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Abstract: Food spoilage makes foods undesirable and unacceptable for human use. The preservation
of food is essential for human survival, and different techniques were initially used to limit the growth
of spoiling microbes, e.g., drying, heating, salting, or fermentation. Water activity, temperature, redox
potential, preservatives, and competitive microorganisms are the most important approaches used
in the preservation of food products. Preservative agents are generally classified into antimicrobial,
antioxidant, and anti-browning agents. On the other hand, artificial preservatives (sorbate, sulfite,
or nitrite) may cause serious health hazards such as hypersensitivity, asthma, neurological damage,
hyperactivity, and cancer. Thus, consumers prefer natural food preservatives to synthetic ones, as
they are considered safer. Polyphenols have potential uses as biopreservatives in the food industry,
because their antimicrobial and antioxidant activities can increase the storage life of food products.
The antioxidant capacity of polyphenols is mainly due to the inhibition of free radical formation.
Moreover, the antimicrobial activity of plants and herbs is mainly attributed to the presence of
phenolic compounds. Thus, incorporation of botanical extracts rich in polyphenols in perishable
foods can be considered since no pure polyphenolic compounds are authorized as food preservatives.
However, individual polyphenols can be screened in this regard. In conclusion, this review highlights
the use of phenolic compounds or botanical extracts rich in polyphenols as preservative agents with
special reference to meat and dairy products.

Keywords: food spoilage; food preservation; meat products; dairy products; polyphenols

1. Introduction

Fresh foods (meat, seafood, and horticultural products) are prone to foodborne disease
outbreaks caused by pathogenic microbes, limiting their storage life [1]. Food spoilage is
a metabolic process that makes foods undesirable or unacceptable for human use, due to
alterations in their sensory characteristics. In some cases, such spoiled food may be safe
for use and not cause illness, but changes in texture, taste, smell, and appearance lead to
its rejection for consumption [2]. Thus, food preservation has been necessary for human
survival since prehistory. In the past, techniques used for the preservation of food relied on
the inactivation of spoiling microbes through drying, heating, salting, or fermentation [3].
The most important approaches in preservation of food are the decrease of the presence
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and effects of water, the control of temperature, and the use of preservatives (sorbate,
sulfite, or nitrite) and competitive microorganisms (lactic acid bacteria) [4]. In general,
there are three types of preservatives: (1) antimicrobial agents, which prevent the growth
of microorganisms that may cause serious illnesses (i.e., salmonellosis or botulism) and
which are used in margarine and dressings, cheeses, bakery products, and dried fruit
preparations; (2) antioxidants, which slow down the degree of oxidation and can be used in
products containing unsaturated fatty acids that are more susceptible to oxidative reactions;
(3) anti-browning agents, which are added to fruits and vegetables in order to prevent
enzymatic browning [5]. The scientific literature has shown that artificial preservatives may,
in certain cases, cause serious health hazards such as hypersensitivity, asthma, neurological
damage, hyperactivity, and cancer [6].

In the modern era, many consumers prefer natural food preservatives over synthetic
ones. The benefits of natural preservatives are endless, and these tend to be safer for use
in comparison to synthetic preservatives [7]. Polyphenols are the largest group of plant
secondary metabolites, containing benzene rings with hydroxyl moieties, and they can
be divided into different chemical classes, including flavonoids, phenolic acids, lignans,
tannins, and stilbenes. They are the most abundant phytochemicals found in dietary
sources, possessing many pharmacological effects including antioxidant and antimicrobial
activities [8,9]. The major sources of polyphenols include fruits or fruit juices (apple,
grapefruit, orange, pineapple, and Prunus fruits), vegetables (broccoli, cabbage, carrot,
cucumber, mint, spinach, tomato, and yellow onion), beverages (tea and coffee), and
wine [10]. This group of compounds could play an essential role in the defense and
protective mechanisms of botanicals [11]. They have potential use as biopreservatives in
the food industry and have been extensively studied for the enhancement of the shelf life of
perishable products. The use of phenolic compounds from natural sources is an interesting
approach, as it allows the production of food without synthetic additives [12].

This review aims to highlight the potential role of natural polyphenols as potential
preservatives in meat and dairy products, mainly focusing on their antimicrobial and
antioxidant effects.

