
Frontiers in Oncology | www.frontiersin.org

Edited by:
Tatiana Novikova,
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As for optical techniques, it is difficult for the 5-aminolevulinic (5-ALA) fluorescence guidance
technique to completely detect glioma due to residual cells in the blind area and the dead
angle of vision under microscopy. The purpose of this research is to characterize different
microstructural information and optical properties of formalin-soaked unstained glioblastoma
(GBM) and non-GBM tissue with the polarization imaging technique (PIT), and provide a novel
method to detect GBM during surgery. In this paper, a 3×3 Mueller matrix polarization
experimental system in backscattering mode was built to detect the GBM and non-GBM
tissue bulk. The Mueller matrix decomposition and transformation parameters of GBM and
non-GBM tissue were calculated and analyzed, and showed that parameters (1−D) and t are
good indicators for distinguishing GBM from non-GBM tissues. Furthermore, the central
moment coefficients (CMCs) of the frequency distribution histogram (FDH) were also
calculated and used to distinguish the cancerous tissues. The results of the experiments
confirmed the feasibility of PIT applied in the clinic to detect glioma, laying the foundation for
the subsequent non-invasive, non-staining glioma detection.

Keywords: polarization imaging technique, 3×3Mueller matrix, clinical human GBM tissue, polarization parameters,
frequency distribution histogram
1 INTRODUCTION

Glioma is a type of malignant primary brain tumor that originated from glial cells. Tumor
invasiveness makes it difficult to distinguish tumors from normal brain tissues visually, and the
residual invasive cancer cells always lead to glioma recurrence and a negative impact on overall
survival. Therefore, it is critical to distinguish between the glioma and normal brain tissues in
glioma surgery; preoperative and intraoperative imaging methods can help determine the location
of glioma and improve the resection rate of glioma while preserving the brain function of the
patients (1). Clinically, the intraoperative imaging methods of glioma include ultrasound (US),
magnetic resonance imaging (MRI), and various other optical techniques. However, MRI has low
specificity and cannot completely identify the residual invasive glioma cells (2–4), and the use of
intraoperative MRI may prolong the operative time and increase the risk of infection (3). The
identification of glioma by US, although being cost-effective and easy to operate, depends mostly on
the experience and skill of surgeons. As for optical techniques, it is difficult for the 5-aminolevulinic
acid (5-ALA) fluorescence guidance technique to completely resect glioma due to residual cells in
the blind area and the dead angle of vision under microscopy.
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In fact, the occurrence and development of glioma can be
characterized by different optical features from the normal brain
white matter; therefore, in this paper we applied a new technique
to detect glioma: polarization imaging technique (PIT). PIT is a
potentially powerful and non-invasive method that carries rich
microstructural optical information about biological tissues (5–
8) and can be used to detect pathological changes (6, 9). The
detected sample’s polarization information is carried out in a
Mueller matrix (10–12), which has shown to be a comprehensive
description and potential diagnostic tool for various complex
tissues, and has been widely applied on biomedical diagnosis,
especially cancer detection (13–21). Furthermore, conventional
polarimetry combined with interferometry (22) techniques is
promising to assess the 3D morphology of biological tissues and
help confirm diagnosis of the disease (23).

PIT can provide optical difference and useful contrasts
between the lesion and the healthy region when it is
insufficient to be observed using conventional unpolarized-
light-source intensity imaging methods. In the past few years,
based on histological examination of the detected sample as the
gold standard, various PIT images of cancers have been reported
to differentiate between healthy and cancerous tissue (13, 24–30).
In particular, tissue polarimetry was used to effectively analyze
how the myocardial tissues were affected by disease for definitive
diagnostics in forensic medicine (31). Machine learning
algorithms were used to extract particular features for human
ex vivo colon specimen classification between healthy and tumor
zones (32). As for the nervous system, PIT combined with optical
correlation tomography (OCT) has been reported to distinguish
brain white matter and glioma tissues (33), which confirmed the
feasibility of PIT being clinically applied to detect glioma.

