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Extracellular DNA as a genetic 
recorder of microbial diversity in 
benthic deep-sea ecosystems
C. Corinaldesi   1, M. Tangherlini2,3, E. Manea2 & A. Dell’Anno2

Extracellular DNA in deep-sea sediments represents a major repository of genes, which previously 
belonged to living organisms. However, the extent to which these extracellular genes influence 
current estimates of prokaryotic biodiversity is unknown. We investigated the abundance and diversity 
of 16S rDNA sequences contained within extracellular DNA from continental margins of different 
biogeographic regions. We also compared the taxonomic composition of microbial assemblages 
through the analysis of extracellular DNA and DNA associated with living cells. 16S rDNA contained 
in the extracellular DNA pool contributed up to 50% of the total 16S rDNA copy number determined 
in the sediments. Ca. 4% of extracellular Operational Taxonomic Units (OTUs) were shared among the 
different biogeographic regions revealing the presence of a core of preserved OTUs. A higher fraction of 
OTUs was exclusive of each region potentially due to its geographic and thermohaline characteristics. 
Ca. one third of the OTUs identified in the extracellular DNA were absent from living prokaryotic 
assemblages, possibly representing the signatures of past assemblages. Our findings expand the 
knowledge of the contribution of extracellular microbial sequences to current estimates of prokaryotic 
diversity obtained through the analyses of “environmental DNA”, and open new perspectives for 
understanding microbial successions in benthic ecosystems.

Extracellular DNA in surface deep-sea sediments is by far the largest reservoir of DNA of the world oceans1. The 
main sources of extracellular DNA in such ecosystems are represented by in situ DNA release from dead benthic 
organisms, and/or other processes including cell lysis due to viral infection, cellular exudation and excretion from 
viable cells, virus decomposition, and allochtonous inputs from the water column1–4. Previous studies provided 
evidence that an important fraction of extracellular DNA can escape degradation processes, remaining preserved 
in the sediments5,6. This DNA represents, potentially, a genetic repository that records biological processes occur-
ring over time7,8.

Recent investigations revealed that DNA preserved in marine sediments is characterized by a large number of 
highly diverse gene sequences7–10. In particular, extracellular DNA has been used to reconstruct past prokaryotic 
and eukaryotic diversity in benthic ecosystems characterized by low temperatures and/or permanently anoxic 
conditions10–14.

Previous studies suggested that the preservation of DNA might be also favoured in benthic systems character-
ised by high organic matter inputs and sedimentation rates, such as continental margins15,16. These systems, which 
represent ca. 15% of the global seafloor, are also hotspots of benthic prokaryotic diversity17–19, and therefore they 
could represent optimal sites to investigate the prokaryotic diversity preserved within extracellular DNA.

Spatial distribution of prokaryotic diversity has been intensively studied in benthic deep-sea ecosystems20–23 
through the analysis of “environmental DNA” (i.e., the genetic material obtained directly from environmental 
samples without any obvious signs of biological source material24). However, the extent to which gene sequences 
contained within extracellular DNA can alter the estimates of the diversity of the present-day prokaryotic assem-
blages is unknown25.

In the present study, we utilised the extracellular DNA pool as a recorder of the prokaryotic diversity in the 
sediments of different sites of continental margins (Atlantic and Arctic Ocean, and Mediterranean Sea). The 
prokaryotic genetic signatures contained in the different extracellular DNA pools were compared among them, 
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and with the gene sequences belonging to living microbial assemblages. Findings reported here provide new 
insights on ubiquitous and exclusive prokaryotic signatures preserved in different biogeographic regions, and 
their contribution to the estimates of the current diversity.

Results
Environmental variables.  Temperature ranged from −0.84 °C to 13.1 °C (in the Arctic and Mediterranean 
sites, respectively) and salinity from 34.84 to 38.49 (in the NE Atlantic 1 and Mediterranean sites, respectively). 
The lowest concentrations of biopolymeric carbon were found in the site NE Atlantic 2 whereas the highest one in 
the Arctic margin (1.33 ± 0.17 and 4.14 ± 0.53 and mgC g−1 of sediments, respectively, Table S1).