2. Oxidative and Microbial Spoilage of Food Components

Food proteins and lipids are highly exposed to oxidation, which affects their food safety
and quality. Oxidation reduces the shelf life of food components, in addition to nutritional
and sensorial deteriorations that in turn produce toxic substances [13]. Polyunsaturated
fatty acid within food components contains double bonds that are the real initiators of
the oxidation process. These double bonds react with atmospheric oxygen resulting in
the production of free radicals and hydroperoxide [14]. Such oxidation is followed by
protein oxidation, coagulation, polymerization, and protein carbonylation [15]. All these
changes prevent natural proteolysis and protein solubility in food components. In addition,
reduced pH, light, heat, and oxidative enzymes are other factors that promote the oxidation
process [16].

In addition to the oxidative spoilage of food components, microbial spoilage is a highly
significant source of food spoilage. These microbes decrease the sensory and nutritional
value of the food, as well as themselves being the cause of foodborne diseases. As an
example, Bacillus cereus attacks noodles, pasta, and rice, resulting in the spoilage of these
foods and the production of toxins. Milk is spoiled by psychrotrophic and mesophilic iso-
lates [17]. Similarly, Campylobacter coli spoils unpasteurized milk and poultry products [18].
Escherichia coli has the tendency to spoil sprouts, unpasteurized milk, and ground meats [19].
Clostridium botulinum spoils meat and other foodstuffs, leading to compromised food safety,
while L. monocytogenes affects soft cheeses, vegetables, and ready-made foods [20].

Filamentous fungi, usually referred to as molds, serve the beneficial function of
recycling dead animals and plant remains; however, they also provide harsh consequences
in terms of food spoilage, attacking their targets via airborne spores [21]. Molds can survive
at a low pH (3–8) within foodstuffs and grow even with a limited supply of water [22].
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Penicillium-based molds attack jams and margarines and lead to their spoilage. Similarly,
Byssochlamys affects pasteurized juices, and its spores are highly temperature resistant. In
addition, the Aspergillus species of molds are the spoilage microorganisms responsible for
attacking and producing toxins in food items such as peanuts, grains, and beans [2].

Certain forms of microbial deterioration led to the spoilage of food components
through alteration in their physicochemical properties. These adverse effects on food
manifest as slime production, softening of texture, discoloration, and off-flavors. Animal-
derived products including poultry, dairy, meat, and milk are spoiled by certain microbes
including lactobacilli, Brochotrix, Pseudomonas, and Enterobacteriaceae [23]. Similarly, plant-
derived products may be spoiled by certain molds and yeasts, e.g., Penicillium, Candida,
Aspergillus, Pichia, and Fusarium species [24].

Fungi remain a primary concern for the spoilage of preserved foods, as they can
proliferate even with a limited supply of water. Most fungi are also heat resistant, thus
resisting cooking processes [25]. In addition, spores may survive within foodstuffs for
a yet unknown period of time, dependent upon the availability of water [26]. A recent
study found that sea salt may contain certain fungi including Cladosporium, Aspergillus, and
Penicillium, which may spoil food and produce mycotoxins. These spoilage-causing and
mycotoxigenic fungi have been found to favor limited-water environments [27].

The control and prevention of spoilage microorganisms relies on their proper detection
within food. Certain food spoilage microorganisms have become resistant to conventional
conservation methods for foodstuffs, and there is an urgent need for novel preservative
techniques to shelter food components from microbial deterioration, to ultimately avoid
food loss and comply with industrial demand. In addition, consumers do not favor the
preservation of food using certain chemicals, thus providing an opportunity for researchers
to discover natural sources for food preservation, in order to increase the shelf life of food
products. A few natural preservation techniques are discussed in the next section.

3. Natural Methods of Food Preservation

Food can be preserved using multiple techniques such as refrigeration and heating,
although these techniques have certain drawbacks in the form of alteration of organoleptic
features and nutrient loss. Natural preservatives are getting more attention in the food
industry due to the drawbacks of artificial preservatives. Allyl isothiocyanate is a natural
food preserving agent isolated from the essential oil of mustard and other species of the
Brassicaceae family. It exhibits antimicrobial potential against food spoilage microbes. Due
to its pungent taste, fast evaporation, and hydrophobic nature, its natural preservative
potential is limited to certain applicable foodstuffs [28].

Essential oils are historically known for their aroma and microbicidal action. Apart
from their property of modifying food flavor, they can also exhibit antimicrobial potential
against foodborne pathogens, thus replacing chemical preservatives [29]. As natural
food preservatives, essential oils can be used as natural food additives and as a bioactive
component in packaging materials. Oregano essential oil is rich in thymol and carvacrol
and is added to pork meat, resulting in inhibition of the growth of L. monocytogenes and an
improvement in food flavor [30]. The food preserving capacity of citron oil (a kind of oil
extracted from Citrus medica fruit) in a fruit-based salad was evaluated against Salmonella
typhi and L. monocytogenes. The results indicate an outstanding antimicrobial potential
against these species, confirming its use as a natural food preservation agent [31].

