scientific reports

Check for updates

OPEN Tunable magnetization steps in mixed valent ferromagnet Eu₂CoMnO₆

Nara Lee¹, Jong Hyuk Kim¹, Dong Gun Oh¹, Hyun Jun Shin¹, Hwan Young Choi¹, Sungkyun Choi^{2,3}, Younjung Jo⁴ & Young Jai Choi^{1⊠}

Magnetic properties can be manipulated to enhance certain functionalities by tuning different material processing parameters. Here, we present the controllable magnetization steps of hysteresis loops in double-perovskite single crystals of Eu₂CoMnO₆. Ferromagnetic order emerges below $T_{\rm C} \approx 122$ K along the crystallographic c axis. The difficulty in altering Co²⁺ and Mn⁴⁺ ions naturally induces additional antiferromagnetic clusters in this system. Annealing the crystals in different gas environments modifies the mixed magnetic state, and results in the retardation (after O₂-annealing) and bifurcation (after Ar-annealing) of the magnetization steps of isothermal magnetization. This remarkable variation offers an efficient approach for improving the magnetic properties of doubleperovskite oxides.

Magnetic oxides composed of metal cations and oxygen anions are extensively studied due to the abundance of the elements and stability of the compounds. In particular, there have been various attempts to manipulate magnetic characteristics to achieve advantageous properties or to enhance desirable functionalities by tuning parameters such as hydrostatic pressure, chemical doping, and strain¹⁻⁵. Double-perovskite oxides, in which transition metal ions are alternatingly located in octahedral oxygen environments, have been broadly investigated because of their fascinating magnetic properties. These properties include exchange bias⁶⁻⁸, magnetocaloric effect⁹⁻¹², and multiferroicity¹³⁻¹⁷. The emergent properties arise from the intricate magnetic interactions and antiphase boundaries/antisite disorders between the mixed-valence magnetic ions^{18,19}. In the case that a magnetic rare-earth ion is included, the additional ordering of the rare-earth magnetic moment at a lower temperature generates a significant modification of the magnetic properties²⁰⁻²².

In double-perovskite R_2CoMnO_6 (R = La, ..., Lu) compounds, the majority of alternating Co^{2+} and Mn^{4+} ions leads to the long-range magnetic order emerging from the ferromagnetic Co²⁺ and Mn⁴⁺ superexchange interactions, while the magnetic transition temperature varies from 48 K for Lu₂CoMnO₆¹⁵ to 204 K for La₂CoMnO₆²³ depending on the size of the rare-earth ions. However, the incomplete alteration of Co²⁺ and Mn⁴⁺ ions naturally results in additional antiferromagnetic clusters which correspond to anti-sites of ionic disorders and/or antiphase boundaries that lead to Co²⁺-Co²⁺ or Mn⁴⁺-Mn⁴⁺ pairs^{24,25}. Another type of antiferromagnetic cluster involving the valence state of Co³⁺-Mn³⁺ can also be formed²⁶. In Lu₂CoMnO₆, the magnetic frustration associated with the nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic couplings gives rise to the up-up-down-down ($\uparrow\uparrow\downarrow\downarrow$) spin ordering²⁷. This spin configuration has been known to produce ferroelectricity perpendicular to the *c*-axis^{13,15} as a result of the cooperative O²⁻ displacements through the symmetric exchange striction²⁸⁻³⁰. In Er₂CoMnO₆, the activation of the ferrimagnetic order between Er³⁺ and ferromagnetic Co^{2+/} Mn⁴⁺ sublattices exhibits an inversion of the magnetic hysteresis loop³¹. Furthermore, the additional small portion of multiferroic phase which may result from the ↑↑↓↓ spin order was observed simultaneously with the ferrimagnetic phase²². In Gd₂CoMnO₆ and Tb₂CoMnO₆, the orders of large rare-earth magnetic moments of Gd³⁺ and Tb³⁺ at $T_{Gd} = 21$ K and $T_{Tb} = 15$ K, respectively, reveal the giant anisotropic magnetocaloric effects^{9,10,32}. It is evident from the previous investigations that a detailed understanding of distinct magnetic phases and interactions is essential for examining functional properties in double perovskites.

The Eu₂CoMnO₆ (ECMO) crystallizes in a monoclinic structure with a $P2_1/n$ space group, in which Co²⁺ and Mn⁴⁺ ions are alternatingly located in corner-shared O²⁻ octahedral environments. Ferromagnetic order from dominant Co²⁺ and Mn⁴⁺ superexchange interactions arises at $T_{\rm C} \approx 120$ K. Magnetic properties appear to be

¹Department of Physics, Yonsei University, Seoul 03722, Korea. ²Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea. ³Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. "Department of Physics, Kyungpook National University, Daegu 41566, Korea.[™]email: phylove@yonsei.ac.kr

