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A novel necroptosis-related lncRNAs signature 
for survival prediction in clear cell renal cell 
carcinoma
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Abstract 
Clear cell renal cell carcinoma (ccRCC) is the most common kind of kidney cancer with poor prognosis. Necroptosis is a newly 
observed type of programmed cell death in recent years. However, the effects of necroptosis-related lncRNAs (NRlncRNAs) 
on ccRCC have not been widely explored. The transcription profile and clinical information were obtained from The Cancer 
Genome Atlas. Necroptosis-related lncRNAs were identified by utilizing a co-expression network of necroptosis-related genes and 
lncRNAs. Univariate Cox regression, least absolute shrinkage, and selection operator regression and multivariate Cox regression 
were performed to screen out ideal prognostic necroptosis-related lncRNAss and develop a multi-lncRNA signature. Finally, 6 
necroptosis-related lncRNA markers were established. Patients were separated into high- and low-risk groups based on the 
performance value of the median risk score. Kaplan–Meier analysis identified that high-risk patients had poorer prognosis than 
low-risk patients. Furthermore, the area under time-dependent receiver operating characteristic curve reached 0.743 at 1 year, 
0.719 at 3 years, and 0.742 at 5 years, which indicating that they can be used to predict ccRCC prognosis. In addition, the 
proposed signature was related to immunocyte infiltration. A nomogram model was also established to provide a more beneficial 
prognostic indicator for the clinic. Altogether, in the present study, the 6-lncRNA prognostic risk signature are trustworthy and 
effective indicators for predicting the prognosis of ccRCC.
Abbreviations: AUC = area under time-dependent ROC curve, ccRCC = clear cell renal cell carcinoma, DCs = dendritic cells, 
DElncRNAs = differentially expressed lncRNAs, FC = fold change, GSEA = gene set enrichment analysis, IC50 = half inhibitory 
concentration, KEGG = kyoto encyclopedia of genes and genomes, KIRC = Kidney Renal Clear Cell Carcinoma, LASSO = least 
absolute shrinkage and selection operator, lncRNAs = long noncoding RNAs, miR = microRNA, NRlncRNAs = necroptosis-related 
long noncoding RNAs, OS = overall survival, PCA = principal component analysis, RIPK1 = receptor interacting protein kinase 
1, RIPK3 = receptor interacting protein kinase 3, ROC = receiver operating characteristic, ssGSEA = single sample gene set 
enrichment analysis, TCGA = The Cancer Genome Atlas, TNM = tumor-node-metastasis.
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1. Introduction

Renal cell carcinoma (RCC) is the second most common uro-
logical tumor. In American, about 76,080 new cases of kidney 
cancer will be diagnosed in 2021, and about 13,780 people will 
die from this disease.[1] The morbidity and mortality of RCC 
has increased during the past several years.[2] Furthermore, the 
5-year survival rate is 97%, 87%, 69%, and 14% for patients 
in stages I, II, III, and IV, respectively.[3] Unfortunately, approx-
imately 30% patients experience metastatic lesions at the time 
of diagnosis.[4] In addition, no evidences identified that adju-
vant therapies such as chemotherapy, vaccines, or cytokines are 
effective after surgery.[5] The natural clinical course varies in 

RCC, which has led to the development of different prognos-
tic models for the assessment of the patient’s individual risk.[6] 
Therefore, there is a growing need to develop new prognostic 
and predictive biomarkers to identify potentially high-risk RCC 
patients.

