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Abstract: An innovative wireless device for bioimpedance analysis was developed for post-dual-site
free vascularized lymph node transfer (VLNT) evaluation. Seven patients received dual-site free
VLNT for unilateral upper or lower limb lymphedema. A total of 10 healthy college students were
enrolled in the healthy control group. The device was applied to the affected and unaffected limbs
to assess segmental alterations in bioimpedance. The affected proximal limb showed a significant
increase in bioimpedance at postoperative sixth month (3.3 [2.8, 3.6], p = 0.001) with 10 kHz currents
for better penetration, although the difference was not significant (3.3 [3.3, 3.8]) at 1 kHz. The
bioimpedance of the affected distal limb significantly increased after dual-site free VLNT surgery,
whether passing with the 1 kHz (1.6 [0.7, 3.4], p = 0.030, postoperative first month; 2.8 [1.0, 4.2],
p = 0.027, postoperative third month; and 1.3 [1.3, 3.4], p = 0.009, postoperative sixth month) or 10 kHz
current ((1.4 [0.5, 2.7], p = 0.049, postoperative first month; 3.2 [0.9, 6.3], p = 0.003, postoperative third
month; and 3.6 [2.5, 4.1], p < 0.001, postoperative sixth month). Bioimpedance alterations on the
affected distal limb were significantly correlated with follow-up time (rho = 0.456, p = 0.029 detected
at 10 kHz). This bioimpedance wireless device could quantitatively monitor the interstitial fluid
alterations, which is suitable for postoperative real-time surveillance.

Keywords: bioimpedance; lymphedema; vascularized lymph node transfer

1. Introduction

Lymphedema is caused by interstitial fluid accumulation due to obstruction of the
lymphatic drainage system, resulting in swelling of the affected part. Clinical symptoms
include pain, swelling, heaviness, skin atrophy, and recurrent cellulitis [1–5]. To relieve
the swelling, conservative decongestive physiotherapies, such as wearing compression
garments, exercise, and manual lymphatic drainage, are initially applied for lymphedema.
However, various surgeries have been indicated for refractory lymphedema, including
lymphaticovenular anastomosis (LVA), vascularized lymph node transfer (VLNT), suction-
assisted lipectomy, radical reduction with preservation of perforators, and Charles’ proce-
dure [1–4]. All therapeutic procedures intend to reduce limb volume, decrease episodes of
infection, and improve the quality of life. Free VLNT is adopted when the above methods
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disclose ineffective outcomes. It is a novel approach, with the functional lymph nodes
carried to an obstructed site, where the growth factors induce lymph angiogenesis and
possible immunomodulation [1,3–5], hence, a change in fluid composition. Currently, we
have had the clinical experience of using dual-site free VLNT and combined surgery with
LVA or other excisional procedures to treat extremity lymphedema [1,2,6–8].

The common evaluation of lymphedema is to measure the limb volume change, for
example, the time-consuming water displacement method and individual-dependent limb
circumference reduction rate. The diagnosis of lymphedema is a relative 10% or 200 mL
increase in volume, or 2 cm increase in circumference, compared with the unaffected
limb or baseline of the affected limb [9–11]. Nevertheless, localized lymphedema may be
misdiagnosed in the early stages since extracellular water only comprises 25% of the normal
limb. Moreover, the two quantitative methods cannot represent the true limb volume and
directly reflect the composition of the tissue. Changes in soft tissue components can act
as camouflage, masking the volume change caused by lymphatic fluid accumulation,
or the relief post therapeutic procedures [9,12,13]. Direct image assessment of dermal
lymph flow and lymphatic channel patency by lymphoscintigraphy and indocyanine green
(ICG) lymphangiography is valid and reliable for diagnosing lymphedema, ranging from
subclinical or early to advanced stages. However, these approaches are only qualitative for
post-treatment follow-up rather than quantitative assessment [14–17].

Bioimpedance analysis, which detects different conductivities of body tissues accord-
ing to a specific current, can selectively measure and quantitatively reflect the accumulated
fluid content of limbs. The accumulation of extracellular fluid, which conducts electricity
more easily than fat and adipose tissue, decreases bioimpedance measurements [9,14,18].
Currently, there are three models of bioimpedance devices, including single-frequency
bioelectrical impedance analysis, multiple-frequency bioelectrical impedance analysis, and
bioimpedance spectroscopy (BIS). Bioimpedance consists of resistance (R), which results
from total body water and reactance (XC) caused by the conduction delay of cell membranes.
Both resistance and reactance are frequency dependent. The capacitance characteristics
of cell membranes impede the current flow at extremely low frequencies and precipitate
total conduction at infinitely high frequencies, which allows us to determine the ratio of
extracellular water to intracellular water [19,20].

