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ABSTRACT

Cancer cell lines are not homogeneous nor are they
static in their genetic state and biological proper-
ties. Genetic, transcriptional and phenotypic diver-
sity within cell lines contributes to the lack of experi-
mental reproducibility frequently observed in tissue-
culture-based studies. While cancer cell line hetero-
geneity has been generally recognized, there are no
studies which quantify the number of clones that co-
exist within cell lines and their distinguishing char-
acteristics. We used a single-cell DNA sequencing
approach to characterize the cellular diversity within
nine gastric cancer cell lines and integrated this in-
formation with single-cell RNA sequencing. Overall,
we sequenced the genomes of 8824 cells, identifying
between 2 and 12 clones per cell line. Using the tran-
scriptomes of more than 28 000 single cells from the
same cell lines, we independently corroborated 88%
of the clonal structure determined from single cell
DNA analysis. For one of these cell lines, we identi-
fied cell surface markers that distinguished two sub-
populations and used flow cytometry to sort these
two clones. We identified substantial proportions of
replicating cells in each cell line, assigned these cells
to subclones detected among the G0/G1 population
and used the proportion of replicating cells per sub-
clone as a surrogate of each subclone’s growth rate.

INTRODUCTION

Cancer cell lines are used to study tumor growth, evaluate
the biology underlying metastasis and determine drug sen-

sitivities. However, it is increasingly recognized that cancer
cell lines have subpopulations with extensive fitness diver-
sity (1,2). This may lead to different drug responses within
the same cell line (2). The characterization of cancer cell
lines and their intrinsic clonal complexity has generally been
qualitative. In contrast, for most cancer cell lines, there is
very little known about the total number of coexisting sub-
clones and their genomic features. Addressing this issue,
new genomics methods such as single cell DNA-sequencing
(scDNA-seq) and single cell RNA sequencing (scRNA-seq)
can be used to quantitatively determine the cellular diversity
within any given cancer tissue sample or cell line. ScDNA-
seq identifies somatic genetic alterations, such as somatic
copy number variations (CNVs). Likewise, scRNA-seq data
can be used to infer CNVs albeit with limited resolution.
Single cell CNVs provide a unique perspective on intratu-
moral heterogeneity and subclonal structure (3–6).

There are only a limited number of studies which com-
bine both scDNA-seq and scRNA-seq for the analysis of
cancer (5,7–10). Integrating these two methods provides
granular information about the clonal membership and the
transcriptional state of a given cell. Along these lines, we
developed a new analysis framework for joint single cell
genomics, whereby clones are defined via scDNA-seq and
scRNA-seq, allowing for independent evaluation for the ac-
curacy of clone size and characteristics. We analyzed the
CNVs from both whole genomes and transcriptomes of
thousands of cells originating from nine gastric cancer cell
lines. We used our analytical framework to perform a joint
analysis that delineated both a cell line’s subclonal com-
position as well as the transcriptional states of these spe-
cific cell populations (Figure 1A). Demonstrating the feasi-
bility of isolating clonal cells, we used our method to dis-
cover subclone-specific cell surface markers in the cell line
NUGC-4. Then, we used these markers to isolate cells from
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Figure 1. Single cell DNA-seq and RNA-seq delineate cell cycle state heterogeneity of gastric cancer cell lines. (A) Overview of the study using joint single
cell DNA and RNA sequencing on nine gastric cancer cell lines. Integrating scDNA- and scRNA-seq data informs a cell’s clone membership, pathway
activities and cell cycle state in tandem. (B) Using single cell DNA sequencing, 829 cells from the NUGC-4 gastric cancer line were classified according
to three features: ploidy (x-axis); the number of breakpoints in their genome (y-axis); the breakpoints’ proximity to the origin of replication (ORI) per
chromosome as denoted by a color bar. Low frequency breakpoints (≤1% across all cells) were counted for each chromosome. For cells in S-phase, these
counts are correlated to the number of ORIs per chromosome. In contracts to cells in S-phase, cells in G0/G1 had fewer breakpoints which did not correlate
to chromosomal ORI counts. (C) The percentages of G0/G1 cells estimated from scDNA-seq and scRNA-seq (y-axis), were positively correlated with the
cell lines’ doubling times (x-axis). (D) Cell-cycle phase assignment based on scRNA-seq. 3797 NUGC-4 cells (columns) were clustered according to the
activity of 39 pathways involved in cell-cycle progression (rows). Clusters were classified as to whether they had cells in G0/G1 (black), cells in S phase
(cyan) or cells in G2M (red).



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 3

each of two distinct NUGC-4 subclones. Moreover, we es-
timate the proportion of replicating cells per clone and pro-
pose it can serve as a surrogate metric to distinguish clonal
stasis from ongoing in-vitro evolution. Overall, our study
brings new insights into what drives and maintains genetic
cell diversity in-vitro.