Figure 1. Crystallographic structure and temperature dependence of magnetic susceptibility in as-grown crystal. Views of the crystallographic structure of double-perovskite ECMO from the (**a**) c and (**b**) b axes. The green, pink, blue, and yellow spheres represent Eu³⁺, Co²⁺, Mn⁴⁺, and O²⁻ ions, respectively. (**c**) Temperature dependence of magnetic susceptibility, $\chi = M/H$, shown in log scale, for the as-grown crystal in H = 0.2 T along and perpendicular to the crystallographic c axis and upon warming after ZFC and cooling in the same H (FC). The dotted line indicates the Curie temperature of $T_{\rm C} = 122$ K. (**d**) Temperature derivative of ZFC χ along the c axis in H = 0.2 T and temperature dependence of specific heat divided by the temperature, C/T, measured in zero H.

susceptible to the growth temperatures and gas annealing conditions after the growth^{33,34}. However, the previous studies were done only on polycrystalline specimens, in which the physical properties are averaged out over all spatial orientations, interrupting detailed characterization of intrinsic and anisotropic properties. To overcome this obstruction, we grew single crystals of ECMO using the flux method. In this work, we have confirmed that the ferromagnetic order in ECMO single crystals appears along the crystallographic *c* axis at $T_{\rm C}$ =122 K. Since a small number of antiferromagnetic clusters are naturally involved in the major ferromagnetic phase in a double-perovskite^{24,25}, annealing in different atmospheres results in modification of mixed magnetic states and drastic changes in the magnetic hysteresis loop. Our results establish that the atmospheric environments in post-annealing play an important role in modifying the magnetic properties in mixed-valent double-perovskite magnets.

Results and discussion

The ECMO crystallizes in a monoclinic $P_{1/n}$ structure with the lattice parameters, a = 5.3288(7) Å, b = 5.5824(7) Å, c = 7.5764(10) Å, and $\beta = 89.9940(14)^{\circ}$ (see Supplementary Information S1 for details). The structure of an ECMO crystal is depicted in Fig. 1a and b, viewed from the *c*- and *b*-axes, respectively. The O²⁻ octahedral cages are significantly distorted due to the relatively small radius of the Eu³⁺ ion. These series of compounds could be refined within two possible space groups, orthorhombic *Pbnm* (or *Pnma*) and monoclinic $P_{2/n}^{23}$. However, the recent neutron diffraction studies on polycrystalline R₂CoMnO₆ (R = Y, Ho, and Tm) clearly demonstrate that the magnetic structure is accompanied by alternating Co²⁺ and Mn⁴⁺ spins^{20,21}. The refinement result of the same magnetic moments for both Co and Mn ions suggests that valences of the ions are Co²⁺ and Mn⁴⁺ corresponding to high spin states (*S* = 3/2). The amount of antisite defects incorporated in such a compound was estimated as ~ 6%, which indicates that the physical properties with long-range ferromagnetic order can be interpeted within the frame of double-perovskite stucture, i.e., monoclinic $P_{2_1/n}$ space group.

The magnetic properties of the as-grown ECMO crystal were investigated along and perpendicular to the *c* axis. Figure 1c shows the temperature (*T*) dependence of magnetic susceptibility described by magnetization divided by a magnetic field, $\chi = M/H$, in log scale, measured upon warming in H = 0.2 T after zero-field cooling (ZFC) and upon cooling in the same *H* (FC). As the *T* decreases, the χ increases smoothly and the ferromagnetic

Figure 2. AC magnetic susceptibility for the as-grown crystal. Temperature dependence of (**a**) the real parts of AC magnetic susceptibility, χ' , measured at f=13 Hz under zero DC magnetic-field and AC field excitation of 10 Oe and (**b**) χ' at frequencies f=13, 107, 1017, and 9887 Hz, near $T_{\rm C}$ (T=112-128 K).

order sets in at $T_{\rm C}$ = 122 K. The anomaly in the *T* dependence of heat capacity divided by *T*(*C*/*T*) in zero *H* and the trough in the *T* derivative of the ZFC χ curve for *H*||*c* also appear at $T_{\rm C}$ (Fig. 1d). A tiny magnitude of χ for *H*||*c* at 5 K after ZFC was observed due to an almost entirely demagnetized state. χ rises abruptly above ~ 17 K, which indicates thermally activated domain wall motion^{35,36}. The *T* at which the ZFC and FC χ curves start to split were observed at 112 K for *H*||*c*, indicative of the onset of magnetic irreversibility. A sharp and positive peak of $d\chi/dT$ was observed at ~ 114 K, which represents an additional domain wall de-pinning process associated with the predominant long-range ferromagnetic order^{37,38}. The χ values for the two different orientations exhibit strong magnetic anisotropy, which suggests that the spins are nearly aligned along the *c* axis, consistent with the neutron diffraction results that the ferromagnetic moments are aligned closed to the *c*-axis ^{20,21}.