The current FDA-approved bioimpedance device (L-Dex U400, ImpediMed, Inc.,
Carlsbad, CA, USA) only reveals the whole limb bioimpedance measurement, and it is
unable to represent the multiple preferred sites, for example, the different levels for circum-
ference measurement, on the affected extremity. Since the proximal and distal limbs vary
in lymphedema improvement after dual-site free VLNT treatment, the segmental assess-
ment of lymphedema seems more favorable than whole limb assessment for postoperative
follow-up. Brenda et al. determined that segmental BIS displayed an uneven pattern
of lymphedema distribution, which enhanced the diagnosis of localized or early-stage
lymphedema, and identified additional lymphedema patients compared with whole limb
BIS. Moreover, segmental BIS provides a more accurate post-treatment evaluation than
whole-limb BIS [21–24]. Nevertheless, the placement of several wired electrodes still limits
the feasibility of segmental bioimpedance measurements, and it could be less practical for
instant real-time detection.

Currently, there is no clinical gold standard to assess the measurements of the bioimpedance
device on the sites of application. The current measurement modalities are incapable
of precisely reflecting the severity of the disease or the effect of the surgery. With the
advancement and diversification of surgical treatment methods, a more suitable and quan-
titative measurement tool for post-treatment disease tracking is needed. Thus, a segmental
bioimpedance measurement device was developed for post-dual-site-free VLNT, which
involves both proximal and distal flap inset sites. Herein, we applied this innovative wire-
less device to a cohort of patients who undergone dual-site free VLNT for lymphedema
treatment. We aimed to develop a novel bioimpedance device that could segmentally
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assess the lymphedema condition for outcome surveillance after the operation and during
rehabilitation programs.

2. Materials and Methods

This prospective cohort study was approved by the Institutional Review Board of
the China Medical University Hospital (No. CMUH106-REC1-111). From October 2017 to
October 2019, we randomly selected seven patients who were planning to receive dual-site
free VLNT for the treatment of unilateral upper or lower extremity lymphedema at China
Medical University Hospital. A total of 10 college students were also enrolled as normal
healthy controls. Of the patients, three were diagnosed with primary lymphedema, and
the other four were diagnosed with secondary lymphedema resulting from surgery for
breast or gynecologic cancer. The gastroepiploic (five patients) or supraclavicular (two
patients) vascularized lymph node flap was harvested and divided into two lymph node
flaps, which were separately transferred to the proximal (cubital fossa/popliteal fossa)
and distal (wrist/ankle) sections of the affected extremity [1] (Table 1). The exclusion
criteria were juveniles (age < 20 years), inflammation or infection of the portion of the skin,
lymphedema caused by systemic diseases, history of muscular dystrophies, extensive limb
fibrosis (e.g., in burned patients), current use of diuretics, and previous operation for the
edematous limb.

Table 1. Demographic and clinical characteristics of the patients (N = 7).

No. Sex Age BMI Etiology Symptom Duration
(Months)

Affected
Limb

Dual-Site
VLNT

Hospital
Stay (Days)

Follow-Up
(Weeks)

1 F 66 27.43 Cervical cancer 84 LLL Gastroepiploic 8 27
2 M 48 29.4 Unknown 24 RLL Gastroepiploic 13 7
3 F 67 39.74 Unknown 12 LLL Supraclavicular 15 8
4 F 42 31.16 Unknown 240 LLL Gastroepiploic 16 27
5 F 72 44.43 Breast cancer 3 LUL Gastroepiploic 34 30
6 F 63 28.25 Breast cancer 36 LUL Gastroepiploic 15 25
7 F 51 24.17 Endometrial cancer 2 LLL Supraclavicular 14 27

Avg. 58.43 32.08 57.29 16.43 21.57
SD 11.33 7.28 85.36 8.18 9.73

BMI: body mass index; VLNT: vascularized lymph nodes transfer; M: male; F: female; Avg.: average; SD: standard deviation; LLL: left
lower limb; RLL: right lower limb; LUL: left upper limb.