Total extracellular DNA concentrations and 16S rDNA copy number.  The concentrations of total 
extracellular DNA in surface sediments of the continental margins investigated ranged from 9.4 ± 3.0 μg DNA 
g−1 to 22.5 ± 4.8 μg DNA g−1 (in the sites NE Atlantic 1 and 2, respectively; Fig. 1A). The concentrations of total 
extracellular DNA determined in the deepest site of the NE Atlantic 2 were significantly higher than those of NE 
Atlantic 1 and Arctic sites (p < 0.01), but not significantly different from those of the Mediterranean Sea.

The copy number of 16S rDNA ranged from 3.2 ± 0.3 × 107 to 32.5 ± 4.1 × 107 g−1 within the extracel-
lular DNA pools (in the NE Atlantic 1 and Mediterranean sites, respectively) and from 5.4 ± 0.2 × 107 to 
78.5 ± 1.2 × 107 g−1 within the intracellular DNA pools (in the NE Atlantic 1 and Mediterranean Sea, respectively; 
Fig. 1B). The copy number of 16S rDNA contained in the extracellular and intracellular DNA pools varied signifi-
cantly among all the samples investigated (p < 0.01). In all benthic sites the abundances of prokaryotic 16S rDNA 
in the extracellular DNA pools were significantly lower than in the intracellular DNA pools (p < 0.01), except for 
the Arctic site where no significant differences were found.

The contribution of extracellular 16S rRNA gene copies to the total pool of 16S rDNA copies (as the sum of 
16S rRNA gene copies contained in extracellular and intracellular DNA pools) ranged from 11% to 50%, in NE 
Atlantic site 2 and Arctic site, respectively.

Prokaryotic diversity associated with extracellular DNA pools.  The number of sequences obtained 
for each extracellular DNA sample at each step of quality check and during the QIIME analysis are reported in 
Table S2.

The number of OTUs after normalisation to the same number of sequences ranged from 1003 to 1158 in the 
NE Atlantic 2 and Mediterranean samples, respectively (Table S3, Figure S1).

Figure 1.  Total extracellular DNA concentrations in the sediments of continental margins from NE Atlantic 
and Arctic Oceans and Mediterranean Sea (A); copy number of 16S rRNA genes in the extracellular and 
intracellular DNA pools from the sediments of continental margins (B).
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Extracellular DNA pools from all sites investigated were characterized by 16S rDNA gene sequences affiliating 
to a number of prokaryotic families ranging from 201 (in the Mediterranean Sea) to 236 (NE Atlantic 1; Table S3). 
Overall, 316 families were identified in the extracellular DNA pools, 39% of which were shared among all pools. 
From ca. 4% to 8% of the families were exclusive of each site (in Arctic and NE Atlantic 2 sites, respectively).

Prokaryotic assemblages were mainly represented by JTB255 marine benthic group (Gammaproteobacteria), 
which contributed from 6% to 14% to the total number of sequences, unclassified Sh765B-TzT-29 
(Deltaproteobacteria, from 8% to 12%) and uncultured bacterium of Subgroup 21 (Acidobacteria, from 4% 
to 9%), followed by other bacterial and archaeal families including Sva0725 (Subgroup 10, Acidobacteria), 
Flammeovirgaceae (Cytophagales, Bacteroidetes) and unclassified/ambiguous taxa belonging to Marine Group 
I (Thaumarchaeota, Fig. 2).

The network-based analysis showed the presence of core OTUs (i.e. shared among all the different extracellu-
lar DNA pools) belonging to different taxa mainly affiliated with Acidobacteria Subgroup 21, Xantomonadaceae 
and JTB255 marine benthic group (Fig. 3). Such core OTUs accounted for only ca. 4% to the total OTU number. 
This analysis also showed the presence of a large fraction of partially shared OTUs (i.e., shared among two or 
three DNA pools) contributing for ca. 61% to the total number of OTUs. Finally, all extracellular DNA pools 
were characterized by several OTUs exclusive of each site, accounting, on average, for 35% to the total number 
of OTUs.

SIMPER analyses revealed that prokaryotic assemblages contained within the extracellular DNA pool from 
the Mediterranean sample were largely dissimilar from those from NE Atlantic 1 or Arctic samples (ca. 58–66%).

The results of the cluster analysis based on the Jaccard dissimilarity indicated that the different extracellular 
DNA pools (in terms of OTU presence/absence) from NE Atlantic 1 and NE Atlantic 2 sites clustered together 
whereas Arctic and, particularly, the Mediterranean samples were separated (Figure S2).