The *T* dependence of the AC magnetic χ was also measured for the as-grown crystal at the frequencies f=13, 107, 1017, and 9887 Hz, under an AC excitation *H* of 10 Oe along the *c* axis (Fig. 2). In Fig. 2a, a peak appears at T_C at f=13 Hz. As shown in Fig. 2b, the spread of AC χ , which occurs below T_C , is manifestly ascribed to the additional domain wall motions. The peak height is reduced without any shift upon increasing *f*, which would be attributed to a magnetic disaccommodation process of pinned domain walls^{20,39}. The absence of the peak shift in AC χ does not support that the magnetic irreversibility in DC χ (Fig. 1c) would be related to typical spin-glass behavior. In contrast, the recent AC χ measurements reported in polycrystalline specimens exhibit glassy behaviors^{36,38}. This implies that Co and Mn ions would be better aligned in the single crystalline ECMO.

The *H* dependence of *M* at different temperatures for the as-grown crystal was examined. M(H) curves were obtained by sweeping *H* at 5, 60, 90, and 115 K after cooling the sample in H=7 T. The highly anisotropic M(H) curves at 5 K are shown in Fig. 3a. The *M* in H||c at 7 T is found to be ~ 5.4 $\mu_B/f.u.$, smaller than the fully saturated value of 6.0 $\mu_B/f.u.$, with the summation of Co²⁺ (S=3/2) and Mn⁴⁺ (S=3/2) states in a formula unit. This lack of magnetic saturation suggests the formation of anti-site disorders and antiphase boundaries, leading to antiferromagnetic Co²⁺ -Co²⁺ or Mn⁴⁺ -Mn⁴⁺ pairs^{37,38,40}. The slight deviation of the ferromagnetic moment from the *c* axis would be another reason. In the case that misplaced magnetic ions are frustrated, the portion of anti-sites may increase further. Thus, the observed magnetic moments are compatible with the amount of antisite defects estimated as 6–8% from the neutron diffraction experiments on the isostructrual compounds^{20,21}. To verify the oxygen content of the as-grown crystal, we used a thermogravimetric and differential thermal analysis under 5% H₂/Ar atmosphere. The oxygen content was found to be 6.01 ± 0.019. In a recent X-ray photoemission spectros-copy experiment on a polycrystalline ECMO, the partial formation of Eu²⁺ moments (~5%) was observed³⁶. The

Figure 3. Isothermal magnetization for the as-grown crystal. Isothermal magnetization (**a**) along and perpendicular to the *c* axis measured at 5 K after cooling in H=7 T and at (**b**) 60, (**c**) 90, and (**d**) 115 K, along the *c* axis measured after magnetic-field cooling in 7 T.

Eu²⁺ moments would be ordered antiferromagnetically to the Co²⁺/Mn⁴⁺ moments as observed in other members of the series^{21,22}, which may act as one of the reasons for the reduced saturation *M*. The remnant *M* is attained as ~ 4.0 $\mu_{\rm B}/f.u.$, which demonstrates a squareness ratio of 0.74. The abrupt jumps of *M* in *H*||*c* occur at *H* = ±0.85 T, whereas the *M* in *H*⊥*c* increases linearly with a small magnitude. The change in magnitude of *M* from 3.27 to 0.17 $\mu_{\rm B}/f.u.$ at -0.85 T is caused by the alteration from the magnetic state with dominant up-spin domains to the almost demagnetized state. The knee-like feature of *M* above the large step in *H*||*c* would be influenced partly by the magnetic re-ordering or spin-flops of antiferromagnetic clusters. Upon increasing *T*, the magnetic hysteresis narrows and another *M* step near-zero *H* occurs as the remnant *M* value drops significantly (Fig. 3b,c). At 115 K, just below *T*_C, the ferromagnetic behavior remains but the hysteresis and *M* steps vanish (Fig. 3d).

The different gas annealing conditions led to substantial modifications in the *H* dependence of *M*. In Fig. 4, the isothermal magnetizations along the *c* axis, taken at 5 K and 60 K, and the *H*-derivatives of magnetizations, are displayed for the O₂-annealed crystal at 5 K (Fig. 4a,b, respectively), Ar-annealed crystal at 5 K (Fig. 4c,d, respectively) and quenched crystal at 60 K (Fig. 4e,f, respectively). After O₂ gas annealing, the oxygen content of the O₂-annealed crystal was estimated as 6.07 ± 0.008 . The content of Eu³⁺ ions was also estimated to be 1.963 ± 0.008 from the EPMA mesurement, which may result from the partial replacements of Bi³⁺ ions inherent from Bi₂O₃ flux during the growth^{33,34}. The *M* in *H*||*c* at 7 T is ~ 5.8 µ_B/f.u. which is close to the saturated magnetic moment (Fig. 4a). In comparison with the as-grown crystal, the step of *M* at 5 K is slightly retarded, occurring at ± 0.91 T, which is manifestly displayed as a sharp peak in the derivative of *M* (Fig. 4b). The remnant *M* becomes larger, estimated as $4.87 \mu_{\rm B}/f.u.$, and the squareness ratio is enhanced to 0.84. Additional small steps are found at ± 1.93 T, shown as broad bumps in the derivative of *M*. The *M* steps still remain at 60 K. The slow cooling procedure for the O₂-annealed crystal improves the order of Co-Mn ion configuration. However, the excessive oxidation induces cationic vacancies that effectively pin the ferromagnetic domains⁴¹ despite the formation of a lower amount of anti-site defects. This conceivably explains the enhanced value and retarded step of *M*.

