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The gut microbiota has been linked to cardiovascular diseases. However, the composition and

functional capacity of the gut microbiome in relation to cardiovascular diseases have not been

systematically examined. Here, we perform a metagenome-wide association study on stools

from 218 individuals with atherosclerotic cardiovascular disease (ACVD) and 187 healthy

controls. The ACVD gut microbiome deviates from the healthy status by increased abun-

dance of Enterobacteriaceae and Streptococcus spp. and, functionally, in the potential for

metabolism or transport of several molecules important for cardiovascular health. Although

drug treatment represents a confounding factor, ACVD status, and not current drug use, is

the major distinguishing feature in this cohort. We identify common themes by comparison

with gut microbiome data associated with other cardiometabolic diseases (obesity and type 2

diabetes), with liver cirrhosis, and rheumatoid arthritis. Our data represent a comprehensive

resource for further investigations on the role of the gut microbiome in promoting or pre-

venting ACVD as well as other related diseases.
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Cardiovascular and metabolic diseases, collectively referred
to as cardiometabolic diseases (CMDs), are associated with
high morbidity and mortality as well as with considerable

and increasing health-care costs1. The gut microbiome has
emerged as a central factor affecting human health and disease2, 3,
and CMDs are no exception. Pioneering metagenomic shotgun-
sequencing studies have enabled characterization of the gut
microbiome in type 2 diabetic and obese subjects3–9, and furth-
ered our understanding of the functional interplay between the
gut microbiota and host physiology. By contrast, only a very small
number of samples from patients with cardiovascular diseases
have been analyzed10. Previous studies have shown that the gut
microbiota metabolizes choline, phosphatidylcholine, and L-car-
nitine to produce trimethylamine (TMA), which is oxidized in the
liver into the proatherogenic metabolite, trimethylamine-N-oxide
(TMAO)11–13. Inhibition of gut microbiota-dependent TMAO
production has been shown as a promising strategy for the
treatment of atherosclerosis14. Bacterial DNA has also been
detected in atherosclerotic plaques15–17. However, the lack of a
large cohort for metagenomics characterization of this major
group of CMD has impeded further investigations on the role
played by the microbiome.

Here, we sequenced stool samples, representative of the gut
microbiome, from 218 individuals with atherosclerotic cardio-
vascular disease (ACVD) and 187 healthy controls, and per-
formed a metagenome-wide association study (MWAS)
identifying strains (metagenomic linkage groups (MLGs))3, 4 and
functional modules associated with ACVD. Integrative analyses of
an additional 845 samples from other disease cohorts revealed
common alterations suggestive of a less fermentative and more
inflammatory gut environment in ACVD, type 2 diabetes (T2D),
obesity and liver cirrhosis, in contrast to the autoimmune disease
rheumatoid arthritis (RA).

Results
Composition of the ACVD gut microbiome. In order to
investigate the gut microbiome in ACVD patients, we performed
metagenomic shotgun sequencing on a total of 405 fecal samples
from 218 individuals with ACVD (defined as ≥50% stenosis in
one or more vessels) and 187 healthy controls (Supplementary
Data 1). After removal of low-quality reads and human DNA
reads, 2.2 Tb of high-quality sequencing reads (on average 55.2
million reads per sample) were aligned to a comprehensive
reference gut microbiome gene catalog comprising 9.9 million
genes18, which allowed on average 80.0± 3.5% of the reads in
each sample to be mapped (Supplementary Data 2), consistent
with saturation of the gene-coding regions4, 18.

The ACVD and control samples were significantly different in
multivariate analyses. ACVD status showed a P-value <10−6 in
permutational multivariate analysis of variance (PERMANOVA),
with or without adjustment for medication (Supplementary
Table 1). The ACVD and control samples also showed separation
in PCA (principal component analysis) and dbRDA (distance-
based redundancy analysis) plots (Fig. 1), which was corroborated
by abundance differences between the two groups in major
genera of the gut microbiome, such as a relative reduction in
Bacteroides and Prevotella, and enrichment in Streptococcus and
Escherichia in ACVD (Fig. 1b).

Despite the reduction in major genera and possible overgrowth
of rare genera in ACVD, we observed no significant difference
between the ACVD and control samples in either gene richness or
diversity (Supplementary Fig. 1).

