GalCer), presented in the

context of the non-classical MHC molecule, CD1d [11]. Upon

receptor T cell (TCR) stimulation, NKT cells are able to rapidly

secrete both Th1 and Th2 cytokines [12]. NKT cells are an

integral component in the suppression of autoreactive T cells and

the prevention of autoimmune diseases [13], due to their capacity

to quickly release large amounts of interleukin 4 (IL-4), favoring

Th2 responses [14]. By directing the T cell immune response

towards either a Th1 or Th2 phenotype, NKT cells appear to

regulate the development of certain autoimmune conditions [15].

Selective defects in NKT cell number and cytokine production are

present in individuals affected by different diseases such as

systemic lupus erythematosis, rheumatoid arthritis, human immu-

nodeficiency virus-1 (HIV-1) infection, and pulmonary tuberculo-

sis [16–20].

In mice, NKT cells can be detected most frequently in liver, bone

marrow and thymus, and are less common in the spleen, lymph

node, blood and lung. The recruitment of leukocytes into tissues is

dependent on a series of adhesive and activation steps mediated by

adhesion molecules and chemokine receptor interactions [21,22].

These chemokine receptors are expressed by T cells with homing

potential to nonlymphoid tissues and are highly associated with

inflammation [23]. Most NKT cells express CCR2, CCR5, CCR6,

CXCR3 and CXCR6 [23]. In humans, CXCR6 is expressed

preferentially on CD4+ and CD8+ memory T cells [24]. While

CXCR6 is expressed on more double negative compared to CD4+
CD1d-restricted T cells, it is possible that CXCR6 could play a role

in NKT cell development or homing of these cells to the liver [25–

27]. Activation of NKT cells with a-GalCer enhances T-dependent

humoral immune responses against co-administered T-dependent

Ag, and this involves interaction with CD1d-expressing B cells [28].

NKT cells can also help B lymphocyte responses, and mice

immunized with proteins and a-GalCer develop antibody titers 1–2

logs higher than those induced by proteins alone [29].

Because of the important interactions of B cells with NKT cells, we

measured the frequencies, chemokine receptor patterns, and ex-vivo

effector functions of NKT cells in CVID patients compared with

healthy controls. We hypothesized that NKT cells would be reduced in

CVID patients, and that this would influence the pathogenesis of

CVID. Our results show that NKT cells are circulating at the same
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frequency in the peripheral blood in CVID patients as healthy donors,

but that there is a skewing of NKT cell subsets in CVID patients.

Materials and Methods

Subjects and sample collection
This study was reviewed and approved by the local Institutional

Review Board (IRB, Comitê de Ética em Pesquisa da Universidade

Federal de São Paulo). IRB-approved informed consent was signed

from all participants. Diagnosis of CVID was established according

to the criteria by the Pan-American Group for Immunodeficiency

(PAGID). Eighteen healthy controls and seventeen CVID patients

were selected at the Division of Pediatric Clinical Immunology

located at the Federal University of São Paulo.

Peripheral blood mononuclear cells (PBMC) were isolated from

volunteers by density-gradient sedimentation over Ficoll-Paque

Table 1. Demographic, clinical and laboratory characteristics of control and CVID patient groups.

Controls CVI patients

(n = 17) (n = 17)

Demographics

Age (median, IQR 25th,75th, in years) 23 (21229) 26 (19235)

Gender (female %) 61% 59%

Age at the diagnosis (median, IQR, in years) – 22 (13.26)

Age at first symptoms (median, IQR, in years) – 12 (3.16)

Average between initial symptoms and the diagnosis (in years) – 8

Clinical findings

Recurrent infections

Pneumonia – 15 (88.0%)

Otitis – 6 (35.2%)

Sinusitis – 11 (64.7%)

Chronic diarrhea – 5 (29.0%)

Auto-immune diseases

Hemolytic anemia – 3 (17.64%)

Hypothyroidism – 2 (11.7%

Hepatitis – 1 (5.9%)