Using our wireless bioimpedance monitoring device, we measured the segmental
bioimpedance of the affected limbs, and the contralateral unaffected limbs in the pre-
operation period and at postoperative one, three, and six months. Segmental bioimpedances
were measured at the midpoint of the medial side of the proximal limb (thigh/arm) and
the distal limb (calf/forearm) with currents of different frequencies (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, and 20 kHz) (Table 2). Normal bioimpedances correlated to different frequencies were
obtained from 10 healthy college students without lymphedema as a control group. The
circumferences of the proximal limb (thigh/arm) and distal limb (calf/forearm) were also
recorded simultaneously (Table 2).

We sought to demonstrate the increasing bioimpedance and decreasing limb circum-
ference at each follow-up point for the shifting of the accumulated extracellular fluid post
dual-site-free VLNT. In addition, we counted the difference in bioimpedance between the
affected limbs (proximal/distal) and the contralateral unaffected limbs (proximal/distal).
Furthermore, we checked the bioimpedance of healthy limbs (proximal/distal) in the
control group, which represented the maximum level that the measurements in patients
would not attain.
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Table 2. Detailed data of the bioimpedance under frequencies of 1 kHz and 10 kHz, and the circumference (N = 7).

Baseline 1st Month 3rd Month 6th Month

AL UL AL UL AL UL AL UL

Bioimpedance
of 1 kHz PL

7.5 9.4 9.0 9.2 9.0 8.7 10.7 9.2
[6.3, 11.3] [7.8, 11.9] [8.4, 9.4] [9.2, 9.4] [7.2, 11.6] [7.8, 9.9] [9.7, 11.0] [8.8, 11.6]

Bioimpedance
of 1 kHz DL

6.5 10.4 8.3 9.7 7.9 7.8 9.2 10.4
[4.1, 7.9] [7.8, 11.3] [8.1, 9.9] [9.4, 10.1] [7.5, 8.3] [6.4, 11.9] [9.0, 9.4] [7.9, 10.4]

Bioimpedance
of 10 kHz PL

1.8 3.6 2.9 2.7 2.9 2.7 4.4 2.7
[1.1, 3.5] [0.5, 5.3] [1.3, 6.7] [1.8, 5.7] [1.7, 4.4] [1.4, 3.6] [3.7, 5.4] [1.4, 7.9]

Bioimpedance
of 10 kHz DL

1.3 2.8 3.1 4.1 4.0 3.7 5.7 4.8
[0.4, 1.6] [1.2, 5.7] [1.6, 7.6] [2.0, 6.4] [1.3, 7.9] [1.3, 5.3] [4.0, 7.3] [2.2, 5.4]

Circumference
of PL

41.0 32.6 31.6 21.0 30.5 31.5 30.0 30.5
[31.8, 42.5] [28.9, 41.6] [31.6, 31.6] [21.0, 21.0] [29.5, 35.5] [30.0, 32.8] [30.0, 38.8] [28.4, 33.0]

Circumference
of DL

25.0 19.7 19.2 14.5 20.6 19.2 21.0 19.2
[20.5, 30.3] [18.5, 24.4] [19.2, 19.2] [14.5, 14.5] [20.0, 25.7] [19.0, 20.5] [20.5, 21.8] [19.0, 19.4]

AL: affected limb; UL: unaffected limb; PL: proximal limb (thigh/arm); DL: distal limb (calf/forearm). Unit of bioimpedance: Ω; Unit of
circumference: cm Data were presented as median (25th percentile, 75th percentile).

2.1. Electrically Conductive Characteristics of Human Tissues

In human tissues, different tissue components contain different conductive proper-
ties. When an electrical current with a lower frequency passes through different human
tissues, the conductive pathway of the electrical current is mainly along the extracellular
space. Only higher-frequency electrical currents could pass through the cell membrane
(Figure 1A). Generally, human tissues contain both resistance and capacitor properties si-
multaneously. Therefore, the bioimpedance of the human tissue changes with the variation
in the electrical current frequency. The equivalent model of the human tissue contains the
extracellular impedance (Ze), intracellular impedance (Zi), and membrane capacitance (Cm)
(Figure 1B) [25,26].
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Figure 1. (A) Illustration for the pathway of electrical current with different frequencies in human
tissues, and (B) electrically equivalent model of human tissues.