Necroptosis, a newly observed programmed cell death, 
which is characterized by necrotic cell death morphology and 
activation of autophagy.[7] Necroptosis has emerged as a crucial 
pathologic process involved in many diseases, including neu-
rologic, cardiovascular, pulmonary, and gastrointestinal sys-
tems.[8] It is now known that receptor interacting protein kinase 
1 and 3 (RIPK1 and RIPK3) and the mixed lineage kinase 
domain-like constitute the core of the necroptosis machinery.[9] 
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Necroptotic cells were shown to initiate adaptive immunity by 
providing both antigens and inflammatory stimuli for dendritic 
cells (DCs), which in turn activate CD8+ T cells and antitumor 
immunity.[10]

Long noncoding RNAs (lncRNAs) consist with at least 200 
nucleotides in length.[11] LncRNAs regulate gene expression and 
pathophysiological processes at the epigenetic, transcriptional, 
and post-transcriptional levels generally via gene imprinting, his-
tone modification, chromatin remodeling, transcriptional inter-
ference, alternative splicing, and cell cycle control.[12] LncRNAs 
not only play important roles in biological regulatory mecha-
nisms, but make great functions in multiple diseases, including 
liver diseases, cancers, and cardiovascular diseases.[13–16] There 
are currently many studies identified that lncRNAs participated 
in multiple cancer processes, such as proliferation, invasion, 
metastasis, and the responses to therapies.[17] At the same time, 
lncRNAs can also play an important role in mediating necro-
ptosis. Linc00176 in hepatocellular carcinoma regulates cell 
cycle and induced necroptosis by releasing tumor suppressor 
microRNAs, such as microRNA(miR)-9 and microRNA-185.[18] 
Upregulated Tp53-regulated inhibitor of necrosis under glucose 
starvation protects cancer cells from necroptosis under glu-
cose starvation via inhibiting STRAP-GSK3β-NF-κB axis.[19,20] 
However, it remained unclear whether necroptosis-related 
lncRNAs were associated with the prognosis of renal cell car-
cinoma patients.

2. Materials and Methods

2.1. Data collection

The RNA transcriptome datasets (HTSeq-Counts and HTSeq-
FPKM) and the relevant clinical information were extracted 
using The Cancer Genome Atlas-Kidney Renal Clear Cell 
Carcinoma (TCGA-KIRC) database from 611 individuals (72 
normal samples and 539 tumor samples). Table S1, Supplemental 
Digital Content 1, http://links.lww.com/MD/H332, which illus-
trates clinical features of the patients, shows the clinical fea-
tures of the patients. Then, we converted the FPKM value to 
the transcripts perkilobase million value of the synthetic matrix 
by data.table, tibble, dplyr, and tidyr R packages. As a result, 
we got 2 synthetic data matrices. The Counts value matrix was 
just for identifying differentially expressed lncRNAs, while the 
transcripts perkilobase million value matrix was for the other 
analyses. To reduce statistical bias in this analysis, clear cell 
renal cell carcinoma patients with short overall survival (OS) 
values (<30 days) were excluded. Consequently, we extracted 
512 patients who had sufficient gene expression profiling along 
with OS data from the TCGA dataset for subsequent analysis. 
The necroptosis gene set M24779.gmt and M25944.gmt were 
downloaded from the Gene Set Enrichment Analysis (GSEA) 
(http://www.gsea-msigdb.org/gsea/index.jsp). In addition, with 
previous reports about necroptosis, we finally obtained the pro-
file of 68 necroptosis-related genes (see Table S2, Supplemental 
Digital Content 2, http://links.lww.com/MD/H333, which illus-
trates the necroptosis-related genes we get).

2.2. Selection of necroptosis-related lncRNAs

The “limma” package in R software was used to identify the 
differentially expressed genes and lncRNAs (DElncRNAs) 
between clear cell renal cell carcinoma (ccRCC) and normal 
tissues. Then, the gene was excluded if the sum of gene expres-
sion level for each sample is <1 or it is an unrecognized gene. 
P value <.05, false discovery rate <0.05, and |log2(fold change, 
FC) ≥1 were considered significantly different, including both 
upregulated and downregulated. Twenty-one of the 68 necro-
ptosis-related genes were differentially expressed (see Table 
S3, Supplemental Digital Content 3, http://links.lww.com/MD/

H334, which illustrates the differentially expressed necropto-
sis-related genes). Then, the correlation analysis was performed 
between DElncRNAs and the 21 necroptosis-related genes. We 
selected necroptosis-related lncRNAs (NRlncRNAs) using the 
thresholds of P < .01 and correlation coefficient R > 0.5. The 
Kyoto Encyclopedia of Genes and Genomes pathway anal-
ysis was performed to identify the signaling pathways associ-
ated with the 21 necroptosis-related genes and P value of <.05 
and false discovery rate of <0.25 were considered statistically 
significant.

