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Background. Integrase strand transfer inhibitors (InSTIs) are recommended for first-line treatment of persons with human im-
munodeficiency virus (HIV). We identified risk factors, including baseline minor InSTI resistance mutations, for treatment failure 
of InSTI-based regimens.

Methods. We studied time-to-treatment failure and time to viral suppression among 1419 drug-naive patients in the Swiss HIV 
Cohort Study. We performed Cox regression models adjusted for demographic factors, baseline HIV RNA/CD4 cell counts, AIDS-
defining events, and the type of InSTI. In 646 patients with a baseline genotypic resistance test of the integrase, we studied the impact 
of minor integrase resistance mutations.

Results. We observed 121 virological failures during 18 447 person-years of follow-up. A baseline viral load ≥100 000 copies/
mL (multivariable hazard ratio [mHR], 2.2; 95% confidence interval [CI], 1.3–3.6) and an AIDS-defining event (mHR, 1.8; 95% CI. 
1.1–3.0) were associated with treatment failure. CD4 counts between 200 and 500 cells/µL (mHR, 0.5; 95% CI, .3–.8) and >500 cells/
µL (mHR, 0.4; 95% CI, .2–.7) were protective. Time to suppression was shorter in lower viral load strata (mHR, 0.7; 95% CI, .6–.8) 
and in dolutegravir-based therapy (mHR, 1.2; 95% CI, 1.0–1.4). Minor resistance mutations were found at baseline in 104 of 646 
(16%) patients with no effect on treatment outcome.

Conclusions. Factors associated with treatment failure on InSTI-based first-line regimen remained similar to those of older 
treatments, in particular high viral load and low CD4 counts.

Keywords.  HIV; integrase strand transfer inhibitors; drug resistance; minor drug resistance mutations; treatment outcome.

Integrase strand transfer inhibitor (InSTI)–based antiretro-
viral therapies are recommended for first-line treatment of 
most individuals living with human immunodeficiency virus 
type 1 (HIV-1) [1]. These potent combinations achieve sus-
tained virological suppression, and treatment failures are rare. 
Nonetheless, it is important to identify patients with increased 

risk for therapy failure as it jeopardizes the long-term treat-
ment success and facilitates the emergence of drug resistance.

Failure of potent antiretroviral therapy is associated with 
several factors [2, 3]. In phase 3 trials, InSTI-based regimens 
were proven to be at least equally potent as or superior to other 
antiretroviral regimens [4–7]. The second-generation InSTIs 
dolutegravir (DTG) and bictegravir (BIC) have a high potency 
even among individuals with a high viral load or low CD4 count 
at baseline [5, 8–10]. Phase 3 trials showed that baseline plasma 
HIV-RNA did not affect DTG-based therapy; for raltegravir, 
the impact of baseline viral load is discussed controversially 
[8, 11]. Smaller clinical studies that encompassed drug-naive 
and treatment-experienced patients suggested that older age 
[12, 13], lack of adherence [14], origin from a high-prevalence 
country, injection drug use, and a low CD4 count at baseline 
[13] increased the risk for failure of InSTI-based therapy.

Another possible reason for the failure of antiretro-
viral treatment is the presence of pretreatment drug 
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resistance-associated mutations (RAMs), mostly transmitted 
drug resistance mutations (TDRMs) [2, 15, 16]. Although 
large studies did not find a correlation between virological 
failure in drug-naive individuals on InSTIs and the presence 
of TDRMs [17, 18], some case reports suggest otherwise 
[19–21]. In European studies, <1% of drug-naive or recently 
infected individuals had major InSTI mutations [22–26]. 
However, 2%–17.3% had minor RAMs that often occurred as 
polymorphisms of the HIV wild type [22–26]. Although they 
are considered to have little effect on InSTI susceptibility, 
there is lack of research to which extent they affect InSTI-
based treatments [27–29].