MATERIALS AND METHODS

Gastric cancer cell lines

Gastric cancer cell lines were purchased from ATCC
(KATOIII, NCI-N87, SNU-16), KCLB (SNU-668, SNU-
601, SNU-638), JCRB (MKN-45, NUGC-4) and ECACC
(HGC-27). Microsatellite Instability (MSI) status was pre-
viously assessed for all cell lines and found negative for
all but one cell line (SNU-638). Identity of each cell line
was determined through independent karyotyping. Cells
were checked for mycoplasma contamination. Cells were
cultured in their recommended media conditions at 37◦C.
Afterward, the cells were processed into suspensions with
standard procedures. Briefly, this process involved trypsiniz-
ing the cells, followed by inactivation by fetal bovine serum
(FBS). We performed washes by centrifugation at 400 g in
1× phosphate-buffered saline with 0.04% bovine serum al-
bumin. To remove cellular debris and cellular aggregates,
we filtered cells through a Flowmi cell strainer (Wayne, NJ,
USA) before proceeding to single-cell DNA and RNA se-
quencing.

Library preparation protocol for scDNA-seq

Single-cell DNA libraries were generated using a high-
throughput, droplet-based reagent delivery system using a
two-stage microfluidic procedure. First, cells were encap-
sulated in a hydrogel matrix and treated to lyse and un-
package DNA. Second, a gel bead (GB) was functionalized
with copies of a unique droplet-identifying barcode (sam-
pled from a pool of ∼737 000) and co-encapsulated with
the hydrogel cell bead in a second microfluidic stage to sep-
arately index the genomic DNA (gDNA) of each individual
cell. Unless otherwise stated, all reagents were part of a beta
version of the Gel Bead and Library Kit for single cell CNV
analysis (10× Genomics Inc., Pleasanton, CA, USA). In the
first microfluidic chip, cell beads (CBs) were generated (Sup-
plementary Methods). Cell bead-gel beads (CBGBs) were
generated by loading CBs, barcoded gel beads, enzymatic
reaction mix and partitioning oil in a second microfluidic
chip (Supplementary Methods). A two-step isothermal in-
cubation yielded genomic DNA fragments tagged with an
Illumina read 1 adapter followed by a partition-identifying
16-bp barcode sequence. The library preparation was com-
pleted per the manufacturer’s protocol. Polymerase chain
reaction (PCR) was performed using the Illumina P5 se-
quence and a sample barcode with the following conditions:
98◦C for 45 s, followed by 12–14 cycles (dependent on cell
loading) of 98◦C for 20 s, 54◦C for 30 s and 72◦C for 30
s. An incubation step at 72◦C was performed for 1 min be-
fore holding at 4◦C. Libraries were purified with SPRIselect
beads (Beckman Coulter, Brea, CA, USA) and size-selected
to ∼550 bp. At last, sequencing libraries were quantified

by qPCR before sequencing on the Illumina platform using
NovaSeq S2 chemistry with 2 × 100 paired-end reads.

ScDNA-seq data processing and CNV calling

Sequencing data were processed with the Cellranger-DNA
pipeline, which automates sample demultiplexing, read
alignment, CNV calling and report generation. In this
study, we used a beta version for all analyses (6002.16.0).
Paired-end FASTQ files and a reference genome (GRCh38)
were used as input. Cellranger-DNA output includes copy
number calls for each cell. Cellranger-DNA is freely avail-
able at https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/algorithms/overview
and details of the pipeline are described in Supplementary
Methods.

ScRNA-seq data processing

Cellranger software suite 1.2.1 was used to process scRNA
data, including sample demultiplexing, barcode processing
and single cell 3′ gene counting. The cDNA insert, which is
contained in the read 2, was aligned to the GRCh38 hu-
man reference genome. The reference GTF contained 33
694 entries, including 20 237 genes, 2337 pseudogenes and
5560 Antisense (non-coding DNA). Cellranger provided a
gene-by-cell matrix, containing the read count distribution
of each gene for each cell.

Calling CNVs from scRNA-seq with LIAYSON

The algorithm, linking single-cell genomes among con-
temporary subclone transcriptomes (LIAYSON), is an ap-
proach we developed to profile the CNV landscape of each
scRNA-sequenced single cell of a given sample. The algo-
rithm relies on two assumptions: (a) a cell’s average copy
number state for a given genomic segment influences the
mean expression of genes within that segment across the
same set of cells; and (b) the copy number variance of a
given genomic segment across cells reflects the cells’ expres-
sion heterogeneity for genes within that same segment (Sup-
plementary Figure S3A and B). Let x̂ be the measured copy
number of a given cell-segment pair, and x its corresponding
true copy number state. The probability of assigning copy
number x to a cell i at locus j depends on: (i) cell i’s read
count at locus j and (ii) cell i’s read count at other loci, i.e.
how similar the cell is to other cells that have copy number
x at locus j. For (i), we fit a Gaussian kernel on the read
counts at locus j across cells to identify the major and the
minor copy number states of j as the highest and second
highest peak of the fit respectively (Supplementary Meth-
ods). For (ii), we use Apriori (11)––an algorithm for associ-
ation rule mining––to find groups of loci that tend to have
correlated copy number states across cells (Supplementary
Methods). LIAYSON is implemented in R and is available
on CRAN at the following URL https://cran.r-project.org/
web/packages/liayson.