Microbial strains associated with ACVD. To identify the
microbial species or strains associated with ACVD, we clustered

the 9.9 million genes into 2982 MLGs (containing >100 genes)
according to co-variations of their abundances among the
405 samples, based on the idea that genes from the same
microbial genome are physically linked3, 4, 18, 19. This is so far the
largest cohort and the largest reference gene catalog for co-
abundance-based binning. A total of 536 of the MLGs differed
significantly in abundance between ACVD and control samples
(Wilcoxon-rank sum test, Benjamin–Hochberg q-value <0.05),
with 320 of these being more abundant in ACVD samples (Fig. 2,
Supplementary Data 3). The 536 differentially enriched MLGs
represented on average 56.5% of the relative abundance in all
MLGs, confirming the major compositional differences between
the ACVD and control samples.

The abundance of Enterobacteriaceae including Escherichia
coli, Klebsiella spp., and Enterobacter aerogenes, was higher in
ACVD than in control samples (q-value< 0.05, Fig. 2, Supple-
mentary Data 3). The relative abundance of bacteria that are often
present in the oral cavity, such as Streptococcus spp., Lactobacillus
salivarius, Solobacterium moorei, and Atopobium parvulum,
was also higher in patients with ACVD than in healthy controls
(q-value <0.05, Fig. 2, Supplementary Data 3). The abundance
of Ruminococcus gnavus, a bacterium previously associated
with inflammatory bowel diseases and low gut microbial
richness8, 20–22 was higher in ACVD samples than in control
samples (q-value <0.05, Fig. 2, Supplementary Data 3). The
abundance of Eggerthella lenta, which has been reported to
possess enzymes for deactivating the cardiac drug digoxin4, 23–25,
was higher in ACVD (q-value <0.05, Fig. 2, Supplementary
Data 3). In contrast, butyrate-producing bacteria including
Roseburia intestinalis and Faecalibacterium cf. prausnitzii were
relatively depleted in the ACVD samples (q-value <0.05, Fig. 2,
Supplementary Data 3). Consistent with the genera results
(Fig. 1), common members of the gut microbiome such as
Bacteroides spp., Prevotella copri, and Alistipes shahii were also
relatively depleted in ACVD (q-value <0.05, Fig. 2, Supplemen-
tary Data 3).

Besides abundance differences between ACVD and control
samples, the MLGs also showed differences in network structure
(Spearman’s correlation coefficient (cc) ≥0.3 or ≤−0.3, Fig. 2).
Most notably, the ACVD-enriched aerobes Streptococcus spp.
showed negative correlations with the ACVD-depleted commen-
sals Bacteroides spp. only in the ACVD samples, and the positive
associations in controls between Bacteroides spp., Lachnospir-
aceae bacterium, and Erysipelotrichaceae bacterium were con-
comitantly diminished in ACVD. Meanwhile, the Streptococcus
spp. clusters displayed more positive correlations with the
ACVD-enriched Enterobacteriaceae cluster. The ACVD-
enriched cluster of Eggerthella spp., R. gnavus, Clostridium spp.,
Erysipelotrichaceae bacterium, and Lachnospiraceae bacterium
showed more negative associations with the ACVD-depleted
butyrate-producing bacteria including Eubacterium eligens, F.
prausnitzii, and Clostridiales sp. SS3/4 (Fig. 2). R. gnavus and
Lachnospiraceae bacterium also negatively associated with A.
shahii. These results demonstrated profound imbalances in the
composition and inter-species relationship in the gut microbiome
of ACVD patients as compared to healthy controls.