2.2. Bioimpedance Monitoring Device

The innovative wireless bioimpedance monitoring device is composed of a pair of
stainless-steel electrode probes (distance between the electrodes: 1.0 cm) and a wireless
signal acquisition module. The electrode probes were used to contact the human skin lightly
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to capture the bioimpedance information of the tissue. The wireless signal acquisition
module is designed to produce a steady voltage current source (maximum voltage, 3 V;
maximum current, 0.001 mA), with different frequencies, to extract the multi-frequency
bioimpedance information and to transmit wirelessly to the back-end host system platform.
The back-end host system platform receives the original bioimpedance information to
calculate, display, and store the multi-frequency bioimpedances in real time. This device
complies with the requirements of the Conformitè Europëenne (CE), and has received the
CE safety certification; that is, it satisfies the basic requirements of product safety, proper
protection of user health, and environmental protection. With the electrodes contacting
the skin lightly at the thigh/arm and calf/forearm, the current frequencies from 1–20 kHz
changed automatically within 1 s. The composition ratio of various tissues in the body can
be measured realistically through the different conductivities of various tissues at different
frequency currents [27] (Figure 2).

Sensors 2021, 21, x FOR PEER REVIEW 5 of 12 
 

 

lightly to capture the bioimpedance information of the tissue. The wireless signal acquisi-
tion module is designed to produce a steady voltage current source (maximum voltage, 3 
V; maximum current, 0.001 mA), with different frequencies, to extract the multi-frequency 
bioimpedance information and to transmit wirelessly to the back-end host system plat-
form. The back-end host system platform receives the original bioimpedance information 
to calculate, display, and store the multi-frequency bioimpedances in real time. This de-
vice complies with the requirements of the Conformitè Europëenne (CE), and has received 
the CE safety certification; that is, it satisfies the basic requirements of product safety, 
proper protection of user health, and environmental protection. With the electrodes con-
tacting the skin lightly at the thigh/arm and calf/forearm, the current frequencies from 1–
20 kHz changed automatically within 1 s. The composition ratio of various tissues in the 
body can be measured realistically through the different conductivities of various tissues 
at different frequency currents [27] (Figure 2). 

 
Figure 2. A wireless bio-impedance monitoring device consists of a pair of stainless-steel electrode 
probes and a wireless signal acquisition module. Our device measures approximately 6 cm × 3 cm. 

2.3. Statistical Analysis 
The continuous data were presented as median and interquartile range due to the 

small sample size in the study. The bioimpedance and circumference data were analyzed 
using the generalized estimating equation (GEE), which included the intercept, main ef-
fect of time (as a categorical variable), main effect of limb type (affected vs. healthy), and 
two-way interactions of time by limb type. The change in bioimpedance and circumfer-
ence from baseline to a later follow-up in each limb type was evaluated using the simple 
main effect of GEE. The difference in bioimpedance and circumference between limb 
types at each period was also assessed using the simple main effect of GEE. The relation-
ship between time (as a continuous variable) and bioimpedance/circumference was as-
sessed using the Spearman’s rank correlation. Finally, the consistency of the value change 
from baseline to a later follow-up between bioimpedance and circumference was evalu-
ated using Spearman’s rank correlation. Statistical significance was set at p < 0.05 (two-
sided), and no adjustment of multiple testing (multiplicity) was made in this study. Data 
analyses were conducted using SPSS version 22 (IBM SPSS Inc., Chicago, IL, USA). 

3. Results 
The demographic and clinical characteristics of the seven patients are presented in 

Table 1. The segmental tissue bioimpedance measurements, using frequencies of 1–10 kHz 
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probes and a wireless signal acquisition module. Our device measures approximately 6 cm × 3 cm.

2.3. Statistical Analysis

The continuous data were presented as median and interquartile range due to the
small sample size in the study. The bioimpedance and circumference data were analyzed
using the generalized estimating equation (GEE), which included the intercept, main effect
of time (as a categorical variable), main effect of limb type (affected vs. healthy), and
two-way interactions of time by limb type. The change in bioimpedance and circumference
from baseline to a later follow-up in each limb type was evaluated using the simple main
effect of GEE. The difference in bioimpedance and circumference between limb types
at each period was also assessed using the simple main effect of GEE. The relationship
between time (as a continuous variable) and bioimpedance/circumference was assessed
using the Spearman’s rank correlation. Finally, the consistency of the value change from
baseline to a later follow-up between bioimpedance and circumference was evaluated
using Spearman’s rank correlation. Statistical significance was set at p < 0.05 (two-sided),
and no adjustment of multiple testing (multiplicity) was made in this study. Data analyses
were conducted using SPSS version 22 (IBM SPSS Inc., Chicago, IL, USA).