In this paper, it is proposed that different polarization features
are obtained to distinguish between GBM and non-GBM brain
tissue using PIT combined with frequency distribution histogram
(FDH) distribution and high-order statistical moments analysis.
Specifically, we introduced the experimental setup based on
backward scattered 3×3 Mueller matrix measurement without
the circular polarizations; it significantly simplifies the
experimental geometry, which is particularly appropriate for
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clinical PIT measurement (34, 35). It also allows the
measurement of the clinical GBM tissue bulks. Then, applying it
on the detection of GBM and non-GBM brain tissue, the PIT
parameters (1−D) and t were calculated using the Mueller matrix
polar decomposition (MMPD) andMueller matrix transformation
(MMT) techniques (36, 37), which confirmed that parameters (1
−D) and t can be good indicators for distinguishing GBM from
non-GBM tissues. Furthermore, we conducted FDH distributions
and central moment coefficients (CMCs) (38) to examine in detail
the dominant differences of normal and glioma tissues from a
statistical perspective.

The determination of the different polarization characteristics
of GBM and non-GBM brain tissue lays the foundation for the
subsequent intraoperative PIT detection, and it is expected to
make up for the shortcomings in clinical applications of the other
imaging methods mentioned above.
2 MATERIALS AND METHODS

2.1 Polarization Imaging
Experimental Setup
The 3×3 Mueller matrix polarization experimental system used
in this study is an upgraded version of the one described earlier
(39), which consisted of a light source, a PSG, an objective table, a
PSA, and a CCD camera, shown in Figure 1. It is in
backscattering mode to detect the GBM and non-GBM tissue
bulk. Briefly, a collimated light source (630 nm, BT-TCL24,
BTOS Telecentric Optical, China) is used to create a circular
illumination area of 60 mm in diameter to illuminate the GBM
and non-GBM tissue; the polarization states of the incident beam
from the light source are modulated by a Polarization State
Generator (PSG), and the back scattered beam with the
polarization information of the GBM and non-GBM sample is
analyzed with a Polarization State Analyzer (PSA). Two DC
servo motors (MR-J3-40A, Mitsubishi Electric, China) rotated
the polarizers covered on the driven gears to generate different
PSG and PSA states, and a monochrome industry camera (MER-
FIGURE 1 | The schematic diagram of the experimental setup.
April 2022 | Volume 12 | Article 863682

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Identification of GBM With PIT
503-36U3M/C, Daheng Imaging, China) captures the
polarization images. Through careful calibration, the maximum
errors for the absolute values of Mueller matrix elements were
reduced to 0.04, and the characteristic polarization information
of GBM and non-GBM tissues was obtained.

2.2 Polarization Theory
Mueller matrix can provide samples’ abundant comprehensive
microstructural information and optical polarization properties.
Specifically, the Mueller matrix of the detected sample is unique,
which is experimentally measured and calculated by analyzing
the polarization state of the outgoing light of the sample with

Sout=Msample·Sin

Msample=

m11 m12 m13

m21 m22 m23

m31 m32 m33

2
664

3
775

where Sin represents the stokes vector of the incident light, Sout
represents the stokes vector of outgoing light, and Msample

represents the Mueller matrix of the detected sample. In this
paper, a 3×3 Mueller matrix, composed of the first three rows
and the first three columns (40), and the backscattering
configuration are used, which is particularly appropriate for in
vivo polarimetry in clinics (34, 35).

2.2.1 MMPD and MMT Methods
To solve the problem that the relationship between
microstructures of the sample and the specific Mueller matrix
elements is unclear, there have been several methods (36, 37, 41–
46) proposed to transform the Mueller matrix into polarization
parameters with clear physical meanings when it comes to the
clinical applications, and several polarization parameters are
proposed to characterize different features of the cancerous
region. In this paper, we analyzed the PIT images of GBM and
non-GBM samples and provided quantitative lines of evidence to
distinguish them based on MMPD and MMT parameters: the
MMPD method (37) has been widely applied to biomedical
studies, and this method decomposes the Mueller matrix (M)
into three main interactions between the polarized light and the
sample: diattenuation (D), retardance (d), and depolarization (D):

M=MDMRMD

whereMD represents a diattenuator,MR represents a retarder, and
MD represents a depolarizer. Since the 3×3 Mueller matrix
calculation was adopted in this study, parameter D should be
derived as follows according to Swami (37, 40):