Our objective in this study was to identify risk factors for 
treatment failure of InSTI-based combined antiretroviral treat-
ment (cART) in drug-naive individuals living with HIV from 
the Swiss HIV Cohort Study (SHCS) and to assess the impact of 
minor InSTI RAMs on treatment outcome.

METHODS

Study Population and Study Design

We used data from the Swiss HIV Cohorts Study (SHCS) and 
the SHCS drug resistance database. The SHCS is a nationwide, 
multicenter, longitudinal study established in 1988. The SHCS 
population is highly representative as it encompasses 75% of all 
the patients receiving antiretroviral treatment and 69% of the 
people with AIDS living in Switzerland. The drug resistance da-
tabase includes all genotypic resistance tests (GRTs) conducted 
in Switzerland and is linked to the clinical database [30]. The 
SHCS continuously enrolls individuals aged ≥18  years and 
living with HIV independent of the stage and severity of the in-
fection. Data are collected using a structured form at registra-
tion and at the semiannual visits. The ethics committees of all 
participating institutions have approved the SHCS, and written 
informed consent is obtained from all participants [30, 31].

Patient Selection

We included drug-naive individuals living with HIV from the 
SHCS who started an InSTI-based antiretroviral treatment be-
tween 1 January 2006 and 31 December 2018. If the HIV-1 RNA 
load was not measured in a patient after treatment start, that pa-
tient was excluded. To analyze pretreatment resistance patterns, 
we identified patients who received a baseline GRT including 
the integrase using the SHCS drug resistance database.

Definition of Drug Resistance Mutations

Minor and major RAMs were defined based on the 
International Antiviral Society - United States of America 
(IAS-USA) recommendations [32] and the Stanford University 
HIV Drug Resistance Database Version 8.9–1 [33]. The fol-
lowing mutations from the IAS-USA recommendations were 
included: major mutations: T66I, E92Q, G118R, F121Y, G140R, 
Y143CHR, S147G, Q148HKR, N155H, and R263K and minor 

mutations: T66AK, L74M, E92G, T97A, E138AKT, G140ACS, 
and S153FY.

The following RAMs from the HIV Drug Resistance Database 
with a HIVdb score ≥30 were also defined as major mutations: 
E92V, Y143AGK, Q146P, V151L, and N155S. Mutations with 
a penalty score ≥10 and <30 were in addition to the IAS-USA 
recommendations included as minor mutations: H51Y, L74FI, 
E95K, P142T, Q148N, V151I, N155D, E157Q, G163KR, S230R, 
and D232N.

Outcome

Our primary end points were time to viral suppression and time 
to virological failure. The follow-up time was defined as the pe-
riod from the start of the InSTI-based regimen until the end 
of InSTI therapy. Data were censored at the last visit, the end 
of InSTI-based therapy, or at the patient’s death. Data were not 
censored when the patient changed from one InSTI to another 
or when nucleoside reverse-transcriptase inhibitor background 
ART was modified or adapted.

Time to viral suppression was defined as the time from treat-
ment start to the first viral load <50 HIV-1 RNA copies/mL. 
Virological failure was defined as follows: 2 consecutive RNA 
values >50 copies/mL after at least 180 days of continuous treat-
ment, 1 value >50 copies/mL after 180 days of treatment followed 
by treatment change to another drug class, or no viral suppres-
sion <50 copies/mL after more than 180 days of treatment.