Peptides from animal sources have shown antimicrobial action against a wide range of
pathogens associated with food components. Counts of multiple bacteria including Serratia
liquefaciens, Lactobacillus plantarum, and Zygosaccharomyces bailii were successfully reduced
in mayonnaise after the application of chitosan [32]. Alginates and carrageenan isolated
from algae have shown an effective role in food preservation. These form nanocomposite
films containing essential oils, which display antimicrobial action against spoilage microor-
ganisms in food materials. Lactic acid bacteria favor controlled acidification, producing
acids that in turn preserve important foodstuffs [33].
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Some food components can also act as food preservative agents. Jellies, jams, and mar-
malades are composed of 70% sugar, which is itself not toxic to microbes, but rather absorbs
water content from foodstuffs, thus restricting the growth of spoilage microorganisms [34].
Similarly, salt is used at a concentration of 20% in pickles. Salt triggers microbial cell
plasmolysis through the induction of a high osmotic pressure. Dehydration of foodstuffs
and the presence of chlorine ions are two further useful factors that salt provides in food
preservation [35].

4. Phenols and Antioxidant Capacity

Phenols exhibit strong antioxidant potential due to their possession of aromatic rings
with hydroxyl groups, acylated sugars, and organic acids in their structure. The antioxidant
capacity provided by these moieties is due to the inhibition of free radical formation [36].
Medicago minima (L.) is a pasture legume that grows well around the world. A recent study
revealed that a strong antioxidant capacity was observed for the phenols extracted from
the roots, seeds, and leaves of M. minima [37]. Similarly, sorghum is a cereal exhibiting
a high concentration of phenols that in turn are beneficial to human health due to their
antioxidant potential [38].

Rosehips are fruits of species of the Rosa genus and are famous for treating digestive
disorders and boosting the immune system. Rosehips contain phenols that exhibit strong
antioxidant activity [39]. Such an antioxidant potential may attract the attention of con-
sumers to use rosehips as potential functional foods. The antioxidant capacity of phenols
can be measured indirectly via the estimation of their total phenolic contents. Olive oil
and olives obtained from Olea europaea L. contain certain phenols including oleuropein,
ligstroside, and verbascoside that exhibit strong antioxidant potential [40]. The O. europaea
extracts obtained from the leaves are natural antioxidants with minimal toxicity, high-cost
effectiveness, and improved bioavailability [12,41].

Polyphenols are also found in the seeds of grapes, in the form of gallic acid, monomeric
catechin, and epicatechin. Many studies have revealed the antioxidant potential of these
polyphenols [42]. Moreover, many fruits such as cherries, berries, and pomegranate and
vegetables such as parsley, artichokes, and Brussels sprouts contain polyphenols with
antioxidant activity [43]. In addition, the nutritional value of polyphenols is worth men-
tioning, as they protect oxidative chain proliferation via inhibition of lipids. Polyphenols
from fruits and vegetables have strong antioxidant activity that detoxifies carcinogens and
modifies metabolic activation [44].

During recent decades, the health benefits from the use and regular consumption of
whole grains have been reported. In view of this, Oryza sativa L. and rice bran were studied
to assess their phenolic content, and the results suggest that their secondary metabolites,
i.e., ferulic acids, exhibit strong antioxidant potential [45]. Defatted rice bran contains
phenols that have shown promising antioxidant potential and can be used as an alternative
and cost-effective food additive [46]. A recent comprehensive review suggests that husk
and straw from rice sources contain bioactive substances in the form of polyphenols, for
which antioxidant activity appears to be the main mechanistic approach [47].

Catechins are abundant in tea, and these are well known for their antioxidant potential.
Advanced techniques including ultrasound-assisted ultrafiltration and pulsed electric fields
were used to extract polyphenolic compounds from tea, which have shown promising
antioxidant activity [48,49]. Commercial teas were evaluated for their contents and antioxi-
dant activity in a recent study comparing extractable and non-extractable polyphenols. The
results indicate that both the antioxidant activity and contents of extractable polyphenols
were found to be higher than those of the non-extractable polyphenols [50]. Theaflavin
is another polyphenol extracted from black tea. Theaflavin exhibits powerful antioxidant
potential as shown by its electro-analytical data [51].