Identification of coexisting clones from scDNA-seq or
scRNA-seq

Let M be the matrix of copy number states per non-private
segment per G0/G1 cell, derived either from scRNA- or

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/algorithms/overview
https://cran.r-project.org/web/packages/liayson
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from scDNA-seq, with entries (i, j) pointing to the copy
number state of cell i for segment j. Pairwise distances be-
tween cells were calculated in Hamming space (12) of their
segmental copy number profiles (rows in M), weighted by
segment length (Supplementary Figure S6). We used the
BIONJ algorithm (13) to reconstruct a tree of G0/G1 cells
from the distance matrix. A subtree was designated as a
clone if the maximum distance between its cell members was
less than 20% of the genome. At last, we used the Pearson
Correlation Coefficient calculated across segments to assign
S and G2M cells to the clones detected among the G0/G1
population. The copy number profile of each detected sub-
clone was calculated as the average profile of single cells as-
signed to that subclone.

Integration of scRNA-seq- and scDNA-seq derived clones

Let R and D be the scRNA- and scDNA-seq derived clone-
by-segment matrices of copy number states. Furthermore,
let S: = SR ∩ SD, where SR and SD are the segments defin-
ing the columns of R and D respectively. We defined X: =
RS U DS as the union of scRNA-seq and scDNA-seq de-
rived clones at overlapping genomic locations. We used the
same hierarchical clustering procedure as above, only this
time clones rather than cells were arranged into the result-
ing tree T. We iterated through all binary subtrees t ∈ T and
assigned clones within t as:

i) True positives (TPs) – t contains both, an scRNA- and
an scDNA-clone

ii) False positives (FPs) – t contains two scRNA-clones
iii) False negatives (FNs) – t contains two scDNA-clones.

To validate scDNA-seq derived clone detection, we used
the same procedure, except the roles of FPs and FNs were
flipped. Clones comprising >4% cells, which were not con-
firmed by both techniques, were excluded from further anal-
ysis.

Flow cytometry sorting of NUGC-4

We used the scRNA-seq data to identify cell surface mark-
ers that are differentially expressed between co-existing
clones, in order to physically separate them via flow cytom-
etry. For fluorescence-activated cell sorting (FACS), cells
were incubated for 30 min on ice with antibodies at dilutions
determined by titration experiments. Antibodies used in this
study include: anti-human CD13 (ANPEP) PeCy7 (clone
WM15; BioLegend) 1:10, anti-human CD184 (CXCR4)
BV421 (clone 12G, BioLegend) 1:10, anti-human TM4SF4
APC (R&D) 1:10, anti-human ITM2C (clone 2E8G11, Pro-
teintech) 1:10. For the detection of the unconjugated anti-
human ITM2C antibody cells were subsequently washed
and stained for 30 min on ice with anti-mouse IgG2A FITC
(Biolegend) 1:100. Corresponding isotype immunoglobu-
lin served as controls. Flow cytometric sorting was per-
formed using a FACSAriaFusion instrument (BD Bio-
sciences, San Jose, CA, USA) and analyses were per-
formed using the FlowJo software (Tree Star, Ashland, OR,
USA).

Intra-cell line differential gene expression

We used Seurat version 2.3.4 to identify differentially ex-
pressed genes between members of a given clone and mem-
bers of any other clone detected in the same cell line. Only
groups of cells with identical cell line origin were compared.
For each comparison we used the Wilcox rank-sum test
implemented in Seurat (function `FindMarkers`), while ac-
counting for variability in gene coverage across cells. To vi-
sualize the population structure within a cell line we used
the UMAP (14) (Uniform Manifold Approximation and
Projection) or tSNE (t-Distributed Stochastic Neighbor
Embedding) dimension reduction techniques.

Karyotyping of sorted NUGC-4 subpopulations

Cell cultures were harvested by standard cytogenetic
methodologies using Colcemid® mitotic arrest (0.05
�g/ml, 20 ◦C, variable time), hypotonic shock (0.075 M
KCl, 20 ◦C, 15 min) and fixation (3:1 methanol/acetic
acid). Metaphase slide preparations were stained using the
GTW banding method and mitotic chromosomes imaged,
analyzed and karyotyped with a Leica DM6000 micro-
scope equipped with a 100x oil immersion objective and
CytoVision® imaging software (Leica).

RESULTS

Single cell sequencing identifies variable fractions of replicat-
ing cells across cancer cell lines

We used a droplet-based partitioning technology to conduct
scDNA-seq for CNVs (‘Materials and Methods’ section).
Using this approach, we sequenced 8824 single cells from
nine gastric cancer cell lines and determined copy number
status across the genome of each cell. Overall, for each cell
line we sequenced between 0.5 and 2.2 million unique reads
per cell, translating to a median effective coverage of 279
reads per 1 Mb per cell (Supplementary Table S1). Sequenc-
ing data was of high quality, with mapping rates of at least
97% across all cell lines, and an average duplication rate of
12% across all cell lines. We identified an average of 2198
CNVs per sample that were present in more than 1% of cells
per cell line. The majority of these CNVs (95%) were asso-
ciated with ongoing DNA replication in a cell, further re-
ferred to as replication-specific CNVs (Supplementary Ta-
bles S1 and 2). The remaining CNVs were a consequence of
aneuploidy and segregated the cells into multiple clones. All
cell lines demonstrated clonal diversity (Figure 1A). CNVs
and aneuploidy status were confirmed by both SNP array
analysis and karyotyping of these same cell lines (Supple-
mentary Figure S1A–G). The average ploidy across cells
was consistent with that as determined with karyotyping
(Supplementary Figure S1F).