For the Ar-annealed crystal, isothermal *M* and its derivative at 5 K demonstrate two sharpened transitions occurring at 0.6 and 1.4 T with intermediate plateaus, as shown in Fig. 4c and d. The abrupt variations indicate the *H*-driven reversal from one saturated magnetic state to the other-direction saturated state through two-step *M* changes of magnetic domain walls. The *M* at 7 T and the remnant *M* are found to be 5.2 μ_B /f.u. and 4.4 μ_B /f.u., respectively, which determines a high squareness ratio of 0.85. More reduction of *M* at 7 T and oxygen content estimated as 5.87 ± 0.007 indicate that the oxygen-deficient atmosphere during Ar-anneling generates an additional portion of antiferromagnetic clusters. In more detail, the oxygen vacancies induce a reduced valence state such as the change from Mn⁴⁺ to Mn³⁺ to preserve the electroneutrality. This may lead to antiferromagnetic

Figure 4. Isothermal magnetization for the annealed crystals. Isothermal magnetization for the (**a**) O_2 -annealed crystal, (**c**) Ar-annealed crystal, and (**e**) quenched crystal, along the *c* axis, up to 7 T, at *T* = 5 and 60 K, and the magnetic-field derivative of magnetization for the (**b**) O_2 -annealed crystal at 5 K, (**d**) Ar-annealed crystal 5 K, and (**f**) quenched crystal 60 K.

 $Co^{2+}-Mn^{3+}$ pairs, giving an explanation for the reduced saturation value of M. Furthermore, the additional portion of antiferromagnetic pairs may break the coherence of ferromagnetic domains and lessen the magnetic inhomogeneity, which would present the two-step change of M. If the antisites of $Mn^{3+}-Mn^{4+}$ pairs are formed in the oxygen deficient condition, the double-exchange interactions between Mn³⁺ and Mn⁴⁺ moments are expected. However, these series of compounds are insulators, suggesting that the possible formation of $Mn^{3+}-Mn^{4+}$ pairs would be ruled out or the amount of Mn³⁺-Mn⁴⁺ pairs would be tiny and thus non-percolative in electrical conduction²³. Furthermore, oxygen vacancies can contribute to the ionic disorders via the trapping of two Mn³⁺ ions. As a result, the traps in the vacant sites generate antiferromagnetic Mn^{3+} - Mn^{3+} pairs²³. A partial deficiency of Eu³⁺ ions was observed in N_2 annealed polycrystalline ECMO^{33,34}. In our single crystalline ECMO, the content of Eu³⁺ ions for the Ar annealed crystals was estimated as 1.931 ± 0.025 via the EPMA method. The presence of deficient Eu³⁺ ions may arise from the partial replacements of Bi³⁺ ions as well as oxygen deficient condition. The substantial alterations of shapes and steps in isothermal M curves suggest that Ar-annealing procedure engenders the reconstruction of antiferromagnetic clusters and modify the distribution of magnetic domain pinnings^{42,43}. Unlike the O₂-annealed case, these two sharp M steps completely disappear at 60 K, where only smooth ferromagnetic behavior is displayed. Both M(H) curves at 5 K for O²⁻ and Ar-annealed crystals exhibit slight linear slopes at the high H regime, resulting from the reorientation of a small portion of antiferromagnetic spins in antisites and/or antiphase boundaries⁴⁴.

For the quenched crystal, the magnetic hysteresis loop at 5 K becomes narrow with the disappearance of sharp steps and includes the linear component in a broad *H* range (Fig. 4e). The hysteresis loop appears to be assymetric with a noticeable shift, which is ascribed to the minor hysteresis loop effect^{45,46}. On the other hand, the *M* at 60 K reveals multiple steps at ± 0.6 and ± 2.75 T as shown in Fig. 4f. The quenching procedure may engender critical deterioration on crystal quality, and it thus destroys the square-shape response of *M*(*H*). The overall value of *M* is largely reduced and the *M* value at 7 T is found to be ~ 2.9 $\mu_{\rm B}$ /f.u., only about 50% of the fully saturated value, 6 $\mu_{\rm B}$ /f.u. The results suggest the prevailing formation of disorders and defects in which a considerable portion may contain additional antiferromagnetic clusters from antisites and/or antiphase boundaries. A close looking at the *M* process suggests the formation of mixed hard and soft ferromagnetic phases. As described for the isothermal *M* of ϵ -Fe₂O₃^{47,48}, the inhomogeneous concentration of defects resulting in different pinned magnetic domains plays a crucial role in magnetically hysteretic behavior. High-defect regions would lead to a hard ferromagnetic behavior. Similar hysteretic behavior with a possible combination of hard and soft ferromagnetic phases was observed in the previous work on a polycrystalline Y₂CoMnO₆²⁰.