3. Results

The demographic and clinical characteristics of the seven patients are presented in
Table 1. The segmental tissue bioimpedance measurements, using frequencies of 1–10 kHz
and 20 kHz, and the circumference measurement were investigated in the pre-operative
period and in the postoperative first, third, and sixth months (Table 2).



Sensors 2021, 21, 8187 6 of 12

The affected proximal limb (thigh/arm) revealed an increased tendency of bioimpedance
in the postoperative third (3.4 [−2.9, 5.6], p = 0.475) and sixth (3.3 [3.3, 3.8], p = 0.177)
months at 1 kHz, although no statistical significance was observed (Figure 3A). The af-
fected proximal limb (thigh/arm) showed a significant increase in bioimpedance during the
postoperative sixth month (3.3 [2.8, 3.6], p = 0.001) at 10 kHz due to the better penetration
of soft tissues (Figure 3C). Furthermore, the difference between the affected proximal limb
(thigh/arm) and the contralateral unaffected proximal limb (thigh/arm) became insignifi-
cant after the dual-site free VLNT surgery, whether as detected at 1 kHz (postoperative
third and sixth months) (Figure 4A), or at 10 kHz (postoperative first, third, and sixth
months) (Figure 4C). The bioimpedance of the affected proximal limb (thigh/arm) was
positively correlated with the postoperative follow-up time (rho = 0.272, p = 0.210 detected
at 1 kHz; rho = 0.320, p = 0.136 detected at 10 kHz) (Table 3).

Table 3. Correlation of measure rate derived from different measurements.

rho # p

Affected proximal limb (thigh/arm)
1 kHz Bioimpedance vs. Time 0.272 0.210
10 kHz Bioimpedance vs. Time 0.320 0.136
Circumference vs. Time −0.412 0.090
1 kHz Bioimpedance difference vs. Circumference difference 0.700 0.188
10 kHz Bioimpedance difference vs. Circumference difference 0.200 0.747

Affected distal limb (calf/forearm)
1 kHz Bioimpedance vs. Time 0.401 0.058
10 kHz Bioimpedance vs. Time 0.456 0.029 *
Circumference vs. Time −0.169 0.504
1 kHz Bioimpedance difference vs. Circumference difference 0.200 0.747
10 kHz Bioimpedance difference vs. Circumference difference 0.000 1.000

# Spearman’s correlation coefficient. * Statistical significance at p < 0.05.
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of the distal limb (calf/forearm) was observed via 1 kHz and 10 kHz after dual-site VLNT surgery. (E,F) Circumference
measurement, compared with baseline, of the affected and contralateral unaffected limbs in the postoperative first, third, and
sixth months. A significant decrease in circumference was observed after dual-site VLNT surgery. Data were presented as
median, and the error bar denoted the interquartile range. The tests were made using the simple main effect of generalized
estimating equation. * Statistical significance at p < 0.05.
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Figure 4. (A–D) Bioimpedance detection at 1 kHz and 10 kHz of the affected and contralateral unaffected limbs in
the pre-operative period and postoperative first, third, and sixth months. There was no significant difference in the
bioimpedance between the affected and contralateral unaffected limbs after dual-site VLNT surgery. The dotted line
showed the median of healthy control group without lymphedema. (E,F) Circumference measurement of the affected and
contralateral unaffected limbs in the pre-operative period and postoperative first, third, and sixth months. A significant
difference in the circumference between the affected and contralateral unaffected limbs was still observed six months after
dual-site VLNT surgery. Data were presented as median, and the error bar denoted the interquartile range. The tests were
made using the simple main effect of generalized estimating equation. * Statistical significance at p < 0.05.