The overall strategy of the analysis is show in Figure 1A.
CNVs that distinguish any two cells of a population either
have a stable representation in the genome or they are a
transient consequence of DNA replication during mitosis.
To distinguish G0/G1 cells from cells in the S phase of the
cell cycle, we used three features (Figure 1B and Supplemen-
tary Figure S2B–J): (i) the cell’s ploidy, (ii) its number of
CNVs and (iii) the distance of CNVs to replication origins
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(15). The proportion of G0/G1 cells ranged from 58% in
SNU-16 to 82% in SNU-668 (Figure 1B and Supplemen-
tary Table S1). For a subset of the cell lines, we used flow
cytometry to generate comparison data of DNA content
(Supplementary Figure S2A). The percentage of replicating
cells per scDNA-seq was positively correlated to the per-
centage of replicating cells per flow cytometry (r = 0.86,
P = 0.063; Supplementary Figure S5A). The percentage of
G0/G1 cells per scDNA-seq was also proportional to the
doubling time of the cell line (r = 0.76, P = 0.017; Figure
1C). Specifically, a smaller proportion of cells in S-phase
was an indicator of slower cell growth and showed an asso-
ciation with fewer years since the cell line was established
(Supplementary Figure S5B).

We used scRNA-seq to validate our scDNA-seq’s cell cy-
cle assignment. For this comparison, we conducted scRNA-
seq of 28 209 single cells for the same nine gastric can-
cer cell lines (Supplementary Table S3). Differences in the
passage number between the two single cell sequencing as-
says were below two for 78% of the cell lines and the ex-
tent of confluence was typically at 80–90% (Supplementary
Table S2). Activity profiles of multiple cell cycle pathways
have been shown to provide robust cell cycle status classi-
fication across different cell types (16). For each individ-
ual cell, we quantified the activity of 39 cell-cycle pathways
from the REACTOME database (17) and used these results
to determine cell cycle state (Supplementary Table S4 and
Figure S8A–D). Pathways were classified into three groups
depending on their main activation timing during G0/G1,
S and G2M. We performed hierarchical clustering of cells
and classified clusters based on their cells’ pathway activity
(Figure 1D). The percentages of G0/G1 cells, assigned with
scDNA-seq versus scRNA-seq, were correlated (r = 0.73, P
= 0.026, Figure 1C).

Subclonal signatures of genomic instability and ongoing se-
lection

We used scDNA-seq to characterize the underlying sub-
clonal structure of the cell lines. Approximately 95% of the
CNVs identified by scDNA-seq were found in less than 1%
of the G0/G1 population. We ascribed these events to vari-
ance related to DNA replication and not representing can-
cer genome CNVs (Supplementary Table S1). The remain-
ing CNV segments distinguished the subclones within the
G0/G1 population. We calculated the pairwise distances
between cells in Hamming space and applied a neighbor
joining algorithm (13), to build a tree of G0/G1 cells (‘Ma-
terials and Methods’ section). We defined a clone as the
largest subtree within which the maximum distance between
its cell members was <20% of the genome (Figure 2A). The
term subclone size refers to the relative fraction of cells as-
signed to a specific clone. To assign S-phase cells to the
subclones detected among the G0/G1 population, we de-
termined the cellular similarity with a Pearson correlation.
For example, this approach identified four clones within the
G0/G1 population of NCI-N87 (Figure 2A–C). The per-
centage S cells assigned to each of these four subclones were
proportional to their respective G0/G1 representation (Fig-
ure 2A and B).

There were two to 12 subclones present for any given gas-
tric cancer cell line (Supplementary Table S5). Of all the ge-
nomic regions affected by subclonal CNVs in the SNU-668
cell line, 14% of these regions had at least three copy num-
ber states––each state represented by a significant number
of cells (Supplementary Figure S9A). That is, for these CNV
affected regions, two copy number states alone were insuffi-
cient to represent the majority of the cell population (≥90%
cells). The same applied for 8% of subclonal CNV regions
in SNU-16 (Supplementary Figure S9B). This is significant
because algorithms that quantify genetic intra-tumor het-
erogeneity by deconvoluting bulk sequencing data typically
assume that two copy number states suffice to represent a
given genomic region (18,19). Clones whose genomes di-
verge in these genomic regions would thus remain unde-
tectable with bulk sequencing. Along the same lines, an av-
erage of 12% subclones large enough to be detectable with
bulk sequencing had a cellular frequency that was in close
proximity to at least one other co-existing subclone (Supple-
mentary Figure S9C). Because deconvolution algorithms
rely on cellular frequencies alone to define subclones, these
algorithms would coalesce such subclone pairs of similar
size.