The *T* dependence of χ is also influenced by the post-annealing atmosphere. The *T* dependence of ZFC and FC χ curves are displayed in linear scale for the as-grown, O₂-annealed, Ar-annealed, and quenched crystals in Fig. 5. In O₂-annealed and Ar-annealed crystals, $T_{\rm C}$ does not change, which implies that the gas-annealing procedure affects strongly on the *M* steps but not on the long-range ferromagnetic order⁴¹. For the O₂-annealed crystal, a tiny negative magnitude of χ was observed after ZFC, at 5 K, due to a typical remanent *H* that remained negative upon cooling, as shown in Fig. 5b. As *T* is increased, the χ rises broadly with a shoulder-like feature, followed

Figure 5. Magnetic susceptibility for the annealed crystals. Temperature dependence of ZFC and FC χ values displayed in linear scale along the *c* axis in H=0.2 T for (**a**) the as-grown, (**b**) O₂-annealed, (**c**) Ar-annealed, and (**d**) quenched crystals. The χ values are plotted after magnification by three times in scale for the quenched crystal.

by a peak at ~115 K. The overall magnitude of χ after Ar-annealing increases, but the peak corresponding to the domain wall depinning process is found to be at the lower $T \approx 109$ K. In the quenched crystal, the decrease of ferromagnetic transition temperature by 10 K (to $T_{\rm C}$ =112 K) and the significant suppression of χ are observed due to the formation of additional defects and disorders. The weak glassy behavior in polycrystalline specimens indicates the more considerable formation of antiferromagnetic clusters. However, the averaging effect in physical properties of polycrystalline samples would disturb the observation of intrinsic and anisotropic properties. For example, magnetization steps in some of the polycrystalline ECMO appear to be less sharp than those of single crystals^{24,33,34} or to be completely vanished^{33,34}. This suggests the importance of investigating single crystals in which intriguing physical properties based on strong magnetic anisotropy are made apparent.

Tunable M steps are achieved by reconstructing mixed magnetic states by annealing the crystals in different atmospheres. The step effect of the magnetic hysteresis loop has been theoretically investigated in intermixed ferromagnetic and antiferromagnetic states^{49,50}. The mixture of ferromagnetic and antiferromagnetic interactions, combined with magnetic anisotropy and/or weak dipolar interaction, generates various shapes and steps in magnetic hysteresis loops depending on the relative ratio of two magnetic types. We do not yet have a microscopic understanding of the influence of annealing environments on the intriguing magnetic behaviors of ECMO. Thus, to reveal the mechanism for controllable M steps and to identify the wide spectrum of valences and exchange interactions of magnetic ions, further investigations of extensive magnetic properties for similar double-perovskite compounds are required.

Conclusion

In summary, we have explored the magnetic properties of single-crystalline double-perovskite Eu_2CoMnO_6 prepared in different atmospheric annealing conditions. In the as-grown crystal, the magnetic susceptibility reveals ferromagnetic order along the *c* axis at $T_C = 122$ K, below which isothermal magnetization exhibits a step effect. The ferromagnetic and additional antiferromagnetic clusters are modified after annealing in different gas environments such that the temperature and magnetization steps in the as-grown crystal as retardation after O_2 -annealing and bifurcation after Ar-annealing. Our findings provide crucial clues for understanding the precise mechanism for alteration of mixed magnetic states and an efficient means to adjust the magnetic properties of double-perovskite compounds.

Methods

We have synthesized rod-like single crystals of ECMO utilizing the conventional flux method with Bi_2O_3 flux in air^{9,10,21}. The crystallographic structure of the EFO crystals was confirmed using an X-ray diffractometer (D/Max 2500, Rigaku Corp.). ECMO specimens in different atmospheric environments were prepared after the growth. The atmospheric environments were: an O_2 -annealing process (heated up to 1150 °C, held for 5 h, and cooled at the rate of 50 °C/h in O_2 gas), Ar-annealed (heated up to 1150 °C, held for 5 h, and cooled at the rate of 50 °C/h in A_2 gas), Ar-annealed (heated up to 1150 °C, held for 5 h, and cooled at the rate of 50 °C/h in Ar gas), and quenched (heated for up to 1200 °C in air, held for 5 h, and quickly quenched down to room temperature). The oxygen contents were measured by a thermogravimetric and differential thermal analysis (TG–DTA; SDT Q600, TA instruments). Under 5% H₂/Ar atmosphere, each sample was heated to 1000 °C with the rate of 5 °C/min. The Eu deficiency was measured using a Wavelength Dispersive X-ray Spectrometer in an EPMA (Electronic Probe Micro-Analyzer, JEOL JXA-8530F). The *T* and *H* dependences of DC magnetization were obtained at *T* = 5–300 K and *H* = –7 to 7 T using a Magnetic Properties Measurement System (MPMS) and Physical Properties Measurement System (PPMS), manufactured by Quantum Design, Inc. The *T* dependence of AC magnetic susceptibility was measured using the PPMS. Specific heat was measured using the standard relaxation method in the PPMS.