Links between the gut microbiome and clinical features of
ACVD. To explore the diagnostic value of the gut microbiome
composition in relation to ACVD, we constructed a random
forest classifier from the 405 ACVD and control samples, with
five repeats of fivefold cross-validation (RFCV, Fig. 3). The area
under receiver operating curve (AUC) was 0.86 in this ACVD
cohort. Among the 47 MLGs selected by the ACVD classifier, the
MLGs most important for the classifier belonged to Streptococcus
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vestibularis, E. lenta, A. parvulum, R. gnavus, L. salivarius, E. coli,
Lachnospiraceae, and Clostridium nexile (Supplementary Data 3).
While validation of the identified markers would require inde-
pendent and much larger cohorts, these results demonstrate the
presence of ACVD-associated features in the gut microbiome that
may be further developed into non-invasive and inexpensive
biomarkers. Concomitantly, we noted that the MLG-based clas-
sifier had an AUC that was larger than the AUC of 0.63 using
TMA lyases only (CutC/D and YeaW/X, Fig. 3), indicating that
factors in addition to TMAO are implicated in ACVD. According
to further analysis using the reference-genome based method
PanPhlAn26, ACVD-enriched bacteria encoding choline-TMA
lyase (CutC) included an unclassified Erysipelotrichaceae bacter-
ium, C. nexile, and S. anginosus (Fig. 2, Supplementary Fig. 2a).
ACVD-enriched bacteria encoding both the choline-TMA lyase
and the more promiscuous TMA lyase (YeaW/X, carnitine,
choline, and betaine) included E. aerogenes and Klebsiella pneu-
moniae (Fig. 2, Supplementary Fig. 2a). In addition to TMA
lyases, a number of virulence factors27 in these bacteria might also
play a role, such as immunogenic lipoprotein A IlpA, and PhoP,
part of the PhoQ/PhoP two-component system that could be
induced by host antimicrobial peptides28 (Supplementary Fig. 2b).

Besides being able to distinguish between individuals with and
without ACVD, the fecal MLGs showed associations with a
number of clinical indices (Spearman correlation permutational
P< 0.05, Spearman’s cc ≥0.2 or ≤−0.2, corroborated by RFCV

selections, Fig. 4). K. oxytoca that showed increased abundance in
ACVD patients, correlated positively with serum levels of
aspartate transaminase (AST, a marker for acute myocardial
infarction as well as other conditions), α-hydroxybutyrate
dehydrogenase (HBDH), and creatine kinase (CKMB).
K. pneumoniae and Bifidobacterium dentium also positively
correlated with HBDH. ACVD-enriched bacteria including
Streptococcus sp. C300, Streptococcus sp. oral taxon 071
73H25Ap, S. salivarius, Oribacterium sinus, and Clostridium
perfringens positively correlated with diastolic blood pressure or
systolic blood pressure (Fig. 4). F. cf. prausnitzii that was depleted
in ACVD patients correlated negatively with serum levels of uric
acid, which has been reported to increase after a diet rich in red
meat29 and decrease after intake of the DASH diet (dietary
approaches to stop hypertension)30. Clostridium hathewayi
correlated with the heme catabolism product serum total
bilirubin (TBIL).

When KEGG (The Kyoto Encyclopedia of Genes and Genomes)
31 functional modules were selected to construct a mathematical
model that predicts clinical indices in the samples (cross-
validated group LASSO (least absolute shrinkage and selection
operator) with bootstrapping)32, modules that were most
important for the clinical indices were not necessarily most
important for identifying ACVD (Supplementary Fig. 2c). Yet,
the most important module for ApoE (apolipoprotein E), LDL
(low-density lipoprotein) cholesterol, and total cholesterol (TC)
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levels, was biosynthesis of phosphatidylethanolamine (PE)
(Supplementary Fig. 2c), a membrane lipid that may promote
coagulation33.

Influence of drugs on the gut microbiota. Studies comparing
individuals with T2D treated or not with metformin identified a
higher level of E. coli and a lower level of Intestinibacter in the
metformin-treated individuals, while confirming reduced levels of

butyrate-producing bacteria such as Roseburia spp., F. prausnitzii,
and unnamed Clostridiales in the untreated individuals compared
to healthy controls5, 6, 34, 35. Moreover, cross-sectional as well as
intervention studies have demonstrated a significant impact on
the gut microbiota by proton-pump inhibitors36–38. Here, we
evaluated potential complications from drug use in this ACVD
cohort.