M
0
=MM−1

D =MDMR

MDR=M
0
(M0)T

D2 cos2 d2=Eig(MDR)

Hence, the retardance (d) and depolarization (D) are
obtained. In particular, the parameter D demonstrates the
depolarization maintaining power, while (1−D) demonstrates
Frontiers in Oncology | www.frontiersin.org 3
the depolarization power (40). Furthermore, parameter t from
the MMT method is calculated below, which is related to the
magnitude of anisotropy for the samples (36).

t=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m22−m33)2+(m23−m32)2

p

2

2.2.2 FDH Distributions and CMCs
Using high-order statistical moments to analyze the PIT
information is significant and effective when it comes to the
auxiliary diagnosis for different tissues (47–49) and biological
fluids (50). However, in order to extract the dominant
microstructural features of the GBM and non-GBM tissues from
two-dimensional images of the 3×3 Mueller matrix with rich
information, we transfer the Mueller matrix images to FDHs
and then calculate the CMCs of FDHs (38). The percentages of
different intensity levels are given in the form of histogram of
Mueller matrix elements. That is, the frequency and distribution of
the same intensity level in the image. To evaluate the FDH
distributions from the perspective of mathematical statistics, the
CMCs, i.e., expected value (P1), variance (P2), skewness (P3), and
kurtosis (P4), are calculated for a random variable X, and provide
more detailed quantitative information about the sample:

P1=m

P2=s2

P3= E(X−m)3
s3

P4= E(X−m)4
s4

where P1 is themean value of FDH, P2 is the standard deviation, P3
represents the degree of asymmetry in FDH distribution, and P4
represents the sharpness of the peak. Among them, P1 is sensitive to
the anisotropy features of the sample, P2 is related to the complexity
of the microstructures, P3 represents the heterogeneity, while P4
represents the concentration of data. Besides, the CMCs (except P1)
are insensitive to sample orientation directions (38). By observing
the value of the CMCs, the characteristics of the FDH distribution
curve are roughly obtained.

2.3 Human Brain Glioma Samples
In order to testify the potential application of PIT on human brain
glioma samples, especially when it was used to identify brain glioma
from non-glioma brain tissue during surgical operation, the
methods mentioned above were used on the human brain glioma
samples: 20 formalin-soaked unstained GBM samples with brain
white matter region (theoretically contains no glioma cells) used in
this study were provided by Department of Neurosurgery of
General Hospital of Tianjin Medical University, and the samples
shown in Figure 2 were grayscale image of the formalin-soaked
unstained thick bulk of the GBM samples with non-GBM brain
tissue cut from the patient’s cranial cavity during the surgery, with
two regions marked and boundary delineated. The GBM sample is
cut purely from the center of the tumor. It ensures that the
polarization characterization of the GBM is reasonable, which is
the first step and foundation of the further research about the
April 2022 | Volume 12 | Article 863682
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identification of GBM residual during operation. However, with the
imaging conditions strictly controlled, various intraoperative
interference factors (such as blood) can be eliminated in in vitro
glioma PIT experiments. For pathological comparisons, the
corresponding hematoxylin-eosin (HE)-stained 6-mm-thick slices
of GBM and non-GBM were also prepared and are shown in
Figure 3 to evaluate the PIT images and reveal the relationship
between the pathological features and PIT images of the samples,
showing that the GBM region was with a darker stained color
(which means high cellular density, and denser and larger cell
nuclei) than the non-GBM region. The use of the clinical glioma
samples in this study was approved by the Administrative
Committee on Animal Research of the Shenzhen International
Graduate School, Tsinghua University. All experiments and
Frontiers in Oncology | www.frontiersin.org 4
methods were performed in accordance with the relevant
guidelines and regulations.
3 RESULTS

3.1 Characteristic Features in
Backscattering Mueller Matrix Elements
Examining the characteristic behaviors of the backscattering 3×3
Mueller matrix elements of GBM samples with non-GBM brain
tissue reveal rich information on the optical differences and
microstructural properties, and these differences distinguish
GBM from non-GBM tissues well.