Approximately half of the variation in subclone counts
across cell lines was attributed to differences in ploidy
and/or the duration since the cell line was first established
in culture (adjusted R2 = 0.53; P = 0.044; Supplementary
Table S6). Longer time in culture was predictive of fewer
clones (P = 0.025; coefficient = −0.29), while higher ploidy
predicted more clones, albeit at borderline significance (P =
0.054; coefficient = 3.09). The former observation is consis-
tent with a recent finding showing that in vitro CNV acqui-
sition rate decreases over time, while signatures of prolifer-
ation increase, in line with clonal selection of fitter clones
(1).

Shifts in a cancer cell line’s subclonal composition have
been shown to frequently result from in vitro selection,
rather than a stochastic process (1,2). As a surrogate of in
vitro selection among the cancer cell subclones, we calcu-
lated the difference between percentage replicating cells and
G0/G1 cells per subclone, which we refer to as a selection
coefficient. To estimate the statistical significance associated
with a given selection coefficient, we used a hypergeomet-
ric distribution––we determined if the subclone’s number
of replicating cells was within a range consistent with its
G0/G1 representation (Supplemental Methods). The two
cell-cycle states had similar proportions for a given sub-
clone, indicating predominance of clonal stasis (Pearson r
= 0.88; P < 2e-16; Figure 2D). Seventeen subclones (30%)
had a higher percentage of replicating cells than expected
from their G0/G1 population size (FDR adjusted P < =
0.05; Figure 2D and E). We interpreted this result to be
a potential indication of positive selection. Conversely, six
subclones (11%) had fewer replicating cells than expected
from their G0/G1 representation, suggesting they were un-
der negative selection (FDR adjusted P < = 0.05; Figure 2D
and E). The overrepresentation of positively selected clones
compared to negatively selected ones was a result consistent
with a recent study showing that in vitro evolution is primar-
ily driven by positive selection (2). Quantifying the growth
rate of an individual subclone at the time of sample collec-
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Figure 2. Single cell DNA-seq characterizes clonal composition and evolution in gastric cancer cell lines. (A) Copy number landscape of G0/G1 cells (left)
is shown alongside S cells (right) for each clone detected in NCI-N87 (left color bars). (B) Copy number segmentation profile shown for an G0/G1- and
an S representative of the two largest clones in (A) (cyan and purple). Arrows indicate genomic regions where the two clones diverge. (C) Genetic events
leading to the divergence of the four co-existing clones in NCI-N87. (D) The percentage of replicating cells per clone increased with percentage of G0/G1
cells per clone in NCI-N87 as well as in the other eight cell lines, indicating predominant clonal stasis (Pearson r = 0.88; P < 2e-16). Selection of clones
(color-coded) was calculated as probability of sampling the % replicating cells observed for a given clone, conditional on the G0/G1 representation of that
same clone using the hypergeometric distribution. Clones were assigned to three groups: positive selection (n = 17), no selection (n = 34) and negative
selection (n = 6). (E) Number of selected clones per cell line. [CN: copy number].
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tion may prove useful in predicting the clonal composition
of future cell line populations.

Consilience of scDNA- and scRNA-seq on G0/G1 subclonal
architectures

We used the scRNA-seq results to determine whether sub-
clones derived from scDNA-seq can be confirmed by an in-
dependent ascertainment method. For this comparison, we
inferred CNVs from scRNA-seq. Gene expression has been
shown to be proportional to the gene’s copy number state
for the majority of genes (20), suggesting that scRNA-seq
derived expression features can inform CNV status. How-
ever, other mechanisms of gene regulation alter expression,
thus confounding the influence of segmental copy num-
ber. One algorithm for calling CNVs from scRNA-seq data
demonstrated good performance, particularly for large seg-
ments, above 10 Mb, and for large subclones (21). How-
ever, this method’s precision fell below 50% for smaller sub-
clones, making up 20% or less of the total cells (21). To
address this limitation, we developed and applied an algo-
rithm called LIAYSON, which uses scRNA-seq to decon-
volute bulk CNV profiles into single cell-specific copy num-
bers (Supplemental Methods). This approach relies on gene
expression to estimate the variance in copy number, but not
the mean copy number across cells (Supplementary Figure
S3) and is less influenced by regulators of expression lev-
els other than CNVs. Genomic segments spanning 10 Mb
contain on average sufficient genes (at least 20 genes with
expression results), to facilitate CNV calling. But the locus-
specific resolution on CNVs is a function of the architec-
ture of the human genome and the tissue-specificity of gene
expression. Between 25 and 80% of segments per cell line
passed these metrics for this analysis.