Comparison between the prokaryotic diversity associated with extracellular and intracellular 
DNA pools.  The number of sequences obtained for each extracellular and intracellular DNA sample at each 
step of quality check and during the QIIME analysis are reported in Table S2. The OTU richness and number of 
families (obtained using the same number of sequences) identified within each DNA pool are reported in Table S4 
while rarefaction curves are shown in Figure S1.

Intracellular DNA pools from the NE Atlantic sites were characterized by 16S rDNA gene sequences belonging 
to a total of 262 prokaryotic families in both sites (Figure S3) while prokaryotic signatures contained in the extra-
cellular DNA pools were affiliated with 268 families. Xanthomonadales, Deltaproteobacteria and Acidobacteria 
were the dominant prokaryotic taxa either in intracellular or extracellular DNA pools.

In the NE Atlantic sites 1 and 2, 43% and 46% of the prokaryotic OTUs (mainly affiliated with Subgroup 
21, Sh765B-TzT-29 and JTB255) were respectively shared between extracellular and intracellular DNA pools 
(Fig. 4A,B). Ca. one third of the prokaryotic OTUs were exclusively present in extracellular DNA from each of 
the two NE Atlantic sites.

Figure 2.  Taxonomic composition of prokaryotic assemblages in the extracellular DNA pools from deep-
sea benthic ecosystems of continental margins. The taxa, whose OTUs contribute for at least 1% to the whole 
prokaryotic assemblages, are shown.
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In the NE Atlantic site 1, we found some exclusive prokaryotic taxa of extracellular DNA pool belonging to 
Burkholderia and Thermoplasmatales, whereas no exclusive family was found in the intracellular DNA pools 
(Fig. 4A).

In the NE Atlantic site 2, exclusive prokaryotic taxa of the intracellular DNA pool mainly belonged to 
TM6 (although their sequence contribution to the whole assemblage was <0.1%), whereas taxa affiliated to 
Burkholderiaceae and OD1 mainly belonged to the extracellular DNA pool (Fig. 4B).

Cluster analyses indicated that the assemblages of prokaryotic OTUs of the extracellular and intracellular 
DNA pools in both the NE Atlantic sites clustered together although with a high level of dissimilarity (ca. 52% on 
average, as calculated by the SIMPER analysis and 64.5% with binary Jaccard dissimilarity).

The analysis of intracellular DNA pools showed that a set of OTUs were shared from the two pools from 
the NE Atlantic sites (6.5%). This fraction was very similar to the percentage of core OTUs of the extracellu-
lar DNA pools from the two NE Atlantic sites (7.4%). Core OTUs of the intracellular DNA pools belonged to 
the same prokaryotic taxa as the core OTUs of extracellular DNA pools (JTB255, Acidobacteria Subgroup 21, 
Xantomonadaceae).

Discussion
Previous studies suggested that the preservation of DNA in deep-sea sediments may be favoured by an array of 
factors including anoxic conditions, low temperatures, and high sedimentation rates, as observed in continental 
margins6,15. In the present study, we found that the total extracellular DNA concentrations, in the sediments of 
different continental margins, were among the highest values reported so far for deep-sea ecosystems1,2. In par-
ticular, we provide evidence that the deepest sediments among those investigated (4902 m depth in the Atlantic 
Ocean) were characterized by the highest amount of extracellular DNA, suggesting that benthic ecosystems along 
continental margins, even at abyssal depth, can be a major repository of extracellular DNA.

Investigations conducted in subsurface anoxic sediments and in surface sediments of coastal and deep-sea 
ecosystems revealed that extracellular DNA can preserve sequences of dead prokaryotes and eukaryotes7,8,25. Our 
findings obtained from surface sediments of continental margins show that extracellular 16S rRNA gene copies 
accounted for a variable fraction of the total number of 16S rRNA gene copies (as the sum of extracellular and 
intracellular 16S rDNA gene copies) depending on the investigated site. The number of 16S rRNA gene copies 

Figure 3.  OTU network of the extracellular DNA pools from the sediments of the different continental 
margins. Dot size within the network is proportional to the abundance of sequences for each OTU. Dots 
circled in red represent extracellular core OTUs, dot circled in yellow are partially shared (among two or more 
pools) OTUs, dots circled in black are OTUs exclusive of each pool. The core OTUs contributing at least for 
20 sequences are shown. The numbers in parentheses represent the number of connections among OTUs and 
samples: 1 for exclusive OTUs, 2–3 for partially shared OTUs and 4 for core OTUs.
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contained in the extracellular DNA pool were not correlated to the total extracellular DNA concentrations. This 
could be explained by the heterogeneous composition of the extracellular DNA pool, which includes genes differ-
ent from the 16S rDNA, and/or its level of fragmentation/damage, which is influenced by a variety of biotic and 
abiotic factors25.