PERMANOVA39 identified a significant influence on the
abundances of gut microbial genes by the anticoagulant
fondaparinux, the T2D drug acarbose, the beta adrenergic
receptor antagonist metoprolol, and to a lesser extent atorvastatin
(known as Lipitor) (these four drugs were the only drugs with
P< 0.1, but all had P> 0.01, Supplementary Table 2). For all
drugs, random-forest classifiers reached a higher AUC (and a
larger Youden’s index) for distinguishing between ACVD patients
with no drug treatment and healthy controls, than between
ACVD with and without drugs (Fig. 5). With the exception of
metoprolol, the AUC and Youden’s index were also higher
between ACVD patients treated with the drug and healthy
controls than between ACVD with and without drug treatment
(Fig. 5). When two drugs were analyzed together instead of single
drug analysis, random-forest classifiers again reached a higher
AUC for distinguishing between ACVD patients with no drug
treatment and healthy controls, than between ACVD with and
without the drugs (Supplementary Data 4). For combinations
such as either acarbose or atorvastatin, the AUC was lower
between ACVD patients treated with the drugs and healthy
controls than between ACVD patients without the drugs and
healthy controls (Supplementary Data 4), i.e., the medication
weakened the disease signal, meaning an even more significant
difference would be expected if the cohort was free of medication.
Thus, these results suggest that ACVD status, and not current
drug use, is the major distinguishing feature in this cohort. Still,
drug treatment may to varying extent affect the composition of
the gut microbiota and thus constitute a confounding factor. The
possible effects of different drug use on the gut microbiome
composition remain to be explored in intervention trials in larger
cohorts.
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Furthermore, we investigated potential influence of drug use
on specific members of the gut microbiome using MaAsLin.
The relative abundances of three MLGs positively correlated with
metoprolol use and two MLGs positively correlated with
atorvastatin, but none of the MLGs fulfilled the criteria for
species annotation (Supplementary Fig. 3, Supplementary Data 3).
The drug use therefore did not perceivably complicate our
elucidation of bacterial species or strains associated with ACVD.
The positive associations with control-enriched MLGs might
actually represent previously overlooked mechanisms of action of
metoprolol and atorvastatin (Supplementary Fig. 3).

Functional alterations in the ACVD gut microbiome. To
increase the insight into functional changes within the ACVD gut
microbiome, we determined to what extent different KEGG
pathways and modules were enriched in the gut microbiota of
patients compared to controls (Figs. 6 and 7, Supplementary
Fig. 4a and b, Supplementary Data 5–7). The samples from
ACVD patients displayed higher potential for transport of simple
sugars (phosphotransferase systems (PTS)) and amino acids,
whereas the potential for biosynthesis of most vitamins was lower
(Figs. 6 and 7, Supplementary Data 6 and 7). Folate is known to
play a role in cardiovascular disease due to its function in
homocysteine metabolism40, and we observed a reduced potential

for the synthesis of tetrahydrofolate and altered potential for
homocysteine metabolism in the gut microbiome of ACVD
patients compared with controls (Fig. 6, Supplementary Fig. 4a
and b). The ACVD microbiome moreover exhibited reduced
potential for metabolizing glycans including glycosaminoglycans
(Fig. 7). Consistent with the enrichment of Enterobacteriaceae in
ACVD (Figs. 1 and 2), the module comprising genes required for
the synthesis of the O-antigen of lipopolysaccharides (LPS) was
enriched in ACVD samples, whereas the lipid A synthesis module
was relatively depleted, most likely due to a lower level of the
otherwise abundant Gram-negative genus Bacteroides (Figs. 1 and
6). The latter represents non-inflammatory penta-acylated lipid
A-producing species41. According to the virulence factor database
(VFDB)27, the ACVD samples were also significantly enriched in
virulence factors compared to the control samples (Supplemen-
tary Fig. 6c). The potential for the metabolism of glycerolipids
and degradation of fatty acids was elevated in ACVD (Fig. 7),
whereas the potential for synthesis of the anti-inflammatory
short-chain fatty acid (SCFA) butyrate was lower (Fig. 8a).
Similarly, one module involved in propionate synthesis was less
abundant in ACVD patients compared with controls. No sig-
nificant changes were observed for pathways involved in the
synthesis of acetate (Fig. 8a, Supplementary Data 5–7). Gut
microbial enzymes involved in formation of TMA, the precursor
for the proatherogenic metabolite TMAO11–14, 42, were enriched
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in the ACVD samples compared to healthy controls, especially for
YeaW/X (Fig. 8b). The gut microbiome in individuals with
ACVD might also produce more formate, judging from the
enrichment of pyruvate-formate lyase (EC2.3.1.54, K00656) in
the ACVD samples compared to controls (Supplementary
Data 5). Pyruvate-formate lyase is a key enzyme for formate
biosynthesis43. Formate has been implicated in hypertension44, 45,
and might contribute to other ACVD-related functions including
methanogenesis and one-carbon metabolism.