Received: 1 August 2020; Accepted: 5 April 2021 Published online: 30 April 2021

References

- Gama, S. et al. Pressure-induced colossal magnetocaloric effect in MnAs. Phys. Rev. Lett. 93, 237202. https://doi.org/10.1103/PhysR evLett.93.237202 (2004).
- Lyubina, J., Nenkov, K., Schultz, L. & Gutfleisch, O. Multiple metamagnetic transitions in the magnetic refrigerant La(Fe, Si)₁3_Hx. *Phys. Rev. Lett.* 101, 177203. https://doi.org/10.1103/PhysRevLett.101.177203 (2008).
- Srivastava, M. K., Kaur, A., Maurya, K. K., Awana, V. P. S. & Singh, H. K. Impact of strain on metamagnetic transitions in Sm_{0.5}Sr_{0.5}MnO₃ thin films. *Appl. Phys. Lett.* **102**, 032402. https://doi.org/10.1063/1.4788745 (2013).
- Staunton, J. B., dos Santos Dias, M., Peace, J., Gercsi, Z. & Sandeman, K. G. Tuning the metamagnetism of an antiferromagnetic metal. *Phys. Rev. B* 87, 060404. https://doi.org/10.1103/PhysRevB.87.060404 (2013).
- Gercsi, Z., Hono, K. & Sandeman, K. G. Designed metamagnetism in CoMnGe_{1-x}P_x. *Phys. Rev. B* 83, 174403. https://doi.org/10. 1103/PhysRevB.83.174403 (2011).
- Pradheesh, R., Nair, H. S., Sankaranarayanan, V. & Sethupathi, K. Exchange bias and memory effect in double perovskite Sr₂FeCoO₆. Appl. Phys. Lett. 101, 142401. https://doi.org/10.1063/1.4756792 (2012).
- Liu, W. et al. Griffiths phase, spin-phonon coupling, and exchange bias effect in double perovskite Pr₂CoMnO₆. J. Appl. Phys. 116, 193901. https://doi.org/10.1063/1.4902078 (2014).
- Murthy, J. K. & Venimadhav, A. 4f–3d exchange coupling induced exchange bias and field induced Hopkinson peak effects in Gd₂CoMnO₆. J. Alloys Compd. 719, 341–346. https://doi.org/10.1016/j.jallcom.2017.05.203 (2017).
- Moon, J. Y., Kim, M. K., Choi, Y. J. & Lee, N. Giant anisotropic magnetocaloric effect in double-perovskite Gd₂CoMnO₆ single crystals. *Sci. Rep.* 7, 16099. https://doi.org/10.1038/s41598-017-16416-z (2017).
- Moon, J. Y. et al. Anisotropic magnetic properties and giant rotating magnetocaloric effect in double-perovskite Tb₂CoMnO₆. Phys. Rev. B 98, 174424. https://doi.org/10.1103/PhysRevB.98.174424 (2018).
- Ganeshraj, C., Pradheesh, R. & Santhosh, P. N. Structural, magnetic, transport and magnetocaloric properties of metamagnetic DyMn_{0.5}Co_{0.5}O₃. J. Appl. Phys. 111, 07A914. https://doi.org/10.1063/1.3672067 (2012).
- Balli, M., Fournier, P., Jandl, S., Truong, K. D. & Gospodinov, M. M. Analysis of the phase transition and magneto-thermal properties in La₂CoMnO₆ single crystals. J. Appl. Phys. 116, 073907. https://doi.org/10.1063/1.4893721 (2014).
- Chikara, S. et al. Electric polarization observed in single crystals of multiferroic Lu₂MnCoO₆. Phys. Rev. B 93, 180405. https://doi. org/10.1103/PhysRevB.93.180405 (2016).