Chronic pulmonary diseases

Bronchiectasis – 7 (41.7%)

Atelectasis – 3 (17.6%)

Bronchiolitis – 2 (11.7%)

Laboratory findings

Leucocytes (median, IQR, in cells/ml) 6770 (571027585) 7120 (599529655)

Neutrophyles (median, IQR, in cells/ml) 3205 (282023763) 4242 (369726370)

Lymphocytes (median, IQR, in cells/mml) 2149 (187222796) 1715 (119622258)

Monocytes (median, IQR, in cells/ml) 411 (3502556) 533 (2962671)

CD3+ cells (median, IQR, in cells/ml) 1690 (118721861) 1301 (101822127)

CD4+ T cells (median, IQR, in cells/ml) 884 (67521017) 604 (47821064)

CD8+ T cells (median, IQR, in cells/ml) 556 (3662619) 606 (4712846)

Va24+Vb11+ NKT cells (%) 0.16 (0.05420.275) 0.11 (0.04520.320)

Va24+Vb11+ NKT cells (median, IQR, in cells/ml) 0.006 (0.00120.011) 0.000 (0.0020.001)

Serum Ig levels (median; mg/dl)

Before treatment

IgG – 140 (24.102630)

IgA – 6.67 (5224.3)

IgM – 13.5 (8217)

After treatment

IgG – 615 (48221047)

IgA – 5 (5220)

IgM – 8 (5220)

IQR: interquartile range.
doi:10.1371/journal.pone.0012652.t001

NKT Cells in CVID
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(Pharmacia Biotech, Uppsala, Sweden). PBMC were then washed two

times in Hank’s balanced salt solution (Gibco, Grand Island, NY).

Cells were cryopreserved in RPMI 1640 (Gibco), supplemented with

10% heat-inactivated fetal bovine serum (FBS; Gibco), 50 U/mL

penicillin (Gibco), 50 mg/mL streptomycin (Gibco), 10 mM L-

glutamine (Gibco), and 10% dimethyl sulphoxide (DMSO, Sigma,

St. Louis). Cryopreserved cells were stored in liquid nitrogen until used

in the assays. At the time of the assay, PBMC were rapidly thawed in a

37uC water bath and washed in RPMI 1640 supplemented with fetal

calf serum, 100 U/mL penicillin, 100 mg/mL streptomycin, and

20 mM L-glutamine (R10). Cells were counted, checked for viability,

and re-suspended in R10 at 106 cells/mL.

Figure 1. Expression of NKT cells in peripheral blood. (A) Representative flow cytometric analyses on PBMC, lymphocytes, CD3+ T cells and
Va24+Vb11+ for NKT cells. (B) Fluorescence minus one (FMO) was used for gate strategy for CXCR6, CCR5 and CD69 in NKT cells. (C) Representative
flow cytometric analyses on NKT cells in CVID patients. Comparisons among groups were carried out using the Mann-Whitney non-parametric test.
doi:10.1371/journal.pone.0012652.g001

NKT Cells in CVID
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Flow cytometry
The following monoclonal antibodies were used in the assays:

CD3-peridin chlorophyll protein (PerCP) (clone SK7), CD8-

allophycocyanin (APC) (clone SK1) and CD4-phycoerythrin–

cyanine (PE-Cy7) (clone SK3), from BD Biosciences (San Jose,

CA); CCR5-PE-Cy7 (clone 2D7/CCR5) and CD161-APC (clone

DX12) from BD PharMingen (San Jose, CA); Va24 phycoerythrin

(PE) (clone C15), Vb11-Fluorescein isothiocyanate (FITC) (clone

C21) from Immunotech (BC); CXCR6-APC (clone 56811) and

CD69-allophycocyanin cyanine-7 (APC-Cy7) (clone FN50). All the

antibodies were used for cell-surface staining. NKT cells were

defined using CD3 positive cells also double positive for Va24 and

Vb11. NKT cells subsets were defined using two panels with

combinations of the following antibodies: CCR5, CXCR6, and

CD69 for chemokine and activation and CD4, CD8, and CD161

for T cells subsets. Fluorescence minus one (FMO) was used for

gate strategy [30].