With this large cohort of ACVD, we next explored common
changes in the gut microbiome of other linked diseases; liver
cirrhosis, the other CMDs, obesity, and T2D, as well as in the
non-linked autoimmune disorder RA. Published metagenomic
shotgun-sequencing data for liver cirrhosis46 (120 cases and 111
controls), obesity47 (72 cases and 79 controls), T2D4 (171 cases
and 174 controls), and RA25 (95 cases and 74 controls) were
mapped to the same reference gene catalog and analyzed
for functional potentials using the same pipeline. Due to
substantial differences in the gut microbiome among different
populations5, 18, 48, only data from Chinese cohorts were used,
although high-quality data on T2D and obesity cohorts also exists
from European countries3. Compared with controls, differences
in functional potential within the gut microbiome of the two
other CMDs T2D and obesity were similar to those observed in
ACVD patients. By contrast, in patients with RA, we did not
observe the striking enrichment of many modules of the PTS,
instead only a few modules were enriched in controls compared

to cases. Further, in RA patients modules involved in glutamine
and arginine transport and modules involved in LPS biosynthesis
were enriched in controls compared to cases, in contrast, modules
for host glycan degradation were enriched in RA patients (Figs. 6
and 7, Supplementary Data 6). These results point to an
intricate balance between the gut microbiome in metabolic and
autoimmune diseases.

Compositionally, we also noted common features in the three
CMDs and cirrhosis. The ACVD-based classifier (Fig. 3) con-
tained features such as Streptococcus spp. that were also abundant
in the cirrhosis patients, however, a number of Eggerthella MLGs
were not enriched in the individuals with cirrhosis (Supplemen-
tary Fig. 5). Moreover, the majority of E. coli MLGs enriched in
individuals with ACVD did not show significant differences
between cases and controls within the other diseases (Supple-
mentary Fig. 5), indicating that both common and unique
features of the gut microbiome could be identified in ACVD.

In addition to bacteria and archaea, a number of bacterio-
phages were more abundant or less abundant in the gut
microbiome of individuals with ACVD compared to healthy
controls (Supplementary Fig. 6), and several of these were also
highly enriched in cirrhosis patients. In contrast, none of these
bacteriophages displayed a significant difference in abundance in
the RA cohort (Supplementary Fig. 6). The known hosts for the
ACVD-enriched phages mostly included bacteria from the family
Enterobacteriaceae or the genus Streptococcus (Supplementary
Figs. 6 and 7). Judging from the positive correlations between the
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phages and their host bacteria (Supplementary Fig. 8), we expect
most of them to be integrated rather than present as free viral
genomes, while formal detection of any lytic populations would
require isolation of phage particles.

Microbiome-based identification of CMDs and cirrhosis.
Despite the generally high resemblance of the gut microbiome
functionality within the three CMDs as well as liver cirrhosis, we
wondered if it might be possible to identify MLGs and func-
tionalities that could distinguish these patient groups. Among the
top 50 determining species, the ACVD-enriched MLGs such as
S. anginosis, S. vestibularis, and L. salivarius were identified to be
most important for the model, while ACVD-depleted MLGs such
as F. cf. prausnitzii, Bacteroides cellulosilyticus, R.intestinalis, and
MLGs not significantly different in the ACVD cohort were also
selected as important features (Supplementary Fig. 9a). A model
could also be constructed based on KEGG Orthology (KO)
modules using cross-validated group LASSO (Supplementary
Fig. 9b). The top-ranked module for the CMDs and liver cirrhosis
was the ACVD-microbiome depleted DegS-DegU two compo-
nent system, which can trigger biofilm formation in response to
impeded flagellar rotation49. The ACVD-microbiome depleted
taurine transport system was also important for this classifier
(Supplementary Figs. 2c and 9b, Supplementary Data 6), con-
sistent with the importance of taurine for cardiometabolic health.

Besides the converging features (Supplementary Fig. 9a and b),
it was also possible to classify an individual into one of the CMDs
or cirrhosis based on distinguishing features of the gut
microbiome. Veillonella spp. were most important for identifying
individuals with liver cirrhosis, B. vulgatus for T2D, and Dorea
longicatena for obesity (Supplementary Fig. 9c). The two
unclassified species (Acvd-4400 and Acvd-69366) separated
ACVD from the remaining CMDs. This is to our knowledge
the first multi-disease classifiers using the gut microbiome to
identify unique features for each disease.