We also found that the extracellular 16S rDNA sequences were highly diverse and affiliated to both archaeal 
and bacterial families, most of which have not been classified yet.

More than one third of the prokaryotic families were common to all of the extracellular DNA pools. These 
families, including those affiliated with the unclassified Subgroup 21 Acidobacteria, the unclassified Sh765BTz-29 
Deltaproteobacteria and JTB255 marine benthic group (Xanthomonadales), are typical of benthic deep-sea eco-
systems26–29. However, the analysis conducted at the OTU level revealed that the similarity among different extra-
cellular DNA pools was very low, suggesting the presence of a low but highly represented (in terms of sequence 
abundance) number of core OTUs28–30. This was also highlighted by the network analysis, which showed a core of 
extracellular OTUs (mainly affiliated with Acidobacteria Subgroup 21 and JTB255 marine benthic group), char-
acterized by the highest connectivity among samples. Such OTUs were thus present in all biogeographic regions 
despite their different temperature and salinity values, trophic conditions, sedimentation rates and consequently 
age of the sediment layer considered (from decades to several hundreds of years). These findings allow us to 
hypothesize that the prokaryotic core signatures might belong to resident taxa in all sites of continental margins 
for several decades. On the other hand, we also observed the presence of groups of extracellular OTUs exclusive of 
each biogeographic region suggesting that different environmental conditions could select specific taxa31 and/or 
favour the preservation of their genetic signatures12,25. We found that extracellular OTU pools from the two sites 
of the NE Atlantic margin grouped together, whereas the extracellular OTU pool from the Mediterranean site 
clustered apart, potentially due to the wide differences in temperature and salinity regimes. Since the sedimenta-
tion rates determined in the two NE Atlantic sites were very different, we exclude that the age of the sediment, in 
the order of hundreds of years, can represent a key factor influencing the preservation of extracellular prokaryotic 
signatures as previously reported in other benthic ecosystems25.

The comparison between extracellular and intracellular DNA pools revealed that they contained a rather simi-
lar number of OTUs, which fall within the range of values reported so far for benthic deep-sea ecosystems27,32. Ca. 
one third of the total OTUs were shared between extracellular and intracellular DNA pools in each site indicating 

Figure 4.  OTUs shared between extracellular and intracellular DNA pools and exclusive OTUs of each pool 
from the sediments of NE Atlantic 1 (A) and NE Atlantic 2 (B) sites. Dot size is proportional to the contribution 
of sequences to each OTU belonging to the different prokaryotic families. The OTUs, which contribute most to 
the prokaryotic assemblage in terms of sequences, are colored according to their taxonomic affiliation (at the 
lowest identifiable taxonomic level).
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a low level of similarity of the composition of prokaryotic assemblages contained therein (as also revealed by the 
Jaccard index). Indeed, we observed a high fraction of OTUs exclusive either of the intracellular DNA or of the 
extracellular DNA, which even contained OTUs affiliated to families not encountered in any of the two intracel-
lular DNA pools of the Atlantic margin (such as those belonging to TM6, Burkholderiales and others).

The low level of similarity between OTUs of the extracellular and intracellular DNA pools cannot be attributed 
to methodological artefacts/biases related with cell lysis induced by the procedure here used, and/or sequencing 
effort applied to our samples. Indeed, the analyses performed indicate that the amount of intracellular DNA/
prokaryotic genes released due to sample manipulation and/or active growth of the cells is negligible33. At the 
same time, despite the sequencing effort in our samples was not completely exhaustive, the rarefaction curves 
obtained were not far from reaching the saturation, suggesting that prokaryotic diversity was largely described. 
Therefore, the presence of OTUs exclusive of the intracellular DNA pool could be explained by different degra-
dation rates of the prokaryotic sequences once outside the cells or the sporadic inputs of microbial taxa from the 
water column8,32. On the other hand, the presence of prokaryotic taxa exclusively found in the extracellular DNA 
pool suggests that they are no longer part of the living microbial fraction possibly representing the signatures of 
past assemblages8,12.