2.3. The development of a predictive signature for 
necroptosis-related lncRNAs

First, potential prognostic lncRNAs were identified by univari-
ate Cox regression using the threshold of P < .05. Subsequently, 
overfitting genes were reduced by least absolute shrinkage and 
selection operator (LASSO) regression. Finally, we established 
a prognostic model by multivariate Cox regression prognos-
tic outcomes of ccRCC. The risk score for ccRCC cases was 
calculated as follows: risk score = (NRlncRNA 1 expres-
sion × coefficient) + (NRlncRNA 2 expression × coefficient) 
+… + (NRlncRNA n expression × coefficient). Meanwhile, the 
cases were classified into low- or high-risk groups based on the 
median value. Moreover, we utilized the R package “rms” to 
construct a nomogram that integrated the risk score of the sig-
nature and clinical factors (age, gender, and clinical stage). R 
packages “survival” and “survminer” were introduced to eval-
uate OS based on Kaplan–Meier method. R package “surviv-
alROC” was applied for the generation of receiver operating 
characteristic (ROC) curve, while the area under the ROC curves 
(AUCs) of risk score, grade, and stage were used to evaluate the 
accuracy for predicting OS. Principal component analysis was 
introduced for the exploration of group distribution using R 
package “scatterplot3d.”

2.4. Infiltrating immune cell analysis of the prognostic 
signature

In order to conduct immune infiltration analysis, we calculate 
the immune infiltration statuses among the ccRCC patients 
including TIMER, CIBERSORT, CIBERSORT-ABS XCELL, 
QUANTISEQ, MCP-COUNTER, and EPIC on TIMER2.0 
(http://timer.cistrome.org/). CIBERSORT and ESTIMATE were 
used to estimate immune score and stromal score. Using a heat-
map, the disparities in the immunological response were discov-
ered. Furthermore, single sample gene set enrichment analysis 
(ssGSEA) was conducted to assess immune cell subpopulations 
between the 2 groups as well as measuring their capacity to 
defend tumor infiltration. Potential immune checkpoint has 
been found in the literature previously.

2.5. Analysis of the risk model performance in clinical 
chemotherapy

To assess the signature in the clinical utility of ccRCC treatment, 
8 chemotherapeutic and targeted drugs in ccRCC treatment 
were selected, including axitinib, bortezomib, cisplatin, gefitinib, 
sorafenib, sunitinib, temsirolimus, and vinblastine. We analyzed 
the half inhibitory concentration (IC50) of chemotherapeutic 
and targeted drugs using “pRRophetic” R package.

3. Results

3.1. Identification of differentially expressed NRlncRNAs

The flowchart of the study is presented in Figure 1. Throughout 
the TCGA-KIRC data, 2916 lncRNAs were identified. Using 
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cutoff values of |log2FC| > 1 and P < .05, 1271 DElncRNAs 
were identified between 539 KIRC and 72 noncancerous sam-
ples. According to the expression of 21 necroptosis-related genes 
and DElncRNAs between normal and tumor samples, we finally 
got 140 necroptosis-related lncRNAs (P < .01 and Pearson cor-
relation coefficient |R| > 0.5; see Table S4, Supplemental Digital 
Content 4, http://links.lww.com/MD/H335, which illustrates 
the necroptosis-related lncRNAs). In addition, the necropto-
sis-related genes were mostly involved in the cytokine–cytokine 
receptor interaction and MAPK signaling pathway, according 
to Kyoto Encyclopedia of Genes and Genome analysis (Fig. 2).