The structure gets disorganized in the GBM region, so its
morphological and optical polarization features changed with
respect to that in non-GBM brain tissue, which are directly
reflected on the images and values of Mueller matrix elements.
The experimental results of the backscattering 3×3 Mueller matrix
of GBM tissue and non-GBM brain tissue are shown in Figure 4
and Table 1. In Figure 4, the contrast between the sample and the
background is clearly enhanced in the elements of Mueller matrix
m22 andm33with respect to the intensity imagem11 (at the top left
corner), and the borders and detailed information in GBM and
non-GBM brain regions are easily distinguished, showing the
potential of the PIT for glioma detection. In Table 1, the
average values of the Mueller matrix elements for both GBM
and non-GBM tissue are listed inTable 1, and the characterization
of PIT differences between them are clearly observed, e.g., the
values of m22 for GBM and non-GBM regions are 0.32 and 0.09,
while the values of m33 are −0.33 and −0.09. It should be
mentioned that all the elements are normalized by m11. Besides,
it can be observed that these Mueller matrices were essentially
diagonal, and the magnitudes of the diagonal elements are equal:

m22j j= m33j j
Furthermore, since the magnitudes of diagonal elements are

closely related to the depolarization capabilities of the samples, the
non-GBM tissue has smaller diagonal m22 and m33 elements in
Table 1, showing a stronger depolarization power than the GBM
tissue, which are indicators to distinguish between GBM and non-
A B

FIGURE 3 | HE-stained 6-mm-thick slice of the GBM (A) region and the non-GBM (B) region from the same region of PIT images.
FIGURE 2 | Grayscale images of the GBM sample with non-GBM brain
tissue, where the GBM region is marked with red boundary delineated and
the non-GBM region is marked with orange boundary delineated.
April 2022 | Volume 12 | Article 863682
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GBM tissue from the perspective of Mueller matrix
characterization. Combined with the corresponding pathological
results shown in Figure 3, it is reasonable to consider that the
difference in depolarization power between GBM and non-GBM
tissue is related to the changes in cell density and glial fibers
compared with non-GBM tissue (15).

3.2 Characteristic Features of
PIT Parameters
Transforming the Mueller matrix into PIT parameters to
separate the different effects is crucial, so MMPD and MMT
parameters were calculated to characterize the PIT features of
GBM and non-GBM samples. The images of parameter (1−D)
Frontiers in Oncology | www.frontiersin.org 5
from the MMPD method and parameter t from the MMT
method of GBM and non-GBM tissue are calculated and
presented as follows:

From Figure 5, GBM and non-GBM tissue are easy to
identify. Then, the average values of parameters (1−D) and t of
both GBM and non-GBM regions are calculated, which, in
specific regions, remain almost the same in repeat
measurements with 20 samples, and they are good indicators
to distinguish a GBM region from a non-GBM region.

The average (1−D) value of GBM region is 0.65, while the
average (1−D) value of non-GBM region is 0.91; that is, the GBM
tissue (left on the image) has smaller values of (1−D) than the
non-GBM tissue. Combined with the results of the HE-stained
slice of GBM and non-GBM shown in Figure 3, it could be that
the glioma cells had a higher metabolism level, and GBM tissue
contained larger density of cells and metabolism-related
organelles (small scatterers, such as lysosomes and
mitochondria) compared to non-GBM brain tissue caused by
the uncontrolled cellular growth, resulting in a weaker
depolarization power than the non-GBM tissue [smaller value
TABLE 1 | Average values of 3×3 Mueller matrix elements of detected GBM
samples with non-GBM brain tissues.

m11 m12 m13 m21 m22 m23 m31 m32 m33

GBM 1 −0.02 −0.01 0 0.32 0 0 0 −0.33
Non-GBM 1 −0.02 −0.01 0 0.09 0 0 0 −0.09
A B

FIGURE 5 | 2D PIT images of PIT parameters of GBM samples with non-GBM brain tissue. The scale of the normalized elements is given by the color bar. (A) Parameter
(1−D). (B) Parameter t.
A
B C

FIGURE 4 | (A) Images of 3×3 Mueller matrix elements of detected GBM samples with non-GBM brain tissue. All the Mueller matrix elements of the sample are
(except m11) divided by m11. (B) m22 image of GBM samples with non-GBM brain tissue.(C) m33 image of GBM samples with non-GBM brain tissue. The scale of
the normalized elements is given by the color bar.
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of (1−D)]. This interpretation is further supported by the results
of FDH distributions and analysis of CMCs.