- Terada, N. *et al.* Ferroelectricity induced by ferriaxial crystal rotation and spin helicity in a B-site-ordered double-perovskite multiferroic In₂NiMnO₆. *Phys. Rev. B* **91**, 104413. https://doi.org/10.1103/PhysRevB.91.104413 (2015).
- Lee, N. *et al.* Strong ferromagnetic-dielectric coupling in multiferroic Lu₂CoMnO₆ single crystals. *Appl. Phys. Lett.* **104**, 112907. https://doi.org/10.1063/1.4869479 (2014).
- Choi, H. Y., Moon, J. Y., Kim, J. H., Choi, Y. J. & Lee, N. Single crystal growth of multiferroic double perovskites: Yb₂CoMnO₆ and Lu₂CoMnO₆. *Curr. Comput.-Aided Drug Des.* 7, 67. https://doi.org/10.3390/cryst7030067 (2017).
- Sharma, G., Saha, J., Kaushik, S. D., Siruguri, V. & Patnaik, S. Magnetism driven ferroelectricity above liquid nitrogen temperature in Y₂CoMnO₆. Appl. Phys. Lett. 103, 012903. https://doi.org/10.1063/1.4812728 (2013).
- Nair, H. S., Chatterji, T. & Strydom, A. M. Antisite disorder-induced exchange bias effect in multiferroic Y₂CoMnO₆. Appl. Phys. Lett. 106, 022407. https://doi.org/10.1063/1.4906204 (2015).
- Sahoo, N. C. et al. Antisite-disorder driven large exchange bias effect in phase separated La_{1.5}Ca_{0.5}CoMnO₆ double perovskite. J. Magn. Magn. Mater. 428, 86–91. https://doi.org/10.1016/j.jmmm.2016.12.018 (2017).
- Blasco, J. et al. Magnetoelectric and structural properties of Y₂CoMnO₆; the role of antisite defects. Phys. Rev. B 93, 214401. https:// doi.org/10.1103/PhysRevB.93.214401 (2016).
- Blasco, J. et al. Magnetic order and magnetoelectric properties of R₂CoMnO₆ perovskites (R=Ho, Tm, Yb, and Lu). Phys. Rev. B 96, 024409. https://doi.org/10.1103/PhysRevB.96.024409 (2017).
- Kim, M. K. et al. Strong magnetoelectric coupling in mixed ferrimagnetic-multiferroic phases of a double perovskite. Sci. Rep. 9, 5456. https://doi.org/10.1038/s41598-019-41990-9 (2019).
- Dass, R. I. & Goodenough, J. B. Multiple magnetic phases of La2CoMnO_{6-δ} (0<δ<0.05). Phys. Rev. B 67, 014401. https://doi.org/ 10.1103/PhysRevB.67.014401 (2003).
- Khomchenko, V. A. et al. Metamagnetic behaviour in TbCo_{0.5}Mn_{0.5}O_{3.06} perovskite. J. Phys. Condens. Matter 18, 9541–9548. https:// doi.org/10.1088/0953-8984/18/42/001 (2006).
- Vasiliev, A. N. *et al.* Valence states and metamagnetic phase transition in partially B-site-disordered perovskite EuMn_{0.5}Co_{0.5}O₃. *Phys. Rev. B* 77, 104442. https://doi.org/10.1103/PhysRevB.77.104442 (2008).
- Madhogaria, R. P. et al. Evidence of long-range ferromagnetic order and spin frustration effects in the double perovskite La₂CoMnO₆. Phys. Rev. B 99, 104436. https://doi.org/10.1103/PhysRevB.99.104436 (2019).
- Yáñez-Vilar, S. *et al.* Multiferroic behavior in the double-perovskite Lu₂MnCoO₆. *Phys. Rev. B* 84, 134427. https://doi.org/10.1103/ PhysRevB.84.134427 (2011).