With the CNV results from scRNA-seq, we identified
a range of three to 11 subclonal populations across the
nine gastric cancer cell lines (Supplementary Table S5).
The number of scRNA-seq and scDNA-seq derived clones
were highly correlated (r = 0.93. P = 3E-4; Figure 3A). As
another validation of concordance between the two tech-
niques, we performed hierarchical clustering of subclone-
specific CNV profiles (Figure 3B–D). We defined true pos-
itives as clusters containing subclones identified by both
techniques and false positives and -negatives as clusters con-
taining subclones identified by just one single technique
(Supplemental Methods). To determine the concordance
between scDNA-seq and scRNA-seq, we calculated the F1
score which considers both the precisions and the recall of
a test. The F1 score was 0.47 for clones below 4% abun-
dance, but increased to ≥0.7 for clones above 4% (Supple-
mentary Figure S3C). Based on this result, we excluded any
subclones smaller than 4% and not confirmed by both sin-
gle cell methods. Posterior saturation curves of scDNA-seq
library sizes were calculated for each cell line as previously
described (4) and indicated that we had statistical power to
detect these subclones (Supplementary Table S7).

Citing an example, our scDNA-seq and scRNA-seq re-
sults identified four subclones in NCI-N87 with similar pro-
portional sizes (Figure 3B–D). On closer examination, we
observed that the copy number states of several smaller
segments (<10 Mb; Supplementary Figure S7), were not
assigned for any clone by scRNA-seq, but were identified

by scDNA-seq. For these genomic regions, the number of
genes with adequate expression levels was too low to allow
assignment by scRNA-seq. This result is in line with the ex-
pectation that scDNA-seq provides a higher resolution of
subclonal CNVs than scRNA-seq.

Results for the remaining gastric cancer cell lines were
similar. Among the nine cell lines, the subclonal size, as de-
termined by scRNA-seq, correlated with the scDNA-seq re-
sults (Pearson r = 0.93, P < 2e-16; Supplementary Figure
S3D). An average of 88% cells per cell line were assigned
to subclones confirmed independently by both scDNA-seq
and scRNA-seq (Supplementary Table S5). Concordance
between the two techniques was dependent on sequence
depth, subclone size (Supplementary Figure S3C–F) and
the number of subclones per a given cell line (Supplemen-
tary Table S5). Higher differences in passage number be-
tween scDNA- and scRNA-seq experiments were correlated
with a significant divergence between clonal compositions
measured by the two methods (r = 0.71, P = 0.032; Sup-
plementary Figure S3G). The magnitude of this divergence
is likely a function of the extent of genome instability in
a growing cell line. For example, the clonal composition
of SNU-668 remained more stable between the two mea-
surements than that of SNU-16, even though differences
between passage numbers were slightly smaller for the lat-
ter (five for SNU-16 versus seven for SNU-668; Figure 3F
and G). Overall, both single-cell sequencing assays indepen-
dently identified clonal architectures with similar features,
increasing our confidence in their biological significance.

Sorting cells from subclones with distinct CNV characteris-
tics

The integration of scDNA- and scRNA-seq results proved
useful for isolating cells from subclones based on their ex-
pression characteristics. Clones with specific CNV alter-
ations were enriched in separate areas of the transcription-
ally defined UMAP (Figure 3E). This result suggested that
we could use this transcriptome information to prioritize
cell surface markers for physical separation of genetically
defined cells for a given clonal population.

We examined two distinct clonal populations detected
in NUGC-4. An extra copy of a large genomic region
on chromosome 2q distinguished these two clones, fur-
ther referred to as cloneamplif2q and clonegain2q (Figure
4A and B). Based on the scRNA-seq results, we identi-
fied four cell surface marker genes with expression pro-
files that differentiated themselves among the two clones
(‘Materials and Methods’ section). Subsequently, we iden-
tified specific antibodies for the corresponding marker
proteins and used them for flow sorting two subpopu-
lations, further referred to as subpopulationamplif2q and
subpopulationgain2q (Figure 4C and Supplementary Fig-
ure S5C). Afterward, we conducted a karyotyping test of
these sorted cells from the two subpopulations. Our re-
sults showed that subpopulationamplif2q contained exclu-
sively cells with a chromosome 2 rearrangement. In com-
parison, 65% of the cells from subpopulationgain2q lacked
this rearrangement (Figure 4D), suggesting the two sub-
populations were indeed enriched for cloneamplif2q and
clonegain2q, respectively. Subpopulationgain2q was almost ten
times larger than subpopulationamplif2q and the variance of
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Figure 3. Consilience of scDNA- and scRNA-seq on G0/G1 clonal architectures. (A) Correlation between number of clones inferred by scRNA- and
scDNA-seq across all nine cell lines. (B–E) Integrated analysis of cell line NCI-N87. ScRNA-seq derived copy number landscape of 2334 G0/G1 cells
detected in NCI-N87 (B), independently distinguishes the same four clones as scDNA-seq of 742 G0/G1 cells (C). Clone membership is color coded on
the left. (D) Each CNV profile found by scRNA-seq had an equivalent CNV profile in the scDNA-seq data, applying to a similar % of cells. (E) A UMAP
map of NCI-N87 cells shown in panel C based solely on their expression signatures. Clones defined by copy number alterations, are enriched in specific
areas of the transcriptionally defined UMAP. (F and G) Differences in passage number between scDNA- and scRNA-seq experiments for SNU-668 (F)
and SNU-16 (G) accompany differences in clonal composition (39) observed between the two techniques. [CN: copy number].
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Figure 4. Integrated single cell sequencing informs live-cell-sorting of NUGC-4 clones. (A) Phylogenetic tree of the four clones detected by scDNA-seq in
NUGC-4. (B) G0/G1 cells are shown in tSNE space––every dot is a cell, and two clones of interest are highlighted in purple and green. The purple clone
has three copies of a large genomic region on chromosome 2q (2q gain), whereas the green clone has an extra copy of that same segment (2q amplification).
Cells are colored based on their CNVs, whereas their location in tSNE space is based on their expression signature. (C) The top four cell surface markers
informing separation of the green and purple clone in tSNE space were: ANPEP, CXCR4, TM4SF4 and ITM2C. We used flow cytometry with these four
markers to enrich for the respective clone. (D) Cytogenetic analysis of chromosome 2 identified three karyotypes among the two isolated subpopulations
(top row), including a rearrangement on the q-arm (red arrow). All of the cells (100%) from the green subpopulation had a chromosome 2q rearrangement,
whereas the purple subpopulation contained only 35% cells with the rearrangement.