Traditionally, food conservation is enabled by the antioxidant properties of herbs and
spices. These properties are attributed to the presence of polyphenols. Mint, cinnamon,
and clove contain polyphenols that provide antioxidant potential. The antioxidant activity
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of black garlic is also due to the presence of phenols in its composition [52]. All these
findings show that polyphenols are a versatile class of phytochemicals that exhibit an-
tioxidant potential with promising positive effects on human and animal health. Table 1
shows the antioxidant potential of some selected botanical sources having polyphenols as
bioactive agents.

Table 1. Antioxidant potential of some selected botanical sources.

Plant Species Part Used Extract Total Phenolic
Contents Antioxidant Activity References

Rosa canina L. Fruits 50% ethanol 69.4 mg GAE/g
dry weight

DPPH: 295 mM TE/g
ABTS: 368 mM TE/g
FRAP: 390 mM TE/g

[53]

Olea europaea L. Leaves Methanol 1.60 mg GAE/g
dry weight

DPPH: IC50 34.58 (µg/mL)
ABTS: 37.93 g Trolox/100 g
FRAP: 30.1 g Trolox/100 g

[54]

Vitis vinifera L. Pomace Methanol 74.75 mg GAE/g
dry weight

ABTS: 485.42 µM TEAC/g
DPPH: 505.52 µM TEAC/g
FRAP: 249.46 µM TEAC/g

[55]

Punica granatum L. Peel powder
extract Methanol 54.84 mg GAE/g

DPPH: 88.82% inhibition
TBARS: 64.49% inhibition

FRAP: 0.99 mM TE/g
[56]

Petroselinum
crispum (Mill.)

Fuss
Leaves Distilled water 12.49 mg GAE/g

dry weight
DPPH: EC50 15.50 mg/mL
FRAP: 189.8 mM Fe(II)/mg [57]

Oryza sativa L. Rice bran 10% glycerol 523.2 mg GAE/100
g dry weight

DPPH: 42.9% inhibition
ABTS: 97.92% inhibition
FRAP: 0.08 mM TE/mL

[58]

Camellia sinensis L. Fruit peel extract 75% ethanol 53.12 mg GAE/g
dry weight

DRAP: EC50 1217 µg/mL
ABTS: EC50 849 µg/mL [59]

Gallic acid equivalent (GAE); Trolox equivalent (TE); Trolox equivalent antioxidant capacity (TEAC); 2,2-diphenyl-
1-picrylhydrazyl (DPPH); 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS); ferric reducing antioxidant
power (FRAP).

5. Phenols and Antimicrobial Activity

Chemical preservation in the food industry can lead to toxic side effects, and there is a
need for suitable health friendly alternatives. Natural compounds (phytochemicals) are
found in many foods as natural chemicals with antimicrobial potential. These compounds
can be used as direct food antimicrobial agents, prolonging shelf life of food. The antimi-
crobial activity of plants and herbs is mainly due to the presence of phenolic compounds
found in their extracts. Certain factors including pH, protein content, salt concentration,
and temperature can affect the antimicrobial activity of these compounds [60]. In addi-
tion, food quality is affected by microbiological factors, control of which is essential for
food preservation. The use of food additives of natural origin can overcome these issues
associated with food preservation.

In a study, 15 Mediterranean medicinal plants were evaluated for the antimicrobial
activity of their phenolic contents. Bearberry showed the highest antimicrobial poten-
tial against Gram-positive bacteria, due to the highest concentrations of phenolic com-
pounds [61]. Similarly, compounds extracted from herbs and spices have been explored
as natural antibacterial additives. To this end, phenolic extracts were isolated from Hi-
biscus sabdariffa L. calyces and fractioned and analyzed against foodborne pathogenic
bacteria. The results suggest that the phenolic extracts showed greater antimicrobial ac-
tivity, providing extended shelf life in beef [62]. Another study explored the antimicrobial
activity of phenolic contents from two edible spices Aframomum melegueta K. Schum. and
Afrostyrax lepidophyllus Mildbr. Gallic and phenolic acids were found to be abundant in
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both species, with efficient antimicrobial potential. The results of the study also showed
that non-communicable diseases could be managed by using the extracts from Aframomum
melegueta in combination with those from Afrostyrax lepidophyllus as a natural source of
antimicrobial agents [63].

The extracts and the essential oil from multiple types of oregano have been evaluated
for their antimicrobial potential. The phenols, thymol and carvacrol, are active against
Gram-positive bacteria such as Staphylococcus epidermidis, Staphylococcus aureus, and Bacillus
subtilis. In addition to their activity against Gram-positive bacteria, these phenols were
also found to be active against Gram-negative bacteria including E. coli, Enterobacter cloacae,
and Salmonella typhimurium [64]. Similarly, a study evaluated the antimicrobial activity of
cinnamon extract, in which the main constituents, cinnamaldehyde and eugenol, showed
an efficient antibacterial activity against E. coli and S. typhi as measured through their
respective zones of inhibition [65]. Phenols from Cinnamon verum J. Presl. bark showed
antimicrobial action against E. coli and Staphylococcus aureus [66]. This indicates that these
natural sources can be used as a natural source of antibiotics; however, more advanced
studies are required.