Statistical Analyses

We used Stata/SE version 15.1 for statistical analyses. We per-
formed univariable and multivariable Cox regressions to 
identify the effect of baseline characteristics on time to viral 
suppression and time to virological failure. The following fac-
tors were considered: age at therapy start, ethnicity, transmis-
sion risk group, HIV-1 RNA load, CD4 cell count, history of 
an AIDS-defining event at or before treatment start, the type of 
InSTI administered, and the presence of InSTI RAMs. Another 
factor included was the financial independence of the indi-
vidual. Patients whose salary generated more than 50% of their 
income were considered more financially independent than 
those who predominantly relied on other sources for their in-
come, such as unemployment benefits. In the multivariable 
model, factors with a P value <.1 in the univariable model and 
previously described risk factors for treatment outcome (age at 
treatment start, ethnicity, transmission risk group, the type of 
InSTI) were included. Continuous variables were categorized if 
likelihood ratio tests showed significant departure from line-
arity. Levels of self-reported adherence between patients who 
experienced virological failure and those without treatment 
failure were compared using the Pearson χ 2 test. Self-reported 
adherence is assessed every 6  months; the data closest to the 
treatment failure or censoring was chosen [34]. We tested the 
proportional hazard assumption by calculating Schönfeld 
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residuals and by use of graphical procedures. No violations of 
the proportionality hazard assumption were detected. The level 
of significance was considered at P value <.05. To determine 
whether our results differed by the administered InSTI, we per-
formed additional analyses where we stratified by the type of 
InSTI. Additionally, we studied the subgroup of patients with 
a baseline viral load >100 000 HIV-1 RNA copies/mL in detail.

RESULTS

Study Population

We identified 1472 drug-naive individuals living with HIV-1 
who started an InSTI-based cART (Figure  1). We excluded  
4 (0.3%) patients, as follow-up data were not available and  
49 (3%) patients because of missing HIV-1 RNA values. Thus, 1419 
of 1472 (96%) patients were included for study time to virological 
failure and 1389 (94%) for study time to viral suppression. The 
InSTI most often administered was DTG (n = 925, 65%) followed 
by EVG (n = 281, 20%) and RGV (n = 213, 15%). None of the 

participants received BIC, which was introduced in Switzerland in 
2018. Table 1 shows the baseline characteristics of our study popu-
lation. Of the 1419 individuals in our study, 646 (45%) had a base-
line GRT including the integrase performed and 378 (27%) had a 
baseline viral load ≥100 000 HIV-1 RNA copies/mL.

Time to Virological Failure

During the 18 447 person-years of follow-up, we observed 121 
virological failures. Twenty-three of 121 patients had a viral load 
>1000 HIV-1 RNA copies/mL at the time of virological failure. 
Nine of 121 patients did not reach viral suppression within 
180  days, and all others failed treatment after having achieved 
viral suppression. Figure 2 and Supplementary Table 1 summa-
rize the results of the multivariable analysis of time to virological 
failure. A hazard ratio (HR) >1 implies more virological failures 
in the analyzed group compared with the reference group.

Among patients with treatment failure, a report of missing at 
least 1 dose of ART in the past month was more frequent (9 of 
121 [7.4%] vs 41 of 1298 [3.6%], P exact = 0.049) than among 
nonfailing patients.

A CD4 cell count at baseline >200 cells/µL was associated 
with fewer failures (<200 cells/µL: reference, 200–500/µL: 
multivariable HR [mHR], 0.5; 95% confidence interval [CI], 
.3–.8 and >500/µL: mHR, 0.4; 95% CI, .2–.7; Figure  3). An 
HIV-1 RNA load ≥100 000 copies/mL was associated with fail-
ures (mHR, 2.2; 95% CI, 1.3–3.6) compared with a viral load 
<10 000 copies/mL (Figure 3). In addition, patients who expe-
rienced an AIDS-defining event had an increased chance for 
failure (mHR, 1.8; 95% CI, 1.1–3.0). The 2 most common AIDS-
defining events were pneumocystis pneumonia and esophageal 
candidiasis, which occurred in 45 (3.2%) and 29 (2.0%) of 1419 
patients, respectively.