its expression profile was higher, likely accounting for the
lower purity of sorting.

To estimate how many subclones can be isolated in each
cell line with this strategy, we quantified how well a given
set of cell surface markers can separate a clone of inter-
est from the remaining clones in a cell line. We clustered
all cells based on the expression of the corresponding cell
surface markers (up to four genes). Across all G0/G1 cells
we then calculated the Pearson correlation coefficient be-
tween clone membership and cluster membership (Supple-
mentary Table S8). Out of 41 confirmed clones, for 16 clones
the correlation between cell surface cluster membership and
clone membership was at least as high as for the two isolated
NUGC-4 clones, suggesting it may be possible to sort them
at a similar accuracy as the two NUGC-4 clones. These ex-
periments underscored the utility of transcriptome and ge-
nomic CNV data integration for genotype-phenotype com-
parisons.

Identification of pathways associated with accumulation of
copy number alterations

The rate of accumulation of CNVs is of interest because
it contributes to the speed at which a population evolves.
CNVs contribute considerably to intra-tumor heterogeneity

(22,23). Most somatic CNVs accumulate during DNA repli-
cation (24). Alternative end-joining causes insertion dele-
tions (indels) and template switching events can lead to
short amplifications (25). The mechanisms responsible for
generating large CNVs are complex in their biology. To de-
termine if there were specific pathways associated with CNV
accumulation, we focused on CNV events that were present
in a small proportion of cells. The rationale behind this
strategy is that the number of cells carrying a given CNV
is correlated to the time at which the CNV event happened
(18). The more recent a CNV the less time selection had to
act upon it, rendering CNVs of low cellular frequency a bet-
ter proxy of CNV accumulation rate than high-frequency-
CNVs. This analysis was possible because of the high reso-
lution of scDNA-seq in identifying these cancer CNVs in a
small number of cells.

We defined rare CNVs as genomic segments above 1 Mb
long that have an altered copy number status in less than
10% of the cells for a given clonal branch. We clustered
cells based on their rare CNVs and calculated the Simp-
son diversity index (26) of cell-clusters found within a given
clone (Supplementary Figure S4A). This intra-clone diver-
sity (ICD) index was used as surrogate metric for CNV ac-
cumulation rate per clone (Figure 5A) and was not con-
founded by clone size (Supplementary Figure S4B). There
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Figure 5. Identification of pathways associated with accumulation of CNVs. (A) Diversification of two clones found in KATOIII based on rare CNVs, i.e.
CNVs found in <10% of clone members. Phylogenies were used to calculate a clone’s Simpson-index as surrogate of its further diversification. The two
clones were on opposite ends of the ICD spectrum. (B) Thirty-nine pathways (y-axis) associated with ICD across 41 confirmed clones (x-axis). Clones were
sorted according to their ICD index. (C–E) The correlation between ICD (x-axis) and pathway activity per clone (y-axis) is shown for three pathways. A
positive correlation coefficient is often observed within as well as across cell lines. Solid lines depict linear regression fits. Dotted lines indicate a simple
connection between two data points––this was applied to the cell line with only two confirmed clones: MKN-45.
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was a high variability of CNV accumulation rates across
co-existing clones within a cell line, with clones from the
same cell line sometimes residing at opposite sides of the
CNV accumulation rate spectrum (Figure 5A and B). Cell
cycle state classification was conservative for the G0/G1
state, to minimize a potential contribution of false pos-
itive S cells to this result. But given the complexity of
the cell cycle and the fact that cell cycle state is a con-
tinuous rather than discrete variable, we cannot fully ex-
clude the possibility of its contribution as confounding
factor.