Discussion
In the present study, we exploited metagenomic shotgun-
sequencing data from a large cohort of individuals with ACVD
enabling a comprehensive comparison across the linked CMDs,
obesity, and T2D, as well as to liver cirrhosis, and the non-linked
autoimmune disease RA. All 1250 samples were analyzed in the
same manner, eliminating technical biases in MWAS between
studies3. This is also the first time that such a cross-disease cohort

was profiled according to a comprehensive high-quality reference
gene catalog that includes both cultivated and uncultivated
microbes18, and further explored for inference of functionality.

We observed that the gut microbiome collectively is less fer-
mentative and more inflammatory in patients with CMDs and
liver cirrhosis, in contrast to that of patients with the autoimmune
disease RA, suggesting that the restoration of a few members of
the healthy gut microbiome might alleviate or at least reduce the
risk for multiple CMDs and possibly liver cirrhosis. Alternatively,
the altered microbiome of CMD patients might be a read-out of
the systemic inflammatory component of CMDs and cirrhosis,
hence illustrating an ongoing interaction between the gut
microbiome composition and the inflammatory status of these
diseases that is detectable as a CMD/cirrhosis-specific gut
microbiome signature. If so, then the restoration toward a healthy
microbiome might involve concomitant anti-inflammatory
treatments. Mechanistically, a better understanding of the ecol-
ogy of the gut microbiota would also be critical for understanding
its role in the ever-increasing list of microbiota-associated dis-
eases. Although the gut microbiome of liver cirrhosis, colorectal
cancer, RA, and ACVD patients have all showed an increase in
the abundance of oral bacteria3, the set of oral bacterial species
were, however, observed to differ, and only RA and ACVD have
been epidemiologically associated with periodontitis.

Besides the common denominators identified to characterize
the gut microbiome in patients with CMDs and cirrhosis, the gut
microbiome of each disease also exhibited unique features in
functional capacity, and in species and gene compositions.
Although several MLGs were annotated to known species, they
varied to different degrees from sequenced reference genomes.
Isolation of the disease-relevant strains, and/or engineering of
reference strains to contain disease-relevant genes, would be
important first steps before taking the bacteria or communities to
test in animal models. For ACVD, in particular, the myriad of
LPS structures, TMA-lyase activities, folate-utilizing enzymes,
and specific proportions of each SCFA are all among the
important functions to tease out both in vitro and in vivo. Our
metagenomic shotgun-sequenced cohorts have provided infor-
mation on the species and genomic functionality of these to
further the understanding of cause and consequence in CMDs
and liver cirrhosis.

Methods
Cohorts and clinical biomarkers for ACVD. Samples from 405 Chinese sub-
jects50, including 218 individuals with ACVD and 187 control subjects, were
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collected at the Medical Research Center of Guangdong General Hospital. Indi-
viduals with ACVD showed clinical presentations of stable angina, unstable angina,
or acute myocardial infarction (AMI) (Supplementary Data 1). ACVD diagnosis
was confirmed by coronary angiography, and individuals that had ≥50% stenosis in
single or multiple vessels were included. All patients were ethnic Han Chinese with
no known consanguinity, aged 40–80 years old. The exclusion criteria included
ongoing infectious diseases, cancer, renal, or hepatic failure, peripheral neuropathy,
stroke, as well as use of antibiotics within 1 month of sample collection. All the
healthy control individuals enrolled were free of clinically evident ACVD symp-
toms at the time of the medical examination. Demographic data and cardiovascular
risk factors were collected by a questionnaire. Individuals with peripheral artery
disease, known coronary artery disease or myocardial infarction, cardiomyopathy,
renal failure, peripheral neuropathy, systemic disease, and stroke were excluded.

Fresh feces, early morning urine, and blood samples of each subject were
collected the first morning after admission to the hospital. All collected samples

were frozen on dry ice within 30 min, and stored in −80 °C freezers before further
analysis.

Blood samples for clinical chemistry analyses were taken after an overnight fast
for at least 10 h. Fasting or 2 h glucose, serum alanine aminotransferase (ALT),
aspartate aminotransferase (AST), alkaline phosphatase (ALP) and γ-glutamyl
transpeptidase (GGT), TBIL, creatinine, uric acid, lipid profile, including
triglycerides (TG), TC, high-density lipoprotein cholesterol, and LDL cholesterol
were measured using an autoanalyzer (Beckman Coulter AU5800). HBA1C was
measured by high-pressure liquid chromatography.