The exclusive extracellular prokaryotic taxa found in our study have been already reported in other benthic 
ecosystems through extraction procedures of total sedimentary DNA (without discriminating between DNA 
associated with extracellular and microbial fractions34,35). However, in these cases, it cannot be excluded that, 
due to the potential co-extraction of past prokaryotic signatures, the current diversity has been over-estimated. 
Therefore, we claim for the need of considering the contribution of extracellular DNA in the current estimates 
of benthic prokaryotic biodiversity obtained through the analyses conducted on the so called “environmental 
DNA“24. Moreover, the contextual analysis of prokaryotic signatures associated with intracellular DNA and extra-
cellular DNA might represent a useful and effective tool for understanding microbial successions from the past 
to present-day.

Materials and Methods
Study areas and sampling strategy.  Surface sediment samples were collected using a multiple corer in 
different continental margins of the Mediterranean Sea, NE Atlantic and Arctic Oceans. In particular, sediment 
samples were collected in the NW Mediterranean Sea at 2342 m depth (42.080 N, 4.682E), in the NE Atlantic 
Ocean, at two sites at 3475 m (40.167 N, 9.983E, hereafter defined NE Atlantic 1) and 4902 m depth (40.167 N, 
10.984E; hereafter defined NE Atlantic 2) and in the Arctic Ocean at 2482 m depth (79.067 N, 4.170E; Table S1).

At each site, three sediment cores were collected by independent deployments (n = 3) of multiple corers, 
which allow the collection of hermetically-closed samples. Immediately after retrieval, the sediment cores were 
sliced vertically and the top layer (0–2 cm) was stored at −80 °C until laboratory analyses. Moreover, at each site 
temperature and salinity of bottom waters were measured by CTD.

The high variability in the sedimentation rates across the investigated sites (Table S1) resulted in different ages 
(i.e., 12 years for the Mediterranean site, 67 and 667 years for the sites NE Atlantic 1 and 2, respectively, and 105 
years for the Arctic site) of the sediments considered25.

Biochemical composition of organic matter.  The concentrations of proteins, carbohydrates and lipids 
in the sediment were determined spectrophotometrically36 and expressed as bovine serum albumin, glucose and 
tripalmitine equivalents, respectively. The sum of the carbohydrate, protein and lipid concentrations converted 
into carbon equivalents (using the conversion factors of 0.40, 0.49 and 0.75 mg C mg−1, respectively) was defined 
as the biopolymeric organic carbon37.

Total extracellular DNA concentrations.  Working conditions and precautions during extracellular DNA 
analyses are described in Supplementary Information.

To determine the concentrations of total extracellular DNA in the sediment we used a procedure based on the 
hydrolysis of the extracellular DNA (using commercial nucleases) which does not allow the recovery of the DNA 
for subsequent molecular studies25,38,39; therefore, contextual aliquots of the same samples were also processed to 
provide extracellular DNA that was suitable for molecular analyses.

For the total extracellular DNA analyses, 2.5 mL 0.1 M Tris, 0.1 M NaCl, 1 mM CaCl2, 10 mM MgCl2, pH 
7.5, was added to 1 g sediment (wet weight; i.e., buffer: sediment ratio of 2.5:1 [v/w]). Aliquots of the sediment 
samples (n = 3) had additions of DNase I (1.9 U mL−1), nucleases P1 and S1 (4.0 and 2.3 U mL−1, respectively), 
and exonuclease-3 (1.9 U mL−1); another set of replicates was added to an equal volume of buffer (without the 
enzymes) and used as a control. The samples were incubated at room temperature for 2 h under gentle agitation, 
and then centrifuged at 2,000 × g for 5 min, with the resultant supernatants used to determine the DNA released 
from the sediments. The supernatants were dried under vacuum and analysed fluorometrically using diami-
nobenzoic acid. The fluorescence of the hydrolysed DNA was converted into concentrations using calibration 
curves obtained from standard solutions of Escherichia coli DNA (from 0.05 to 5.0 µg DNA mL−1). The amounts 
of extracellular DNA hydrolysed by the nucleases were obtained from the differences between the DNA concen-
trations of the enzyme-treated samples and the control samples.