Using the overlaid scRNA-seq data from these same
lines, we then compared the pathway activity of a clone with
its CNV accumulation rate. For each clone and each path-
way from the REACTOME database (17), we quantified
the average pathway activity among clone members (rang-
ing from 31 to 1441 G0/G1 cells) with GSVA (27). Over-
all, we identified 39 pathways that were either positively or
negatively correlated with CNV accumulation rate per clone
(Figure 5B): within at least three individual cell lines (|Pear-
son r | ≥0.7 for each cell line) and across all nine cell lines
(|r|≥0.25).

Pathways positively correlated with CNV accumulation
rate included non-homologous end-joining; Packaging Of
Telomere Ends; DNA Damage/Telomere Stress Induced
Senescence and DNA double strand break repair activity
(Figure 5C and D). These pathways are established in their
contributory role in the acquisition of CNVs (24), thus val-
idating our choice of the ICD index as surrogate measure
of CNV accumulation. Interestingly, there was an overrep-
resentation of metabolic functions among pathways anti-
correlated with CNV accumulation rate. These included the
Nicotinate metabolism (Figure 5E), previously shown to
contribute to the DNA damage repair process in response
to chemotherapy (28). Metabolic pathways have been pro-
posed as features that enable one to classify different types
of DNA damage (29). Our results indicate that clones
within the same cell line may differ in their DNA-damage
response. Other functions negatively associated with CNV
accumulation were toll-like receptor (TLR) signaling path-
ways (Figure 5B).

We conclude that quantification of both, genomic in-
stability and transcriptional activity, allows us to confirm
previously known pathways involved in genome integrity
and identify new candidate features that may contribute to
genome maintenance.

DISCUSSION

For this study, we demonstrated a new scDNA-seq technol-
ogy that enabled the interrogation of intratumoral hetero-
geneity from thousands of cells per sample. Adding tran-
scriptomes at the resolution of single cells to single cell
genomes, showed that gastric cancer cell lines have sub-
stantial genetic and transcriptional diversity. This result is
consistent with other studies showing that cancer evolution
continues in-vitro (1,30). It suggests that using these in-vitro
systems to study specific drug sensitivities should be limited
to a narrow time window, where the clonal composition of
the cell line is expected to stay within a predefined range.
Our results suggest that the width of this window depends

on the cell line’s ploidy and the number of years since it has
been in culture.

In contrast to a prior study, that joined scDNA-seq with
scRNA-seq to identify subclones (5), we chose to com-
pare subclones identified independently by each single cell
technology, trading a higher clone detection power for the
opportunity of validating clone detection accuracy. Co-
clustering clones identified independently by either single
cell technique intrinsically controlled for false positives:
whether two clones co-cluster does not only depend on their
own genetic content, but also on the content of other clones
identified in the sample (Figure 3D). Integrating the tran-
scriptome and genome features improved our clone detec-
tion resolution to identify clones down to 2% cellular frac-
tion. This high sensitivity is likely to have broad applicabil-
ity as the dominant subclones of resistant tumors (31,32),
metastases (33,34), patient-derived xenografts and cell lines
(1) often originate from minor subclones in the primary tu-
mor. Single cell data integration enabled us to discover cell
surface markers that we used for flow cytometry sorting of
clones (Figure 4). In the future this approach can be lever-
aged to test subclone-specific drug sensitivities without hav-
ing to re-sequence the population each time after drug ex-
posure to see which clone survived.

Cellular diversity in cancer cell lines can be the result of
stochastic drift or of ongoing selection in culture. Several
approaches have been developed to quantify selection using
either time-resolved sequence data from longitudinal stud-
ies (35,36) or by observing differences in the statistical struc-
ture and shape of genealogies reconstructed from a fitness
diverse asexual population (37,38). Our integrated sequenc-
ing approach may facilitate prediction of selective forces im-
posed on a clone at the time of cell harvest, by simply com-
paring its S and G0/G1 representations (Figure 2A and D).
To dissect the effects of selection and mutation on intratu-
mor heterogeneity and estimate the rate at which CNVs ac-
cumulate in a given clone, we quantified how often clone
members carry unique/rare CNVs. We identified pathways
whose expression was associated with CNV accumulation
rate, including DNA repair mechanisms, metabolic path-
ways and TLR signaling pathways (Figure 5B). We spec-
ulate that repair of single- and double-strand breaks may
be less error-prone in the presence of TLR signaling, in line
with previous reports of a link between activation of TLRs
and increased functional DNA repair (28).

In the future, the coexistence of multiple clones within
the same cell line can be leveraged to learn generally appli-
cable strategies that differentiate between the sensitivities of
co-existing clones and that characterize clonal competition,
cooperation and adaptation to changing environments.
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//github.com/noemiandor/cloneid. The repository contains
various functions used throughout the manuscript, such as
identification of differentially expressed cell surface markers

https://github.com/noemiandor/cloneid


12 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2

(function ‘findCloneMarkers’) and integration of scRNA-
and scDNA-seq perspectives on clones (function ‘mergePer-
spectives’).

A Jupyter notebook to demonstrate its utility is un-
der https://github.com/noemiandor/cloneid/blob/master/
CLONEID applicationExample CLs.ipynb.
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