The bioimpedances of the affected distal limb (calf/forearm) significantly increased
within six months after dual-site free VLNT surgery, whether passing with the 1 kHz
currents (1.6 [0.7, 3.4], p = 0.030, postoperative first month; 2.8 [1.0, 4.2], p = 0.027, post-
operative third month; and 1.3 [1.3, 3.4], p = 0.009, postoperative sixth month) (Figure 3B)
or the 10 kHz current (1.4 [0.5, 2.7], p = 0.049, post-operative first month; 3.2 [0.9, 6.3],
p = 0.003, postoperative third month; and 3.6 [2.5, 4.1], p < 0.001, postoperative sixth month)
(Figure 3D). In addition, the difference between the affected distal limb (calf/forearm)
and the contralateral unaffected distal limb (calf/forearm) became insignificant at post-
operative first, third, and sixth months, whether as detected by 1 kHz (Figure 4B) or 10 kHz
(Figure 4D). The alterations in bioimpedance of the affected distal limb (calf/forearm) were
also positively correlated with the postoperative follow-up time (rho = 0.401, p = 0.058
detected at 1 kHz; rho = 0.456, p = 0.029 detected at 10 kHz). This indicates that the
bioimpedance increases along with the decrease in interstitial fluid accumulation after
dual-site free VLNT surgery (Table 3).

A significant improvement in the affected proximal limb (thigh/arm) (−2.3 [−4.0, −0.2],
p = 0.037, postoperative third month; −3.5 [−3.8, −2.6], p = 0.001, postoperative sixth
month) and the affected distal limb (calf/forearm) (−0.9 [−2.5, −0.6], p = 0.003, postopera-
tive third month) after dual-site free VLNT surgery was observed via the circumference
measurement (Figure 3E,F). The extent of improvement was presented as the circumference
reduction rate (%), and both the affected proximal limb (thigh/arm) (−10.4 [−10.9, −6.3]%)
and the affected distal limb (calf/forearm) (−3.9 [−7.3, −3.3]%) ameliorated in sixth months
after the operation (Table 4). The circumference measurement gradually decreased within
six months after dual-site free VLNT surgery (rho = −0.412, p = 0.090 of the affected prox-
imal limb; rho = −0.169, p = 0.504 of the affected distal limb). When compared with the
baseline, the decrease of the circumference measurement was inversely related to the
increase of the bioimpedance in both the proximal (rho = 0.700, p = 0.188 detected at 1 kHz;
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rho = 0.200, p = 0.747 detected at 10 kHz) and distal limb (rho = 0.200, p = 0.747 detected at
1 kHz) (Table 3).

Table 4. Circumference reduction rate (N = 7).

Reduction Rate (%)

Affected limb
Thigh/Arm −10.4 [−10.9, −6.3]
Calf/Forearm −3.9 [−7.3, −3.3]

Contralateral unaffected limb
Thigh/Arm −1.7 [−5.0, 1.2]
Calf/Forearm 0.0 [−1.0, 3.4]

Data were presented as median (25th percentile, 75th percentile). Circumference reduction rate (%) from baseline
to sixth month = [(postoperative limb—preoperative limb)/preoperative limb] × 100.

4. Discussion

The accuracy of bioimpedance remains contentious in the screening of
lymphedema [12,14,28–35]. Previous studies demonstrated a low sensitivity (7.5–64%)
of BIS in diagnosing breast cancer-related lymphedema [12,14,34,35], which was associated
with 61–71% of positive predictive value and 67–70% of negative predictive value [35].
This may be caused by the easily manipulated localized swelling in early-stage lym-
phedema and the persistent proliferation of fibroadipose tissue in advanced-stage lym-
phedema [9,12,14,35]. Currently, data on the use of bioimpedance analysis in disease
tracking after lymphedema treatment remains insufficient. Both Cho et al. and Cavezzi
et al. considered that bioimpedance analysis is feasible for detecting slight extracellular
fluid changes after complex decongestive therapy [36,37], and therefore, is practical for out-
come monitoring. For surgical intervention of lymphedema, Sutherland et al. first utilized
BIS to assess the effect of lymphovenous bypass for breast cancer-related lymphedema, and
reported clinically significant improvement after lymphovenous bypass [38]. The above
modalities measure the entire limb rather than the segmental measurement. However, the
improvement of the extremities may be different at the proximal and distal ends. Hence,
our research team previously proposed an innovative wireless bioimpedance monitoring
device in 2018, during which it was applied to one female patient to demonstrate the upper
limb lymphedema improvement at two weeks after receiving dual-site free VLNT [27].