- Xin, C. et al. Spin rotation driven ferroelectric polarization with a 180° flop in double-perovskite Lu₂CoMnO₆. RSC Adv. 5, 43432–43439. https://doi.org/10.1039/C5RA03727A (2015).
- Zhang, J. T., Lu, X. M., Yang, X. Q., Wang, J. L. & Zhu, J. S. Origins of ↑↑↓↓ magnetic structure and ferroelectricity in multiferroic Lu₂CoMnO₆. *Phys. Rev. B* 93, 075140. https://doi.org/10.1103/PhysRevB.93.075140 (2016).
- Jia, T., Zeng, Z. & Lin, H. Q. The collinear ↑↑↓↓ magnetism driven ferroelectricity in double-perovskite multiferroics. J. Phys. Conf. Ser. 827, 012005. https://doi.org/10.1088/1742-6596/827/1/012005 (2017).
- Banerjee, A., Sannigrahi, J., Giri, S. & Majumdar, S. Magnetization reversal and inverse exchange bias phenomenon in the ferrimagnetic polycrystalline compound Er₂CoMnO₆. *Phys. Rev. B* 98, 104414. https://doi.org/10.1103/PhysRevB.98.104414 (2018).
- Krishna Murthy, J., Devi Chandrasekhar, K., Mahana, S., Topwal, D. & Venimadhav, A. Giant magnetocaloric effect in Gd₂NiMnO₆ and Gd₂CoMnO₆ ferromagnetic insulators. *J. Phys. D Appl. Phys.* 48, 355001. https://doi.org/10.1088/0022-3727/48/35/355001 (2015).
- Katari, V. *et al.* Effect of annealing environment on low-temperature magnetic and dielectric properties of EuCo_{0.5}Mn_{0.5}O₃. *J. Phys. Chem. C* 118, 17900–17913. https://doi.org/10.1021/jp501654c (2014).
- Troyanchuk, I. O., Bushinsky, M. V., Tereshko, N. V. & Vasiliev, A. N. Causes of the metamagnetism in a disordered EuMn_{0.5}Co_{0.5}O₃ perovskite. J. Exp. Theor. Phys. 126, 811–815. https://doi.org/10.1134/S1063776118050072 (2018).
- Atkinson, D. et al. Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure. Nat. Mater. 2, 85–87. https://doi.org/10.1038/nmat803 (2003).
- 36. Stacey, F. D. Thermally activated ferromagnetic domain wall motion. Aust. J. Chem. 13, 599 (1960).
- 37. Alam, M., Pal, A., Anand, K., Singh, P. & Chatterjee, S. Observation of sharp metamagnetic transition, Griffiths like phase and glassy nature in double perovskite Eu₂CoMnO₆. arXiv preprint https://arxiv.org/abs/1909.12599 (2019).
- Krishnamurthy, J. & Venimadhav, A. Magnetic field-induced metamagnetic, magnetocaloric and pyrocurrent behaviors of Eu₂CoMnO₆. J. Magn. Magn. Mater. 500, 166387. https://doi.org/10.1016/j.jmmm.2019.166387 (2020).
- García, L. M., Bartolomé, J., Lázaro, F. J., de Francisco, C. & Muñoz, J. M. Magnetic disaccommodation phenomena in rare-earth intermetallic compounds. *Phys. Rev. B* 54, 15238–15250. https://doi.org/10.1103/PhysRevB.54.15238 (1996).
- Asaka, T. *et al.* Strong pinning effect and magnetic nanodomain formation by coupling between magnetic and crystallographic domains in the ordered double perovskite Ba₂FeMoO₆. *Phys. Rev. B* **75**, 184440. https://doi.org/10.1103/PhysRevB.75.184440 (2007).
- Pralong, V. et al. Oxygen excess in the "114" cobaltite hexagonal structure: the ferrimagnet CaBaCo₄O_{7.50}. J. Solid State Chem. 184, 2588–2594. https://doi.org/10.1016/j.jssc.2011.07.039 (2011).
- 42. Zapperi, S., Cizeau, P., Durin, G. & Stanley, H. E. Dynamics of a ferromagnetic domain wall: avalanches, depinning transition, and the Barkhausen effect. *Phys. Rev. B* 58, 6353–6366. https://doi.org/10.1103/PhysRevB.58.6353 (1998).
- Nguyen, V. D. et al. Elementary depinning processes of magnetic domain walls under fields and currents. Sci. Rep. 4, 6509. https:// doi.org/10.1038/srep06509 (2014).
- Dass, R. I. & Goodenough, J. B. Itinerant to localized electronic transition in Sr₂FeMo_{1-x}W_xO₆. Phys. Rev. B 63, 064417. https:// doi.org/10.1103/PhysRevB.63.064417 (2001).
- O'Grady, K. & Greaves, S. J. Minor hysteresis loop effects in magnetic materials. J. Magn. Magn. Mater. 138, L233–L236. https:// doi.org/10.1016/0304-8853(94)90043-4 (1994).
- Dobrynin, A. N., Gao, T. R., Dempsey, N. M. & Givord, D. Experimental determination of the magnetization dependent part of the demagnetizing field in hard magnetic materials. *Appl. Phys. Lett.* 97, 192506. https://doi.org/10.1063/1.3514554 (2010).
- Ukleev, V. et al. Stabilization of ε-Fe₂O₃ epitaxial layer on MgO(111)/GaN via an intermediate γ-phase. Phys. Rev. Mater. 3, 094401. https://doi.org/10.1103/PhysRevMaterials.3.094401 (2019).
- Suturin, S. M. et al. Correlation between crystal structure and magnetism in PLD grown epitaxial films of ε-Fe₂O₃ on GaN. Sci. Technol. Adv. Mater. 22, 85–99. https://doi.org/10.1080/14686996.2020.1870870 (2021).
- Salas-Solis, M. C., Aguilera-Granja, F., Cartes, J., Contreras, S. & Vogel, E. E. Axial anisotropic effects in hysteresis of ±J Ising lattices. *Phys. Rev. B* 70, 064404. https://doi.org/10.1103/PhysRevB.70.064404 (2004).
- 50. Wang, J., Liu, Y., Xie, Z. & Ma, Q. In Journal of Physics: Conference Series 65 (IOP Publishing).

Acknowledgements

The work at Yonsei University was supported by the National Research Foundation of Korea (NRF) [grant numbers NRF-2017R1A5A1014862 (SRC program: vdWMRC center), NRF-2019R1A2C2002601, and NRF-2021R1A2C1006375]. HYC was partially supported by the Graduate School of Yonsei University Research Scholarship Grant in 2017. The Work at Kyungpook National University was supported by an NRF grant [grant number NRF-2018K2A9A1A06069211, NRF-2019R1A2C1089017]. The work at Sungkyunkwan University was supported by the Institute for Basic Science (IBS-R011-Y3-2021). AC magnetic susceptibility was measured at the Korea Basic Science Institute, Korea. We would like to thank Editage (www.editage.co.kr) for English language editing.

Author contributions

N.L. and Y.J.C. designed the experiments. H.Y.C. and N.L. synthesized the single crystals. J.H.K. and S.C. performed X-ray diffraction and refined data. N.L., J.H.K., D.G.O., H.J.S., H.Y.C., and Y.J. carried out measurements of physical properties. N.L. and Y.J.C. analyzed the data and prepared the manuscript. All the authors have read and approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-88950-w.

Correspondence and requests for materials should be addressed to Y.J.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021