Berries from Vaccinium meridionale Sw. contain phenols such as anthocyanins and hy-
droxycinammic acid and have shown in vitro antimicrobial activity against Gram-positive
and Gram-negative bacteria, thus making them potential candidates for the development
of functional foods [67]. Similarly, the essential oil extracted from Pistacia atlantica Desf.
was investigated for its phenolic content. The study showed that P. atlantica was abundant
in phenols and showed outstanding antimicrobial activity against E. coli [68]. Soxhlet and
maceration processes were used for the extraction of phenolic compounds from essential
oils of Ruta montana (L.) The obtained phenolic compounds were tested against 12 strains
of fungi and 28 strains of bacteria. The results showed strong antifungal and antibacterial
activities for these phenolic compounds [69]. It suggests that R. montana is a valuable
resource that exhibits cost-effective functional properties. This valuable byproduct could be
used in cosmetics, food, and pharmaceutical industries. Other phenolic compounds from
various sources are shown in Table 2, alongside their respective antimicrobial activities.

Table 2. Phenolic compounds and their antimicrobial activity.

Compound Source Antimicrobial Activity Reference

Chlorogenic acid,
caffeic acid Melipona beecheii honey Staphylococcus aureus and

Escherichia coli [70]

Chlorogenic acid Chaenomeles japonica Enterococcus faecalis [71]

Flavonoids (luteolin, apigenin,
quercetin, acacetin),

phenolic acids (coumaroyl acid,
hydroxybenzoic acid, rosmarinic

acid, salvianolic acid,
lithospermic acid)

Satureja montana,
Origanum majorana

Candida tropicalis,
Staphylococcus aureus,

Enterococcus faecalis, and
Klebsiella pneumoniae

[72]

Phenolic acid,
chlorogenic acid Tilia cordata

Candida glabrata, Streptococcus
pyogenes, Staphylococcus aureus,

and Streptococcus mutants
[73]

Gallic acid,
chlorogenic acid Opuntia littoralis Staphylococcus aureus, and

Candida albicans [74]

Phenolic acids,
stilbenes Punica granatum Escherichia coli, Staphylococcus

aureus, and Salmonella typhi [75]
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Table 2. Cont.

Compound Source Antimicrobial Activity Reference

Tannins,
stilbenes Marsilea minuta Pseudomonas aeruginosa and

Klebsiella pneumonia [76]

Proanthocyanidins Grape seed extract Listeria monocytogenes [77]

Proanthocyanidins Cranberry Candida albicans [78]

Proanthocyanidins Peanut Bacillus cereus [79]

Anthocyanins Wild blueberries

Salmonella enteritidis, Listeria
monocytogenes, Vibrio
parahaemolyticus, and
Staphylococcus aureus

[80]

Anthocyanins Aronia melanocarpa Escherichia coli [81]

6. Food Fortification with Phenols as Preservative Agents

Meat products are more vulnerable to lipid oxidation, which is often measured using
the thiobarbituric acid reactive substances (TBARS) method. While synthetic antioxidants
were initially used to prevent oxidation of lipids, natural sources have been found that
might serve same purpose in meat [12]. The use of olive leaf extracts is a common strategy
for the enrichment of food with phenol contents. The incorporation of olive leaf extract
(with total phenolic contents of 45.2 mg gallic acid equivalent (GAE) kg−1) in cooked pork
meat patties resulted in a significant delay in lipid oxidation and both primary (conjugated
dienes and hydroperoxides) and secondary (malondialdehyde) oxidation products. Protein
oxidation was also inhibited in a concentration-dependent manner by decreasing protein
carbonyls and increasing protein sulfhydryls [82].

Bee pollen (0.2%) was found to be effective in retarding lipid peroxidation in pork
sausage stored at 4 ◦C for 30 days, showing significantly lower values of TBARS compared
to control [83]. The percentage decrease in TBARS values was highest in storage after
10 days. The storage life of pork nuggets increased from 21 to 35 days with the incorporation
of Averrhoa carambola L. fruit juice extract, in comparison to pork nuggets without the extract.
The TBARS values of pork nuggets were found to be lower with fruit juice extract (4%
and 6%) during 35 days of storage [84]. The addition of green tea extract in hamburger
showed a reduction in TBARS values during the 8-day storage period. The effect of tea
was increased in a combination of green tea extract with chitosan, as the resistance to lipid
oxidation and microbial deterioration was significantly increased [85].