3.2. Construction of the model

According to univariate Cox regression analysis, we found 53 
necroptosis-related lncRNAs significantly correlated with OS 
(P < .05; see Table S5, Supplemental Digital Content 5, http://
links.lww.com/MD/H336 which illustrates the OS-related necro-
ptosis-related lncRNAs). To avoid overfitting the prognostic 

signature, we performed the LASSO regression on these lncRNAs 
and extracted 7 lncRNAs related to necroptosis in ccRCC. In the 
multivariate analysis, 6 lncRNAs (AC124854.1, AL121944.2, 
AL157935.3, AC007743.1, VPS9D1-AS1, and AL357992.1) 
were found to be independent prognostic predictors of ccRCC 
(Fig. 3). These 6 lncRNAs were utilized as signature lncRNAs 
related to necroptosis. The formula of the risk score was as fol-
lows: Risk score = (−0.0154 × AC124854.1) + (−0.1303 × AL12
1944.2) + (0.1574 × AL157935.3) + (−0.1191 × AC007743.1) + 
(0.0771 × VPS9D1-AS1) + (0.08 × AL357992.1). With the risk 
score formula, the distribution of risk score, the survival status, 
survival time, and the relevant expression standards of these 
lncRNAs of patients were compared between low- and high-
risk groups of ccRCC patients. These all indicated the high-risk 
group had worse prognoses (Fig. 4A–D). As shown in Figure 4E, 
the AUC was 0.743 at 1 year, 0.719 at 3 years, and 0.742 at 5 
years. Furthermore, the lncRNA signature had an AUC value of 
0.758, outperforming conventional clinicopathological charac-
teristics in predicting ccRCC prognosis (Fig. 4F).

3.3. Subgroup analysis of the NRlncRNA prognostic model

We further performed subgroup survival analysis to determine 
whether the prognostic model could predict OS for patients 
based different clinical features. These subgroups were sepa-
rated by age (≤65 or >65), gender (male or female), tumor grade 
(grade 1–2 or grade 3–4), clinical stage (stage I–II or stage III–
IV), tumor (T, T1–2, or T3–4), node (N), and metastasis (M, 
M0, or M1). As shown in Figure 5, high-risk patients exhibited 
inferior OS rates compared to low-risk patients according to 
age, gender, grade, and clinical stage.

3.4. Construction and validation of a prognostic nomogram

To verify that our constructed prognostic signature could inde-
pendently predict the prognosis of ccRCC cases, univariate 
and multivariate Cox regression analyses were performed. As 
revealed by univariate analysis, clinical stage (P < .001), T stage 
(P < .001), risk score (P < .001), N stage (P = .003), and M stage 
(P < .001) predicted dismal OS. Moreover, our multivariate Cox 
regression results validated the independence of our constructed 
prognostic model for predicting ccRCC prognosis (Fig. 6A, B). 
Next, we combined the risk score and other clinicopathologic 
parameters to develop a novel nomogram to predict OS rates for 
ccRCC cases at 1, 3, and 5 years (Fig. 6C, D). Besides, principal 
component analysis showed that the high-risk and low-risk sam-
ples clustered separately in 3- and 2-dimensional space based 
on the 6-NRlncRNA expression (Fig.  6E, F). However, there 
was no observable separation between high-risk and low-risk 
samples on the basis of the whole necroptosis-related lncRNA 
expression profiles (Fig. 6G, H). The result demonstrated a dis-
tinguishing distribution pattern of the high-risk and low-risk 
groups grounded on the necroptosis-related signature, reflecting 
that our constructed signature had more discriminatory abil-
ity to identify the difference in necroptosis phenotype among 
the samples when compared to the whole necroptosis-related 
lncRNA expression profiles.