The study was approved by the Medical Ethical Review Committee of the
Guangdong General Hospital and the Institutional Review Board at BGI-Shenzhen.
Informed consent was obtained from all participants.

DNA extraction from fecal samples. Fecal samples were thawed on ice and DNA
extraction was performed using the Qiagen QIAamp DNA Stool Mini Kit (Qiagen)
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according to manufacturer’s instructions. Extracts were treated with DNase-free
RNase to eliminate RNA contamination. DNA quantity was determined using
NanoDrop spectrophotometer, Qubit Fluorometer (with the Quant-iTTMdsDNA
BR Assay Kit), and gel electrophoresis.

DNA library construction and sequencing of fecal samples. DNA library
construction was performed following the manufacturer’s instruction (Illumina).
We used the same workflow as described previously4 to perform cluster generation,
template hybridization, isothermal amplification, linearization, blocking and
denaturation, and hybridization of the sequencing primers. We constructed one
paired-end (PE) library with insert size of 350 bp for each sample, followed by a
high-throughput sequencing with PE reads of length 2 × 100 bp. High-quality reads
were obtained by filtering low-quality reads with ambiguous “N” bases, adapter
contamination, and human DNA contamination from the Illumina raw reads, and
by trimming low-quality terminal bases of reads simultaneously4. Over 90% of the
reads remained after the filtering for low quality and then human reads (mapped to
the hg19 reference) (55.2 million reads per sample, Supplementary Data 2).

PCA and dbRDA. Principle component analysis (PCA) was performed on the
genus level as previously described4. dbRDA51 was performed using Bray–Curtis
distance also on the genus level. Similar to ref. 6, dbRDA was used as a supervised
complement to PCA, to better present the difference between ACVD and control
samples. It is part of the vegan package of R 3.3.0.

KEGG analysis. Differentially enriched KO pathways or modules were identified
according to their reporter score from the Z-scores of individual KOs (KEGG
database release 59.0, genes from animals and plants removed)52–54. One-tail
Wilcoxon rank-sum test was performed on all the KOs that occurred in more than
five samples and adjusted for multiple testing using the Benjamin–Hochberg
procedure55. The Z-score for each KO could then be calculated. Absolute value of
reporter score = 1.6 or higher (95% confidence on either tail, according to normal
distribution) could be used as a detection threshold for significantly differentiating
pathways.

Sequences of SCFA-producing enzymes were retrieved as previously
described56. Genes in the reference gut microbiome gene catalog18 were identified
as these enzymes (best match according to BlastP, identity >35%, score >60,
E< 1e−3), and their relative abundances could then be determined accordingly.

The TMA-lyases were analyzed in the same manner. We retrieved the
sequences of the enzymes from Uniprot (X8HTY7, X6QEX0, A0A0E2Q854,
W3YJY9, U2TK70, A0A0M3KL45, A0A0M3KL44, A0A0M4MQL2, and
A0A0M4N7P9 for the choline TMA-lyase CutC57; D0C9N6 and D0C9N8 for the
carnitine TMA-lyase CntA/B)58 and from NCBI (219868924, 78220727 and
219868925, 342906634 for CutC/D; 169889293 and 169889294 for the promiscuous
carnitine TMA-lyase YeaW/X (whose in vitro substrates included γ-butyrobetaine,
L-carnitine, choline, and betaine))59. CntA/B was not found in the gut microbiome,
consistent with the original report on its presence in Acinetobacter58.

Virulence factors. Virulence factors were analyzed according to VFDB27

(2585 proteins as of 16 August 2016). Genes in the reference gut microbiome gene
catalog18 were identified as these virulence factors (best match according to BlastP,
identity >35%, score >60), and their relative abundances could then be determined
accordingly.

Metagenome-wide association study. MWAS was performed as previously
described3 on the ACVD cohort. The clean reads (after removing low quality reads
and host reads) were mapped to the 9 879 896 genes in the reference catalog18.
Genes detected in <10 samples were removed, resulting in a set of 3 694 132 genes
and gene abundance profiles. These genes were then clustered into MLGs
according to their abundance variation across all samples4. The relative abundance
of each MLG in each sample was summed from the relative abundance of their
constituent genes, as previously described4. The 2982 MLG that contained over 100
genes were tested for enrichment or depletion in individuals with ACVD (218
ACVD cases and 187 controls) according to the non-parametric method, Wilcoxon
rank-sum test, and controlled for multiple testing (q-value <0.05)55, 60. In addition,
we analyzed the associations of disease status with genes, MLGs, and functions.