In another study, pork sausages fortified with a chitosan-film incorporating green tea
extract showed decreased changes in color, texture, thiobarbituric value, microbial growth,
and sensory characteristics, when compared to control (chitosan alone or green tea extract
without chitosan). Successful inhibition of microbial growth (yeasts and molds, and lactic
acid bacteria) and lipid oxidation was observed in refrigerated pork sausages, suggesting
that the incorporation of green tea extract into chitosan may enhance the antimicrobial
and antioxidant properties of the film, and thus, maintain the prolonged shelf-life of the
sausages [86].

The addition of different spice extracts (Syzygium aromaticum (L.) Merr. and L.M. Perry,
Cinnamomum cassia (L.) J. Presl., Origanum vulgare L., and Brassica nigra (L.) K. Koch) with
high total phenolic content to raw chicken meat demonstrated an effective prevention
against microbial growth and lipid peroxidation. The total phenolic contents ranged from
14.09 to 24.65 GAE/g. Samples with Syzygium aromaticum, C. cassia, and Origanum vulgare
extracts exhibited a greater reduction of bacterial counts (lactic acid bacteria and Enter-
obacteriaceae) and TBARS concentrations than control, with a positive increase in sensorial
properties such as color and odor over a storage period of 4 ◦C for 15 days [87]. This kind
of fortification of raw meat with vegetable extracts can be effective for preservation, while
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providing lower TBARS values during storage for 20 days at temperatures ranging from 4
to 20 ◦C [88].

In addition to its capacity to delay lipid and protein oxidation, pomegranate peel
extract can also be used for its melanosis-inhibitory activity during storage of Pacific white
shrimp in refrigerators, with a decrease in mesophilic, psychrophilic, lactic acid bacteria,
and Enterobacteriaceae counts [89,90]. Natural phenols derived from barley husks slow
down lipid hydrolysis and increase the oxidative stability of salmon fish, as determined by
peroxide value, conjugated dienes, conjugated triene hydroperoxides, free fatty acids, totox
values, thiobarbituric acid index, and p-anisidine values [91]. Barley husks are quite rich
in phenolic acids (p-coumaric acid, trans-ferulic acid, and syringic acid), as revealed by
LC-MS analysis [92]. Barley husks also slow down lipid hydrolysis and oxidation (reflected
by significant decreases in lipid hydrolysis and TBARS values) in blue shark (packaged in
a film) during storage at −20 ◦C for 6 months [93].

Several studies suggest that the packaging application of films incorporated with
natural antioxidants improves food stability (from aqueous to fatty food products) through-
out storage.

Barbosa-Pereira et al. developed active antioxidant films with natural antioxidants
(brewery residual stream extract and commercial rosemary extract) using a coating tech-
nique, and these films increased the oxidative stability of beef during refrigeration, reducing
lipid oxidation up to 80% in comparison with the control [94]. Incorporation of catechin
and quercetin into ethylene–vinyl alcohol copolymer films successfully improved the an-
tioxidant protection of packaged food, with the most significant results being observed
with catechin [95]. Similar results were observed with green tea extract incorporated in
ethylene–vinyl alcohol copolymer films [96].

Active films treated with oregano significantly protected lamb against oxidation and
microbial spoilage, as seen in the improvement in metmyoglobin formation, TBARS values,
instrumental color, psychrotrophic aerobic flora counts, and sensory discoloration [97].
When applied to the packaging of ground beef stored at 3 ◦C, multilayered polyethylene
films with incorporated grapefruit seed extract demonstrated a reduction of growth rates of
numerous microbes including Escherichia coli IFO 3301, Staphylococcus aureus IFO 3060, and
Bacillus subtilis IFO 12113 [98]. They also slowed down the chemical changes in packaged
beef during storage.