The extracellular DNA concentrations were expressed as micrograms of total extracellular DNA per gram dry 
sediment.

Extraction of extracellular and intracellular DNA pools suitable for molecular analyses.  The extra-
cellular and intracellular DNA used for molecular analyses were recovered contextually from the same sediment 
sample following the protocol developed by Corinaldesi et al.39, with some modifications to increase the extraction 
efficiency. The robustness and reliability of this protocol for extracellular DNA extraction has been shown to exclude 
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any possible contamination due to cell lysis for co-extraction of DNA contained in the microbial cells10,39. Briefly, 
the sediment samples were treated with acid-washed polyvinylpolypyrrolidone (0.05% final concentration) and SDS 
(final concentration, 0.1%). Then the samples were chilled on ice, centrifuged, and the supernatants were transferred 
to sterile tubes. The sediment pellets were washed again with sodium phosphate buffer (pH 8.0) and centrifuged. 
These steps were repeated 6 times. Supernatants were combined and centrifuged for 20 min at 10000 × g (4 °C). After 
centrifugation, the supernatants containing extracellular DNA were filtered through 0.02-µm-pore-size filters to 
eliminate any contaminating viruses or prokaryotic cells. Aliquots of the supernatant fluid after filtration were fur-
ther checked using epifluorescence microscopy to exclude viral or prokaryotic contamination. The pellets containing 
prokaryotic cells were treated with DNase I to exclude any possible contamination from residual extracellular DNA, 
and then processed for DNA extraction by using the UltraClean soil DNA isolation kit (MoBio Laboratories Inc., 
CA, USA) according to the manufacturer’s instructions.

The extracellular DNA contained in the supernatant fluid was recovered by adding 1 volume of cetyltrimeth-
ylammonium bromide solution (1% CTAB in 50 mM, Tris 10 mM EDTA, pH 8.0) and further precipitation after 
incubation at 65 °C for 30 min, cooling on ice and centrifugation at 10000 × g for 15 min at 4 °C. The pellet was 
suspended in high-salt TE buffer (pH 8.0) added to 0.6 volumes of cold isopropanol, incubated for 2 h at −20 °C 
and centrifuged at 10000 × g for 15 min at 4 °C. The pellets containing the extracellular DNA were suspended in 
MilliQ water and purified using the Wizard PCR clean-up system (Promega).

The details of the analyses conducted to test the absence of cell lysis potentially induced by the procedure 
described above are provided in the Supplementary Information.

Quantitative PCR analyses.  Quantitative PCR (qPCR) analyses of the prokaryotic 16S rDNA gene 
copies were carried out both in the extracellular and intracellular DNA pools that were extracted con-
textually from the same sediment samples39. qPCR analyses were performed using the TaqMan tech-
nology40. The prokaryotic 16S rDNA sequences were amplified using the universal primers Uni340F 
(5′-CCTACGGGRBGCASCAG-3′) and Uni806R (5′-GGACTACNNGGGTATCTAAT-3′). The TaqMan 
probe was Uni516F (5′-TGYCAGCMGCCGCGGTAAHACVNRS-3′), which contained a fluorescent 
reporter dye (6-carboxyfluorescein) covalently attached to the 5′-end, and a fluorescent quencher dye 
(6-carboxytetramethylrhodamine) attached six or more bases downstream of the reporter dye41. All of the real-time 
PCR was performed in a volume of 25 μL with an iQ5-icycler (Bio-Rad) using iQ Supermix (2×; Bio-Rad) contain-
ing 40 mM Tris-HCl, pH 8.4, 100 mM KCl, 0.4 mM each dNTP (dATP, dCTP, dGTP, dTTP), 50 U/mL hot-start iTaq 
DNA polymerase, and 6 mM MgCl2. To amplify prokaryotic genes, 40 PCR cycles were used: as 95 °C for 15S, and 
57 °C for 5 min, which were preceded by 3 min of Taq activation at 95 °C. Negative controls were performed by using 
the same reaction mixture without DNA template. To quantify the 16S rDNA, calibration curves were obtained from 
a standard solution of E. coli (from 0.2 to 200 pg µL−1). Standard concentrations were plotted against the number of 
cycles at which the fluorescence signal increased above background, or the cycle threshold (the Ct value). The iCycler 
software analysis programme was used to calculate the Ct values and to determine the sample concentrations based 
on the standard curves. The copy number of ribosomal gene sequences determined by qPCR was normalised to 
sediment dry weight for a comparison with available literature information42.