A subanalysis showed that the results were comparable 
when the data were censored at the change of any substance 
in the treatment regimen, not only at the end of InSTI-based 
therapy (Supplementary Table 2). The results were similar 
when the Cox regression analysis was restricted to patients on 
DTG (Supplementary Table 3). Baseline HIV-1 RNA ≥100 000 
copies/mL was associated with virological failure (mHR, 2.2; 
95% CI, 1.1–4.4), while a CD4 count >200 cells/µL was protec-
tive (200–500 cells/µL: mHR, 0.4; 95% CI, .2–.8 and >500 cells/
µL: mHR, 0.4; 95% CI, .2–.8).

In the subanalysis that included patients with a baseline viral 
load ≥100  000 copies/mL (Supplementary Table 4), only the 
CD4 count at baseline affected treatment outcome. Patients 
with at least 200 CD4 cells/µL had a lower chance for failure 
than those with <200 cells/µL (200–500 cells/µL: mHR, 0.3; 95% 
CI, .2–.6 and >500 cells/µL: mHR, 0.2; 95% CI, .05–.6).

Time to Viral Suppression

Median (interquartile range) time to viral suppression was 
50 days (29–107), and the median time between 2 HIV-1 RNA 

Figure 1. Flow diagram of study inclusion. Abbreviations: cART, combined an-
tiretroviral therapy; DTG, dolutegravir; GRT, genotypic resistance test; HIV, human 
immunodeficiency virus; InSTI, integrase strand transfer inhibitor.
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measurements in the first year was 10.4 weeks (8.5–13.0). Figure 2 
and Supplementary Table 1 show the results of the analysis 
for time to viral suppression. An HR >1 implies a shorter time 
to viral suppression in the analyzed group compared with the 
reference group.

A viral load ≥10  000 copies/mL at baseline was associated 
with longer time to suppression compared with a viral load 
<10 000 copies/mL (10 000–99 999 copies/mL: mHR, 0.7; 95% 
CI, .6–.8 and ≥100  000 copies/mL: mHR, 0.5; 95% CI, .4–.6; 

Figure 3). Patients on a first-line therapy with DTG (mHR, 1.2; 
95% CI, 1.0–1.4) and financially independent patients had a 
shorter time to viral suppression (mHR, 1.6; 95% CI, 1.1–2.4).

Among patients with an HIV-1 RNA load ≥100 000 copies/
mL at baseline, time to viral suppression was shorter with a 
baseline CD4 count >500 copies/µL (mHR, 1.5; 95% CI, 1.0–
2.2). Time to suppression was also shorter under a first-line 
therapy with DTG (mHR, 1.7; 95% CI, 1.2–2.3) than under 
therapy with other InSTIs.

Table 1. Baseline Characteristics of the Study Population

Baseline Characteristic
All Patients, 

n = 1419
Patients With a Genotypic 
Resistance Test, n = 646

No Minor InSTI Mu-
tation, n =  542

≥1 Minor InSTI 
Mutation, n = 104 

Median (IQR) age at start of combined 
antiretroviral treatment, years

39 (31–49) 38 (30–49) 38 (30–49) 37 (31–47.5)

Sex (%)     

 Male 1176 (82.9) 539 (83.4) 457 (84.3) 82 (78.9)

 Female 243 (17.1) 107 (16.6) 85 (15.7) 22 (21.2)

Ethnicity (%)     

 White 1096 (77.2) 508 (78.6) 425 (78.4) 83 (79.8)

 Black 168 (11.8) 63 (9.8) 47 (8.7) 16 (15.4)

 Other 155 (10.9) 75 (11.6) 70 (12.9) 5 (4.8)

Transmission category (%)     

 Men who have sex with men 842 (59.4) 402 (62.2) 335 (61.8) 67 (64.4)

 Heterosexual males 241 (17.0) 99 (15.3) 89 (16.4) 10 (9.6)

 Heterosexual females 195 (13.7) 91 (14.1) 71 (13.1) 20 (19.2)

 Intravenous drug users 59 (4.2) 22 (3.3) 17 (3.1) 4 (3.9)

 Other 82 (5.8)) 33 (5.1) 30 (5.5) 3 (2.9) 

Subtype (%)     