After thawing, cells were centrifuged at 300 xg, for 5 min and

transferred into 96 V bottom well plates (Nunc, Denmark) in

170 mL of staining buffer (PBS supplemented with 0.1% sodium

azide [Sigma] and 1% FBS, pH 7.4–7.6) with the surface

monoclonal antibodies panel. Cells were incubated at 4uC in

darkness for 30 minutes, washed twice, and re-suspended in

100 mL of fixation buffer (1% paraformaldehyde [Polysciences,

Warrington, PA] in PBS, pH 7.4–7.6).

Samples were acquired on a FACSCanto, using FACSDiva

software (BD Biosciences), and then analyzed with FlowJo software

version 8.7 (Tree Star, San Carlo, CA). Fluorescence voltages were

determined using matched unstained cells. Compensation was

carried out with CompBeads (BD Biosciences) single-stained with

CD3-PerCP, CD4-FITC, CD8-APC-Cy7, CD4-PE-Cy7, CD3-

PE, and CD3-APC. Samples were acquired until at least 800,000

events lymphocyte gate.

Statistical analysis
Groups were compared using non-parametric models; data are

reported as median and interquartile range (IQR). Comparisons

among groups were carried out using Mann-Whitney non-

parametric test. p values were considered significant if ,0.05.

Results

Demographic data
The demographic, clinical and laboratory characteristics of

participants are detailed in Table 1. The median age of the healthy

controls was 23 years (IQR, 21–29), and for CVID subjects 26

years (IQR, 19–35). Sixty-one percent of healthy controls and

59% of CVID patients were female. No patient presented with an

acute infection at the time of the study.

Measurement of NKT cell frequencies in peripheral blood
To identify NKT cells in circulation, we stained PBMC with

monoclonal antibodies against anti-CD3, anti-Vb11, and anti-

Va24, CD161, CD4, CD8, CCR5, CD69, and CXCR6, and

analyzed the cells by six-color flow cytometry. NKT cells were

identified by CD3+ and co-expression of Vb11 and Va24

(Figure 1A)[18]. We measured the frequency of NKT cells in

both healthy controls and CVID patients. Due to the variability of

NKT cell frequencies and limitations of available PBMC, data

were included in this study if greater than 30 events were collected

within the NKT gate. There was no significant difference in the

frequency; on the other hand, the absolute number is increased in

the healthy group [0.006 (0.001–0.011)] compared to CVID

patients [0.000 (0.00–0001)], p = 0.0003 of circulating NKT cells

in peripheral blood (Table 1).

Circulating NKT cells of individuals with CVID have
distinct chemokine receptor profiles compared with
healthy controls

Next, we measured the surface expression of CXCR6 and CCR5

chemokine receptors on NKT cells in order to identify homing

markers and activation status, respectively (Figure 1B,C). We

Figure 2. Percentage of activation, chemokine receptors in NKT
cells. (A) Percentage of chemokine receptor CCR5 in NKT cells gate
(Va24+Vb11) in representative healthy subject and CVID patient
(p,0.0001). (B) Percentage of chemokine receptors CXCR6, CCR5 and
CD69 marker in NKT cells (p,0.001). (C) Percentage of chemokine
receptor CCR5 and CD69 marker in NKT cells (p,0.001). Comparisons
among groups were carried out using the Mann-Whitney non-
parametric test.
doi:10.1371/journal.pone.0012652.g002