Chouchouli et al., reported that yogurt fortified with grape seed extracts (rich in
polyphenols) contained more bioactive compounds, with higher antioxidant and antiradi-
cal activities [99,100]. Similarly, oat-bran-fortified raspberry probiotic dairy drinks exhibited
increased antioxidant effects, owing to a higher phenolic content [101]. Strawberry polyphe-
nol extract–fortified stirred dahi (a traditional fermented dairy product prepared by lactic
acid fermentation of milk) resulted in a seven-fold increase in the antioxidant activity
while pH, acidity, water-holding capacity, and viscosity remained comparable with the
control [102]. The addition of grape pomace powders to semi-hard (Italian Toma-like) and
hard cheeses (cheddar) resulted in increased total phenolic contents and radical scavenging
activity, while no variation was observed in the microbial counts and physiochemical
parameters [103]. Tseng and Zhao stored grape-pomace-fortified yogurt for 3 weeks at
4 ◦C and observed an increase in pH and decrease in viscosity without alterations in lac-
tose concentrations [104]. In addition, grape pomace also reduced the peroxide values
during storage with advantages in oxidative stability. Polyphenol-enriched dairy products
developed by incorporating black carrot concentrate demonstrated enhanced antioxidant
activities with increased total phenolic contents [105]. The storage study showed that
yogurt can be stored for up to 5 days, ice cream for more than 60 days, and buttermilk for
up to 10 days with excellent stability attributes.

The addition of dry rosemary to cottage cheese resulted in the highest antioxidant
and antimicrobial effects due to high content of caffeic acid, rosmarinic acid, flavones,
and phenolic diterpenes [106]. It was shown to limit the growth of foodborne pathogens
including Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, and Salmonella ty-
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phimurium during 3-day storage at 4 ◦C. Polyphenols contained in dry extracts from plants
such as dill, parsley, garlic, and red sweet peppers were also tested in the same study and
showed considerable antioxidant and antimicrobial activities, which was attributed to high
polyphenolic contents in the final dried products. However, rosemary showed the highest
antioxidant activity with a FRAP value of 17.1–26.4 mmol per 100 g, followed by dill,
parsley, red sweet peppers, and garlic. Citrus aurantium L. flower extract containing total
phenolic and flavonoid contents of 81 and 46 mg/g, respectively, was studied in yogurt
stew during storage for 28 days at 4 ◦C [107]. The extract was shown to inhibit the growth
of Pseudomonas aeruginosa, E. coli O157:H7, Bacillus cereus, and Staphylococcus aureus. The
extract showed significant antioxidant potential where the IC50 value for DPPH assay was
calculated as 41.6 µg/mL while the IC50 value for control (butylated hydroxytoluene) was
18.8 µg/mL. Similarly, a FRAP assay showed a reducing power of the extract of 18.47 mmol
Fe2+/mass. Anisidine value, peroxide value, protein carbonyls value, and conjugated
diene value indicated that Citrus aurantium reduced protein and lipid oxidation products in
yogurt stew during storage. Punica granatum L. rind extract demonstrated significant lipid
oxidative stability and antimicrobial effects when added to cheese stored for 28 days at
4 ◦C, suggesting its potential use as a natural preservative in dairy products [108]. Punica
granatum extract exhibit a significant decrease on TBARS (mg malonaldehyde/kg) and free
fatty acid (% oleic acid) values. In addition, considerably lower values were observed for
total plate count (log cfu/g), yeast and mold count (log cfu/g), and psychrophilic bacte-
rial count (log cfu/g) in samples with added P. granatum extract. Organic cottage cheese
flavored with Argentinean oregano essential oils (Cordobes, Compacto, Mendocino, and
Criollo) was tested for the quality of storage and shelf-life at thermal storage for 30 days by
Asensio and colleagues [109]. The samples flavored with thymol and Cordobes essential oil
presented reduced conjugated dienes (15.53 and 15.94, respectively) as compared to 17.54
for the control sample. Samples flavored with Cordobes, Criollo, and Compacto essential
oils exhibited reduced saturated/unsaturated fatty acid ratios than the control (1.62, 1.68,
and 1.67, respectively). A significant low production of organic acids during storage was
found in the samples flavored with Cordobes and Compacto essential oils.

7. Conclusions

Polyphenols are plant secondary metabolites with well-established health benefits.
Due to an increasing demand for minimally processed food, polyphenols have drawn great
interest as possible alternative preservative agents, potentially aiding oxidative stability
and providing antimicrobial effects. Numerous studies have demonstrated that plant
extracts rich in phenolics are effective agents in preventing microbial growth and oxidative
processes in meat and dairy products, thus increasing their stability and storage life. Since
no pure phenolics are authorized as food preservatives, direct incorporation of botanical
extracts (rich in polyphenols) into perishable foods can be considered [109] In addition
to their uses as antimicrobial and antioxidant agents, natural phenols can also be used
as anti-browning agents. Individual phenolic compounds should also be screened for
their possible uses as preservative agents in food products susceptible to spoilage by
multiple mechanisms.
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89. Turgut, S.S.; Soyer, A.; Işıkçı, F. Effect of pomegranate peel extract on lipid and protein oxidation in beef meatballs during
refrigerated storage. Meat Sci. 2016, 116, 126–132. [CrossRef]