3.5. Immune infiltration analysis

We evaluated the infiltration of the 22 types of immune cells in 
the TCGA database by the CIBERSORT algorithm estimation 
and found that 13 types of immune cells were significantly dif-
ferent between the high- and low-risk groups (P < .05; Fig. 7A). 
Figure  7B shows that the immune score was significantly 
higher in the high-risk group (P < .001), whereas the stromal 
score was not statistically significant in the high- and low-risk 
groups. Moreover, the combined ESTIMATE score was higher 

Figure 1.  Flowchart of the study. DElncRNAs = differentially expressed long 
noncoding RNAs, IC50 = half inhibitory concentration, LASSO = least abso-
lute shrinkage, and selection operator, NRlncRNA = necroptosis-related long 
noncoding RNA, OS = overall survival, PCA = principal component analysis, 
TCGA = The Cancer Genome Atlas.

Figure 2.  KEGG enrichment analyses of necroptosis-related lncRNAs. 
KEGG = kyoto encyclopedia of genes and genomes, lncRNAs = long non-
coding RNAs.
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in the high-risk group than in the low-risk group (P < .05). 
Concerning the comparison of the single sample GSEA scores 
for immune cells and immune functions, 9 immune cells, such 
as type 1 T helper cells (Th1_cells), and most immune func-
tions, such as cytolytic_activity, had more relations with high-
risk patients (Fig. 7C, D). In addition, the heatmap of immune 

responses based on different algorithms is illustrated in Figure 8. 
The results demonstrated that most immune cells expressed at 
a higher level in the high-risk group than in the low-risk group. 
Furthermore, most immune checkpoints expressed more activ-
ity in high-risk patients, such as CTLA4, LAG3, and PDCD1 
(Fig. 7E).
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Figure 5.  Kaplan–Meier survival curves of OS prognostic value stratified by age, gender, grade, stage, T, N, or M between low- and high-risk groups. OS = 
overall survival.



7

Zhao et al.  •  Medicine (2022) 101:39� www.md-journal.com

3.6. Correlation between the risk model and drug 
sensitivity

The responsive predictive values of risk model for chemo-
therapy and targeted drugs were calculated by IC50 values 

(Fig. 9). Compared with the low-risk group, the IC50 value 
of cisplatin, gefitinib, sunitinib, temsirolimus, and vinblas-
tine was significantly lower in the high-risk group, which 
means patients with higher risk score were more sensitive to 
these drugs.
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4. Discussion

Necroptosis, a form of programmed cell death, has so far hardly 
been focused on with regard to a future treatment of cancer 

patients and may emerge as a novel and effective approach to 
eliminate tumor cells.[21] However, the role of necroptosis in 
cancer is complicated. It is reported that necroptosis can elicit 
adaptive immune responses that may defend against tumor 

Figure 7.  Immune cells infiltration analysis. (A) The vioplots showed that 22 immune cells content in the high- and low-risk groups. (B) ESTIMATE comparison of 
stromal, immune, and tumor purity scores in high- and low-risk groups. (C, D) The ssGSEA scores of immune cells and immune functions in high- and low-risk 
groups. (E) Expression of immune checkpoints in high-risk and low-risk groups(*P < .05; **P < .01; ***P < .001; ****P < .0001). ssGSEA = single sample gene 
set enrichment analysis.
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progression; however, the recruited inflammatory response may 
also promote tumorigenesis and cancer metastasis.[22] The pre-
vious study identified that most high-grade ccRCC cells express 
increased amounts of RIPK1 and RIPK3 and are poised to 
undergo necroptosis in response to TNF receptor 1 (TNFR1) 
signaling.[23] Furthermore, necroptosis is correlated with micro-
vascular invasion which has potential prognostic value in 
RCC.[24] In addition, necroptosis is identified to be promising 
novel target for cancer therapies.[10] Accumulating evidence 
has shown that aberrant expression of lncRNAs would affect 
the prognosis of cancer patients. Therefore, it is meaningful to 
screen ideal necroptosis-related lncRNAs as biomarkers and 
construct a prognostic model to predict the prognosis of ccRCC 
patients.