Meanwhile, the average t value of the GBM region is 0.33,
while the average t value of the non-GBM region is 0.09; the
GBM tissue has a larger value of parameter t compared with the
value in the non-GBM tissue, caused by inflammatory reactions
induced by carcinoma cells, which is supported by comparison
with the corresponding HE-stained slices shown in Figure 3.

Based on these results, the differences between GBM and non-
GBM tissue are identified by detecting the polarization
characteristics and reflect on the PIT images and parameters.
The experimental results in this section confirmed that both the
PIT images and parameters (1−D) and t are good indicators to
quantitatively analyze and distinguish GBM from non-
GBM tissues.

Furthermore, the significance test method in the statistical t-
test for m22, m33, and parameters (1−D) and t between glioma
and non-glioma tissues was used to determine the stability of the
PIT characterization for GBM and non-GBM regions. t-tests
showed a statistically significant difference (p < 0.05 is
significant) for all the tested parameters. The t-test results and
the values of the corresponding m22, m33, and parameters (1−D)
and t of 20 GBM and non-GBM samples are presented in bar
charts (Figure 6), in which p is the p-value of GBM and non-
GBM tissues of experimental data in different Mueller matrix
elements and PIT parameters.
3.3 Features of FDH and
CMCs Characterization
We calculated the FDHs (as shown in Figures 7, 8) and CMCs
(P1, P2, P3, and P4, as shown in Table 3) of the Mueller matrix
elements of the GBM and non-GBM region to extract dominant
tissue microstructural features. The area under the curve of each
FDH distribution is 1. The calculation of FDH and CMCs
were performed on all detected samples, which had a
good consistency.
Frontiers in Oncology | www.frontiersin.org 6
As in Figures 7, 8, we present the FDH results of one of
those samples, and show that GBM and non-GBM tissues are
easily differentiated from their FDH distributions. To be
specific, for diagonal elements m22 and m33 of the Mueller
matrix, the width of FDH distributions of non-GBM regions is
smaller than those of the GBM regions, while the peak values of
FDH distributions of non-GBM regions are much larger than
those of the GBM regions. Furthermore, the average peak
values (h) of FDH distributions of non-GBM regions (h-non-
GBM) and GBM regions (h-GBM) are listed in Table 2, and the
FDH distributions of non-GBM regions are much closer to the
point of origin than the GBM regions’ FDH distributions.

As for off-diagonal elements of the Mueller matrix, the
characteristics of the FDH distributions are in great
agreement with those for diagonal elements of both GBM and
non-GBM regions. However, the FDH distributions of both
GBM and non-GBM regions are closer to the point of origin.
Theoretically, the occurrence and development of the GBM
changed the scattering and absorption of the incident light,
making the Mueller matrix of GBM tissue different from that of
non-GBM tissue; therefore, the FDH distributions of GBM and
non-GBM regions differed greatly, e.g., as for the FDH
distribution of the m22 element, the values are mostly
distributed approximately 0.1 in GBM regions, while it is
mostly distributed approximately 0.2–0.3 in non-GBM
regions, and the peak value of FDH distributions in the non-
glioma region is much larger than that in the GBM region.

The CMCs of the Mueller matrix elements of different regions
are listed in Table 3. Firstly, the value of P1 of m22 and m33 of
GBM tissue is 3.09 and −2.79, while the value of P1 of m22 and
m33 of non-GBM tissue is 2.46 and −2.34, respectively. The
absolute values of P1 of diagonal elements in GBM regions are
larger than those in non-GBM regions, which are in great
agreement with the results presented in Table 1, which
demonstrated the relation between the value of diagonal
elements and the depolarizing power of the GBM and non-
GBM samples. Secondly, the values of P2 shown in Table 3 are
A B