90. Basiri, S.; Shekarforoush, S.S.; Aminlari, M.; Akbari, S. The effect of pomegranate peel extract (PPE) on the polyphenol oxidase
(PPO) and quality of Pacific white shrimp (Litopenaeus vannamei) during refrigerated storage. LWT—Food Sci. Technol. 2015, 60,
1025–1033. [CrossRef]

91. De Abreu, D.P.; Losada, P.P.; Maroto, J.; Cruz, J.M. Evaluation of the effectiveness of a new active packaging film containing
natural antioxidants (from Barley husks) that retard lipid damage in frozen Atlantic salmon (Salmo salar L.). Food Res. Int. 2010,
43, 1277–1282. [CrossRef]

92. Hajji, T.; Mansouri, S.; Vecino-Bello, X.; Cruz-Freire, J.M.; Rezgui, S.; Ferchichi, A. Identification and characterization of phenolic
compounds extracted from Barley husks by LC-MS and antioxidant activity in vitro. J. Cereal Sci. 2018, 81, 83–90. [CrossRef]

93. De Abreu, D.P.; Losada, P.P.; Maroto, J.; Cruz, J.M. Natural antioxidant active packaging film and its effect on lipid damage in
frozen blue shark (Prionace glauca). Innov. Food Sci. Emerg. Technol. 2011, 12, 50–55. [CrossRef]

94. Barbosa-Pereira, L.; Aurrekoetxea, G.P.; Angulo, I.; Paseiro-Losada, P.; Cruz, J.M. Development of new active packaging films
coated with natural phenolic compounds to improve the oxidative stability of beef. Meat Sci. 2014, 97, 249–254. [CrossRef]

95. Lopez-de-Dicastillo, C.; Alonso, J.M.; Catala, R.; Gavara, R.; Hernandez-Munoz, P. Improving the antioxidant protection of
packaged food by incorporating natural flavonoids into ethylene−vinyl alcohol copolymer (EVOH) films. J. Agric. Food Chem.
2010, 58, 10958–10964. [CrossRef] [PubMed]

96. López de Dicastillo, C.; Nerín, C.; Alfaro, P.; Catalá, R.; Gavara, R.; Hernández-Muñoz, P. Development of new antioxidant
active packaging films based on ethylene−vinyl alcohol copolymer (EVOH) and green tea extract. J. Agric. Food Chem. 2011, 59,
7832–7840. [CrossRef] [PubMed]

97. Camo, J.; Beltrán, J.A.; Roncalés, P. Extension of the display life of lamb with an antioxidant active packaging. Meat Sci. 2008, 80,
1086–1091. [CrossRef] [PubMed]

98. Ha, J.U.; Kim, Y.M.; Lee, D.S. Multilayered antimicrobial polyethylene films applied to the packaging of ground beef. Packag.
Technol. Sci. 2001, 14, 55–62. [CrossRef]

99. Chouchouli, V.; Kalogeropoulos, N.; Konteles, S.J.; Karvela, E.; Makris, D.P.; Karathanos, V.T. Fortification of yoghurts with grape
(Vitis vinifera) seed extracts. LWT-Food Sci. Technol. 2013, 53, 522–529. [CrossRef]

100. Savas, B.S.; Akan, E. Oat bran fortified raspberry probiotic dairy drinks: Physicochemical, textural, microbiologic properties,
in vitro bioaccessibility of antioxidants and polyphenols. Food Biosci. 2021, 43, 101223. [CrossRef]

101. Singh, R.; Kumar, R.; Venkateshappa, R.; Mann, B.; Tomar, S.K. Studies on physicochemical and antioxidant properties of
strawberry polyphenol extract–fortified stirred dahi. Int. J. Dairy Technol. 2013, 66, 103–108. [CrossRef]

102. Marchiani, R.; Bertolino, M.; Ghirardello, D.; McSweeney, P.L.; Zeppa, G. Physicochemical and nutritional qualities of grape
pomace powder-fortified semi-hard cheeses. J. Food Sci. Technol. 2016, 53, 1585–1596. [CrossRef]

103. Tseng, A.; Zhao, Y. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of
yogurt and salad dressing. Food Chem. 2013, 138, 356–365. [CrossRef]

104. Pandey, P.; Grover, K.; Dhillon, T.S.; Kaur, A.; Javed, M. Evaluation of polyphenols enriched dairy products developed by
incorporating black carrot (Daucus carota L.) concentrate. Heliyon 2021, 7, e06880. [CrossRef]
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