NKT Cells in CVID
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Figure 3. Subsets of NKT cells from CVID patients. (A) Percentage of CD4 marker in NKT cells (left) (p = 0.0055). (B) Absolute number of CD4
marker in NKT cells (middle). (C) Representative flow cytometry dot plot of CD4 marker (right). (D) Percentage of CD8 marker in NKT cells (left)
(p = 0.011). (E) Absolute number of CD8 marker in NKT cells (middle) (p = 0.002). (F) Representative flow cytometry dot plot of CD8 marker (right). (G)
Percentage of CD161 marker in NKT cells (left). (H) Absolute number of CD161 marker in NKT cells (middle). (I) Representative flow cytometry dot plot
of CD161 marker (right).
doi:10.1371/journal.pone.0012652.g003

NKT Cells in CVID
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observed that a higher percentage of NKT cells expressed CCR5 in

CVID patients [90.10 (58.80–93.90)] when compared with healthy

controls [33.30 (12.80–42.30)], p = 0.0006 (Figure 2A). NKT cells in

CVID subjects had a higher concomitant expression of CCR5+
CD69+CXCR6+ compared with healthy controls [1.910 (0.9000–

5.440)], p = 0.03 (Figure 2B). The CCR5+CD69+CXCR6- fraction

was also markedly altered in CVID [43.50 (33.70–62.00)] when

compared with healthy controls [21.10 (9.680–34.90)], p = 0.0008

(Figure 2C). We observed a tendency for CVID patients to have a

higher expression of CD69 on NKT cells compared to healthy

subjects, but this did not reach a level of statistical significance.

Expression of NKT cells subsets
CVID subjects had normal absolute numbers of CD4+ and

CD8+ T cells (Table 1). We observed a higher expression of CD4+
NKT cells in CVID patients when compared to healthy controls

[81.40 (30.80–97.00), and 26.10 (20.95–39.55), respectively,

p = 0.0055](Figure 3 A,B,C), although these appeared to cluster

in a high CD4+ expression group, and a lower CD4+ expression

group. However, the absolute number of CD4+ NKT cells was not

significantly different comparing to controls (Figure 3E). We also

observed a lower expression of CD8+ NKT cells in CVID subjects

when compared to healthy controls [28.60 (14.30–32.70), and

50.10 (27.70–66.45), respectively, p = 0.011] (Figure 3 D,E,F).

These results were confirmed when we calculated for the absolute

number of CD8+ NKT cells in CVID subjects and compared to

healthy controls [0.000 (0.000–0.001) and 0.002 (0.000–0.005),

respectively, p = 0.002] (Figure 3H).

Expression of CD161 on NKT cells
CD161 is a marker commonly found on NK cells, and a

maturation marker for NKT cells [31]. The percentage of CD161

expression and absolute number on NKT cells was not significantly

different between healthy and CVID subjects (Figure 3 G,H,I).

NKT cells had a higher expression of CD4+CD8+CD161+ in

CVID patients when compared with healthy controls [11.90

(7.140–15.40), and 4.580 (3.035–7.170), respectively, p = 0.0145]

(Figure 4A). However, the CD4+ and CD8+ NKT cells were

heterogeneous in their expression of CD161. CVID patients

expressed higher levels of CD4+CD161+ on NKT cells when

compared to healthy donors [22.00 (10.40–34.20), and 7.340

(5.185–9.765), respectively, p = 0.0014] (Figure 4B). In contrast,

CVID subjects had lower levels of CD8+CD161+ NKT cells

compared to healthy donors [2.380 (0.000–9.200), and 18.70

(10.60–29.65), respectively, p = 0.0004] (Figure 4C).

Discussion

In this study we examined the phenotype, activation, homing

and maturation markers of NKT cells in patients with CVID. To

our knowledge, this is the first study of the NKT cell subsets in

patients with CVID. Recent data indicates that NKT cells were

decreased in CVID patients [32]. Our results support previous

observations of a decrease in the absolute number of NKT cells in

CVID patients compared to healthy controls. It has been

speculated that the low NKT numbers in CVID patients may

play a role in the deficient humoral responses [32]. However, it

could also be associated to impaired innate immune response, with

implications in the susceptibility to opportunistic diseases. Indeed,

the NKT cell subsets are skewed, and CD4+ NKT cells circulate

at a higher frequency, and CD8+ at lower levels. All subsets of

NKT cells were vastly activated and expressed high levels of

CD161. Va24+Vb11+ NKT cells had a higher expression of

CCR5, mostly with the CCR5+CD69+CXCR6- phenotype.