Sequencing and bioinformatics.  Genetic diversity of the prokaryotic 16S rDNA sequences associated 
with the extracellular DNA pools was analysed in the sediment of all areas. In addition, we analysed 16S rDNA 
diversity within the intracellular DNA pool in the two sites of NE Atlantic Ocean. Analyses were conducted by 
tag-encoded amplicon pyrosequencing of hypervariable regions (from V5 to V9). Bacterial and archaeal 16S 
rDNA amplicons were generated using the universal primers 789 F (5′ -TAGATACCCSSGTAGTCC-3′) and 
1492 R (5′ –GGTTACCTTGTTACGACTT-3′)43 and sequenced on a Genome Sequencer 454 FLX Titanium plat-
form (Roche). Three independent PCR analyses were carried out from each replicated extraction (n = 3) of extra-
cellular and intracellular DNA. The amplicons obtained from PCR analysis of extracellular DNA were pooled 
together as well as those for intracellular DNA. Additional details on pyrosequencing analyses are reported 
in Supplementary Information.

Raw sequences were first subjected to homopolymer removal by means of the Acacia tool44 with standard 
values, and subsequently quality-trimmed by means of the PRINSEQ tool45 by removing sequences with a 
mean quality score <20 and further filtered to remove sequences shorter than 100 bp. The number of sequences 
obtained through each step is reported in Table S2. High-quality amplicon reads were subsequently analysed by 
the QIIME pipeline46, aligning them against the SILVA database (v119)47 by means of the PyNAST aligner using 
the open-reference strategy48 and clustering them at 97% of identity. The ChimeraSlayer tool was used to assess 
the presence of chimeric sequences, which were not found in any sample.

All bioinformatic analyses were performed using the same number of sequences to properly compare the 
different samples. In particular, we used 3400 sequences for comparing extracellular DNA pools from different 
geographical areas (Mediterranean, Arctic and NE Atlantic margins) and 5000 sequences for comparing intra-
cellular and extracellular DNA pools obtained contextually from the two sites of the NE Atlantic margin (the NE 
Atlantic 1 and 2 sites).

OTU networks were created on the data provided by the make_otu_network script provided by the QIIME 
pipeline with standard values on the extracellular DNA samples with the gephi tool49 by means of a combination 
of the Yifan-Hu and Force Atlas 2 algorithms provided by the program, with the Dissuade Hubs and Prevent 
Overlap flags toggled for ease of visualization.

Comparative analyses between assemblage composition of extracellular and intracellular DNA pools from the 
sediments of NE Atlantic 1 and 2 sites were carried out to evaluate the contribution of preserved OTUs to the total 
prokaryotic diversity. To do so we determined exclusive taxa contained within extracellular and intracellular DNA 
pools of the same site by counting OTUs exclusively found in either extracellular or intracellular DNA pools.
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Statistical analyses.  Analyses of variance (ANOVA) were carried out to test for differences in the extracel-
lular DNA concentrations and prokaryotic 16S rDNA copy number among sampling sites. SIMPER analyses were 
carried out to assess the similarity among the prokaryotic OTUs contained within the different extracellular DNA 
pools and between extracellular DNA and their respective intracellular DNA pools50. All analyses were carried 
out with the PRIMER-E 6 suite50. In addition, to assess dissimilarity among extracellular DNA pools and between 
extracellular DNA and their respective intracellular pools (in terms of presence/absence of OTU), the binary 
Jaccard distance was determined by means of the beta_diversity script within QIIME and the results visualized 
with an UPGMA tree46.

Data accessibility.  The sequences have been submitted to the MG-RAST server under the project 
“Continental Margins” accessible for reviewers at the following token: http://metagenomics.anl.gov/mgmain.
html?mgpage=token&token=67EuldY6_FfX8tRaYFO8Qxlo6LPnMq8OO2phSra8KwIvMUjy0m.
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