Our innovative wireless bioimpedance monitoring device has several features. First,
it can accurately reflect the degree of lymphedema at the preferred portion of the affected
extremity for its single-point touch measurement and small electrodes that enable current
signal circuiting within 1.0 cm. Second, with the portability of our wireless device, it is suit-
able as a take-home monitor for a rehabilitation program, which is crucial to lymphedema
patients not only for conservative treatment, but also for postoperative follow-up. Third,
our device is instant, easy to operate, and can show results in only 10 s [27], which is
better than the long examination time of conventional imaging techniques such as lym-
phoscintigraphy and fluorescent lymphangiography. Therefore, it is not restricted by the
venue or operator.

We confirmed that dual-site lymph node transplantation could effectively improve
the lymphedematous condition probably caused by the interstitial fluid elimination. Thus,
our hospital currently uses gastroepiploic lymph node flaps for selective lymphedema
patients, which not only provides a large number of lymph nodes suitable for dual or
multiple transplants, but also avoids iatrogenic donor site lymphedema (Figure 5). The
dual-site (proximal plus distal) transplantation had synergetic effects in our cohort follow-
up for better improvement of distal limb lymphatic drains than proximal ones. The
bioimpedance detected at 10 kHz in the proximal limb significantly increased within
six months postoperatively. A frequency of 10 kHz has better penetration of soft tissues,
making it befit of the detection at the relatively thicker proximal part (arm/thigh). Although
a frequency of 1 kHz has less tissue penetration, it is more sensitive in terms of reflecting the
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bioimpedance ratio [21,22]. Hence, multiple current frequencies could assist investigators
in determining the whole picture of the fluid distribution on the limb.
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Figure 5. A patient suffered from lymphedema of the left lower limb. The dual-site free VLNT surgery
was performed with two gastroepiploic lymph node flaps transferred to the popliteal fossa and ankle
respectively (red arrow). The swelling of the left lower limb improved six months after surgery.

The unaffected limb of the lymphedema patients may have the disease with only mild
or no symptoms, and the impedance may fluctuate with posture, lifestyle, or rehabilitation
program. Hence, there are fluctuations in the bioimpedance of the contralateral unaffected
limb in our study. Nevertheless, most of them displayed no significant changes (Figure 3).
The increase in bioimpedance should be an indicator of lymphedema reduction. However,
there was a lack of significant correlation between reduction in limb circumference and
increase in limb bioimpedance in our study. Since the circumference measurement cannot
reflect the practical ratio of extracellular water to intracellular water, the result could be
interfered easily with the changes in soft tissue components, causing it difficult to evaluate
localized lymphedema and demonstrate the improvement and severity of lymphedema.

This study has several limitations. First, the number of dual-site VLNT surgery is still
short, so we only investigate the difference through the proximal limb (thigh/arm) and
distal limb (calf/forearm) in this study. Perhaps we can consider subdividing it into four
groups (thigh, arm, calf, and forearm) in the future. In addition, the very small sample
size may affect the reliability of the study. Second, our bioimpedance device detects only
segmental bioimpedance to represent the water volume distribution. The device cannot an-
alyze the nutritional status of the patient and the soft tissue composition, including adipose
and muscle tissues. Third, the detection depth of our device would depend on the adjust-
ment of the frequency; thus, the tomography imaging method could be developed with
multi-segment measurement in future studies. We may examine multi-segment measure-
ments to display the actual water distribution pattern of the entire extremity in the future.
Fourth, a correlation between the bioimpedance method and image assessment, such as
lymphoscintigraphy, ICG lymphangiography, and magnetic resonance lymphangiography,
is still lacking. Fifth, we recommend using our device for postoperative surveillance and
rehabilitation tracking. Patients with severe fibrosis may not be suitable due to the lack of
deeper penetration. Sixth, there is no precision value (mL) for volume corresponding to the
bioimpedance at present. Seventh, the performance metrics of our bioimpedance device
in terms of accuracy and precision of measurement against known impedances should be
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further investigated. The application of this innovative bioimpedance device for long-term
monitoring of lymphedema treatment outcomes still needs to be validated.

5. Conclusions

The dual-site free VLNT treatment is a promising method to improve refractory limb
lymphedema by enhancing the lymphatic drainage. Our innovative wireless bioimpedance
monitoring device demonstrated clinically significant and continuous improvement in
lymphedema after dual-site-free VLNT treatment. The increase in bioimpedance after
dual-site free VLNT treatment correlated with a decrease in circumference. The novel
wireless bioimpedance device was proven to segmentally assess the lymphedema condition
quantitatively by truly reflecting the fluid volume distribution in the limbs. It could also be
an optimal evaluation for outcome surveillance during rehabilitation programs.
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