NKT cells appear to be important in the regulation and

development of certain autoimmune conditions, and this could be

related to defective signals that up-regulate CD1d expression

[13,15]. CD1d molecules are well conserved in evolution, and the

Figure 4. Subsets of NKT cells. (A) Percentage of CD161, CD8 and
CD4 markers in NKT cells (p = 0.0145), (B) Percentage of CD4 and CD161
marker in NKT cells (p = 0.001). (C) Percentage of CD8 and CD161
markers in NKT cells (p = 0.0004).
doi:10.1371/journal.pone.0012652.g004

NKT Cells in CVID
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limited degree of polymorphism in their genes makes them

interesting targets for modulation of immunity in the prevention

and treatment of human disease [33]. NKT cells can have multiple

effects on an immune response, including the activation,

regulation and attraction of innate immune cells, tolerance.

NKT cells are selectively lost from circulation in HIV-1 infection,

rheumatoid arthritis, and acute virus infections [16–19].

Sandberg et al. described that circulating NKT cells in healthy

subjects were diverse in their expression of CD4 and CD8. Their

results indicated that CD4+ NKT cells preferentially circulate

through the lymph nodes and CD4- NKT cells go to peripheral

tissues[31]. These results are in contrast to CVID patients, in

whom CD4+ NKT cells were more frequent in the peripheral

blood as opposed to CD8+ NKT cells. This higher expression

of CD4+ NKT cells could potentially protect these patients

from opportunistic mycobacterial infections and could impact

autoimmunity.

NKT cells can express CD161 (NK1.1 in mice), activation

marker for NK cell. Berzins et al. describe that NKT cells from

thymus were CD161-, in contrast with adult peripheral blood,

suggesting that CD161 expression is also a maturation marker for

NKT cells in humans[34]. Consistent with that study, we found

that CD4+ and CD8+ NKT cells were matured in CVID patients.

Developing Th1 cells acquire the capacity to produce IFNc and

expression of chemokine receptors such as CCR5, CXCR3, and

CXCR6 that drive them to sites of delayed-type hypersensitivity

reactions [35]. CXCR6 expression is associated with the function

and fate of NKT cells by controlling their survival, cytokine

production, and ability to induce tissue damage [36]. Previous

studies describe that murine NKT cells were able to express

CXCR6 [26,36]. Interestingly, this chemokine receptor is

expressed in humans on Th1 and Tc1 memory CD4+ and

CD8+ T lymphocytes [24], and CXCR6 are preferentially

expressed on double negative and CD8+ subsets of NKT cells

[22,23]. CXCR6 is expressed at a high level on NKT cells even

under physiological conditions, as compared to other lymphocytes

[37]. Our results revealed that the NKT cells were able to express

higher levels of CCR5, mostly with the CCR5+CD69+CXCR6-

phenotype. More studies need to address the function of these cells

in CVID, and these studies could serve as a model to better

understand the role of NKT cells in the immune response.

There are some limitations to this study. It is cross sectional, and

NKT cell frequencies may change over time, although we have

previously shown a stability of NKT cell numbers in healthy

individuals [38]. CVID represents a spectrum of diseases, and

different genetic causes might lead to differences in NKT cell

expression. We sampled NKT cells only in peripheral blood.

Despite these limitations, this is the first set of results to assess

NKT cell frequency in CVID patients. Further studies are needed

to clarify whether the increase of maturation, homing, and

activation in NKT cells in CVID patients could be a counterbal-

ance for the impaired the B cell function.

In summary, CVID subjects have a skewed fraction of activated

homing NKT cells in peripheral blood. Boosting of NKT cell

numbers through therapeutic modulation might be a valuable

adjunctive treatment in CVID subjects.
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