In this study, novel prognostic necroptosis-related lncRNAs 
were identified through differentially expressed analysis, univar-
iate Cox regression, LASSO regression, and multivariate Cox 
regression. Finally, 6 ideal novel risky NRlncRNAs (AC124854.1, 
AL121944.2, AL157935.3, AC007743.1, VPS9D1-AS1, and 
AL357992.1) were shown to be independent prognostic factors 
for ccRCC. Fa et al[25] demonstrated that VPS9D1-AS1 could 
up-regulate SEC61A1 through sponging miR-491-5p and facili-
tate cell proliferation, migration and stemness in hepatocellular 
carcinoma cells. Also, a recent study revealed that VPS9D1-AS1 
promoted the oncogenicity of colorectal cancer cells by acting 
as a molecular sponge of miR-525-5p and increasing the expres-
sion of HMGA1.[26] In lung adenocarcinoma, VPS9D1-AS1 
was reported to promote malignant progression by targeting 
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miR-30a-5p/KIF11 axis.[27] AC124854.1 was identified to serve 
as a prognostic and diagnostic biomarkers for ccRCC.[28] For 
AL121944.2, AL157935.3, AC007743.1, and AL357992.1, the 
role of lncRNAs in cancer has not been reported so far.

Immunotherapy is the new backbone in the therapeutic land-
scape of renal cell carcinoma.[29] Immune cell infiltration is an 
important prerequisite for the effectiveness of immunotherapy.[30] 
In this study, the high-risk group had a significantly elevated 
immune score and ESTIMATE score. Zeng et al[31] found that high 
immune score was associate with poor prognosis in gastric cancer. 
To investigate the infiltration of immune cells, we compared the 
contents of immune cell content groups with different risk scores 
and found that plasma cells, T cells CD8, T cells CD4 memory 
activated, T cells follicular helper, T cells regulatory (Tregs), and 
macrophages M0 were significantly higher than those in the low-
risk group, while T cells CD4 memory resting, monocytes, mac-
rophages M1, macrophages M2, DCs resting, DCs activated and 
mast cells resting were higher in the low-risk group than in the 
high-risk group. A high immune infiltration level of T cells CD8, T 
cells follicular helper, and Tregs was associated with poorer prog-
nosis of ccRCC.[32] Tregs play a key role for the maintenance of 
immune homeostasis and peripheral tolerance.[33] Increased Tregs 
in the tumor microenvironment is associated with higher grade 
and stage in renal cell carcinoma.[30] In addition, tracking the role 
of Tregs in peripheral blood in patients with renal cell carcinoma 
is helpful in understanding the immune response of the antitumor 
and predicting the impact of immunotherapy.[34] It is generally 
believed that macrophages M1 and macrophages M2 play tumor 
antagonizing and tumor promoting roles, respectively, in tumor 
immunotherapy.[33] However, we found that macrophages M2 
with high components of the tumor microenvironment in ccRCC 
indicated better OS. This contradiction needs further study to be 
explained.

To better assess the clinical feasibility of the risk model, we 
analyzed the efficacy of the presented model in chemotherapy 
and targeted drugs. The results indicated that high-risk patients 
can get more benefits from chemotherapy and targeted drugs 

except sorafenib and axitinib. Therefore, we believe that the risk 
model we established can help identify better treatment strate-
gies for individual patients with advanced ccRCC.

In this study, we have identified a novel necroptosis-related 
lncRNAs which could be biomarkers for ccRCC. Limitation of 
our study should be acknowledged. The original dataset for set-
ting up the lncRNA-related model was merely retrieved from 
the TCGA database. So, the results needed to be validated in 
clinical samples.

5. Conclusion
The present study developed a 6-NRlncRNA signature that 
offers valuable clinical application for prognostic forecasting.
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