FIGURE 6 | The t-test results and the values of corresponding m22, m33, parameters (1−D) and t of GBM and non-GBM samples: (A) m22 and m33 elements,
(B) parameter (1−D) and t.
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highly susceptible to the complexity of the microstructures in the
GBM and non-GBM samples, and the values of P2 of the Mueller
matrix elements in non-GBM regions are significantly larger
than those in GBM regions, suggesting that the non-GBM tissue
including neurons and neuroglia cells is more complicated and
sophisticated than the GBM tissue, which mainly contains
Frontiers in Oncology | www.frontiersin.org 7
glioma cells. Furthermore, the values of P3 associated with the
heterogeneity of the GBM and non-GBM samples. In the
diagonal elements of the Mueller matrix, GBM regions have
lower P3 values so that the microstructures in this tissue are
basically consistent fiber arrangement compared with non-GBM
regions. As for the P4 values shown in Table 3, it showed smaller
variation in non-GBM tissue, indicating that most of the values
are distributed to the mean value closely.

In brief, the results confirmed that our interpretations are in
accordance with the relation between the Mueller matrix
elements and PIT characteristics presented in Section 3.1. The
density of the cells and complexity of glial fiber in GBM and non-
GBM tissue make them different in polarization properties, and
FIGURE 8 | FDHs of off-diagonal Mueller matrix elements of GBM (red lines) and non-GBM tissue (black lines).
FIGURE 7 | FDH distributions of diagonal Mueller matrix elements of GBM (red lines) and non-GBM tissue (black lines).
TABLE 2 | The average peak values (h) of FDH distributions of GBM and non-
GBM regions.

m22-FDH m33-FDH

(h-GBM) 0.31 0.26
(h-non-GBM) 1.63 1.37
April 2022 | Volume 12 | Article 863682
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reflect on the features of FDH distribution and CMC
characterization, which are also indicators to distinguish
between GBM from non-GBM tissue.
4 DISCUSSION

In this paper, ex vivo PIT measurements combined with the FDH
and CMC characterization of unstained formalin-soaked GBM
and non-GBM tissue are performed with a 3×3 Mueller matrix
polarization experimental system at a wavelength of 630 nm, and
the preliminary results showed that the GBM tissue is
distinguished from the non-GBM tissue. However, since this
study is the first step towards realization of glioma
intraoperative imaging and residual detection, it is difficult to
apply in clinical applications, and the resolution of our
experimental setup should be improved. There is ongoing work
towards collecting fresh human glioma samples from surgery
without soaking in formalin to simulate the in vivo and
intraoperative environment, and the updated version of the
PIT experimental setup is being built and intended to
characterize the PIT features of the fresh glioma samples to
promote the achievement of accurately identifying glioma
residues intraoperatively.
5 CONCLUSIONS

In summary, we applied PIT to facilitate the quantitative
detection of the GBM and non-GBM tissue. The 2D images
of MMPD and MMT parameters (1−D) and t of unstained
GBM and non-GBM tissues were calculated and analyzed. For
more quantitative comparisons, FDH distribution and CMCs
were also calculated to characterize the statistical differences in
the 2D images of Mueller matrix elements of GBM and non-
GBM tissue. The experimental results indicated that, although
more detailed information was needed, PIT images and
retrieved parameters may have potential to be indices that
can distinguish glioma from non-glioma tissues. This paper
demonstrated the potential of using the PIT method for glioma
detection during surgery and showed a good diagnosis
application prospect.
Frontiers in Oncology | www.frontiersin.org 8
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TABLE 3 | CMCs of the Mueller matrix elements for GBM (red lines) and non-GBM regions.

m12 m13 m21 m22 m23 m31 m32 m33

GBM-P1 −0.63 −1.39 −0.08 3.09 −0.02 0.02 0.28 −2.79
Non-GBM-P1 −1.6 −1.74 −0.21 2.46 −0.1 −0.2 0.14 −2.34
GBM-P2 46.99 363.33 2.32 145.07 5.15 3.34 24.21 119.13
Non-GBM-P2 218.19 320.17 18.42 294.46 41.7 7.33 9.04 216.06
GBM-P3 −0.15 −0.78 −0.16 1.14 −0.05 1.04 0.42 −1.91
Non-GBM-P3 −0.35 0.33 −0.43 2.06 0.22 −0.02 −0.35 −2.44
GBM-P4 13.55 17.8 10.54 6.47 16.78 18.46 22.87 10.56
Non-GBM-P4 13.47 15.32 11.31 11.88 19.32 12.92 20.69 15.15
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