MLGs were further clustered according to Spearman’s correlation between their
abundances in all samples regardless of case–control status, and the co-occurrence
network was visualized by Cytoscape 3.4.0.

Taxonomic assignment of the MLGs was performed according to the taxonomy
of their constituent genes, which were aligned to the NCBI reference genomes
(>50% of the genes in one MLG) as previously described4. For each MLG with a
tentative species annotation, the percentage of genes covered and the average
identity were shown for the top three reference genomes (Supplementary Data 3).

Quantification of bacteriophages. Genes corresponding to bacteriophages in the
reference gut microbiome gene catalog18 were identified through alignment to
NCBI (5781 viral genomes as of 8 August 2016; best match according to BlastN,

identity >65%, score >60). A total of 1095 viruses were identified, and their relative
abundances were summed from the relative abundances of their genes.

Gene content within species. Species annotation of the ACVD-enriched or
-depleted MLGs from the MWAS analysis (q-value <0.05) were used to retrieve
reference genome sequences of the bacteria. PanPhlAn26 was then used to build a
unique gene set for each species, map the sequencing reads against the gene set, and
determine the presence or absence of each bacterial species in each sample. For
each species, genes that differed in occurrence between ACVD cases and controls
were identified by Fisher test, q < 0.05. These genes were then functionally anno-
tated according to the KEGG database31 (best match according to BlastP, identity
>35%, score >60), as well as the VFDB database27 for virulence factors, UniProt
and NCBI for TMA-lyases and bacteriophages (5781 viral genomes, downloaded
on 8 August 2016) as was detailed above.

Feature selection using RFCV or group LASSO. Fivefold cross-validation was
performed on a random forest model (R 3.3.0, randomForest 4.6-12 package) using
the MLG abundance profile of the samples. The cross-validation error curves
(average of five test sets each) from five trials of the fivefold cross-validation were
averaged, and the minimum error in the averaged curve plus the standard deviation
at that point was used as the cutoff25, 53. All sets (≤25) of MLG markers with an
error less than the cutoff were listed, and the set with the smallest number of MLGs
was chosen as the optimal set. The probability of ACVD was calculated using this
set of MLGs and an ROC was drawn (R 3.3.0, pROC package). The ROC and
ACVD probability based on TMA-lyases were plotted using the same R version
and package (R 3.3.0, pROC package).

CMD/cirrhosis-specific MLGs were also selected by a random forest model,
with downsampling to account for the unequal sample size across diseases.

To select KO modules characteristic of ACVD or the other diseases, group
LASSO32 was used (R 3.3.0, SGL package). Specifically, logistic regression with
10-times bootstrapping was used for identifying disease samples from controls;
linear regression was used for the clinical indices, all based on the relative
abundances of KO modules in the samples.

Associations between the microbiome and clinical indices. For ACVD-enriched
or -depleted MLGs (Q< 0.05), we investigated their correlation with clinical
indices. First, a many (MLGs) to one (one index) fivefold cross-validation random
forest selection (RFCV) was done to select a few MLGs for each index. We further
selected the correlations with Spearman’s permutational P-value <0.05 and
Spearman’s |cc|≥ 0.2.

Assessing potential influences of medication. Potential influences of medication
on the ACVD-associated gut microbiome were analyzed by three complementing
methods.

Cross-validated random forest (RFCV) models were used in the same manner
as in the construction of the ACVD classifier.

PERMANOVA39 was performed on the MLG abundance profile of all samples
to assess impact from each of the factors listed (Supplementary Table 2). We used
Jenson–Shanon divergence and 999 permutations in R (3.0.2, vegan package)61.

Multivariate association with linear models (MaAsLin), a linear modeling
system adapted for microbial community data (http://huttenhower.sph.harvard.
edu/maaslin)62 was applied to the data according to the authors’ instructions.
Default parameters were used, except that MLGs of low abundance were not
considered (relative abundance <1e−7, Supplementary Data 3).

Data availability. The metagenomic shotgun-sequencing data for all samples have
been deposited in the European Bioinformatics Institute (EBI) database under the
accession code ERP023788. The EBI IDs for each sample are shown in Supple-
mentary Data 2. The authors declare that all other data supporting the findings of
the study are available within the paper and its Supplementary Information files, or
from the corresponding authors upon request.
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