 B 364 (25.7) 364 (56.4) 312 (57.6) 52 (50.0)

 non-B 253 (17.8) 253 (39.2) 204 (37.6) 49 (47.1)

 not available 802 (56.5) 29 (4.5) 26 (4.8) 4 (3.9)

HIV-1 RNA (%),copies/mL     

 <10 000 437 (30.8) 194 (30.0) 161 (29.7) 33 (31.7)

 10 000–99 999 604 (42.6) 260 (40.3) 218 (40.2) 42 (40.4)

 ≥100 000 378 (26.6) 192 (29.7) 163 (30.1) 29 (27.9)

Log median (IQR) HIV-1 RNA copies/mL 4.5 (3.5–5.1) 4.5 (3.7–5.2) 4.5 (3.7–5.2) 4.5 (3.3–5.1) 

CD4 cell count (%),cells/µL     

 <200 281 (19.8) 135 (20.9) 106 (19.6) 29 (27.9)

 200–500 724 (51.0) 306 (47.4) 267 (49.3) 39 (37.5)

 >500 414 (29.2) 205 (31.7) 169 (31.2) 36 (34.6)

Median (IQR) CD4 cells/µL 381 (226–549) 391 (230–551) 391 (238–552) 386 (186–545)  

AIDS-defining event at baseline (%) 125 (8.8) 43 (6.7) 35 (6.5) 8 (7.7)

InSTI administered (%)     

 RGV 213 (15.0) 67 (10.4) 54 (10.0) 13 (12.5)

 EVG 281 (19.8) 124 (19.2) 108 (19.9) 16 (15.4)

 DTG 925 (65.2)  455 (70.4) 380 (70.1) 75 (72.1)

Antiretroviral treatment combinations (%)     

 3TC+ABC+DTG 460 (32.4) 227 (35.1) 198 (36.5) 29 (27.9)

 DTG+ETC+TDF 259 (18.3) 150 (23.2) 120 (22.1) 30 (28.9)

 DTG+ETC+TAF 143 (10.8) 42 (6.5) 34 (6.3) 8 (7.7)

 COB+ETC+EVG+TAF 130 (9.2) 53 (8.2) 47 (8.7) 6 (5.8)

 COB+ETC+EVG+TDF 123 (8.7) 59 (9.1) 50 (9.2) 9 (8.7)

 ETC+RGV+TDF 126 (8.9) 37 (5.7) 30 (5.5) 7 (6.7)

 Other drug combinations 178 (11.8) 78 (12.1) 63 (11.6) 15 (14.4)

Abbreviations: 3TC, lamivudine; ABC, abacavir; COB, cobicistat; DTG, dolutegravir; ETC, emtricitabine; EVG, elvitegravir; HIV, human immunodeficiency virus; InSTI, integrase strand transfer 
inhibitor; IQR, interquartile range; RGV, raltegravir; TAF, tenofovir alafenamide; TDF, tenofovir.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa1614#supplementary-data
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Figure 2. Multivariable Cox regression. Predictors of virological failure (A) and time to viral suppression (B) among drug-naive individuals living with HIV (A: n = 1419,  
B: n = 1389). Abbreviations: BL, baseline; CI, confidence interval; DTG, dolutegravir; EVG, elvitegravir; HIV, human immunodeficiency virus; mHR, multivariable hazard ratio; 
InSTI, integrase strand transfer inhibitor; MSM, men having sex with men; RGV, raltegravir.

Figure 3. Kaplan-Meier curves with time to virological failure and time to suppression comparing patients by the CD4 cell count (A and B) and HIV type 1 RNA copies/mL 
(C and D) at baseline. Abbreviations: CI, confidence interval; HIV, human immunodeficiency virus.
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In the subanalysis that included only patients on DTG, time 
to viral suppression was increased in individuals with a viral 
load ≥10 000 copies/mL (10 000–99 999 copies/mL: mHR, 0.8; 
95% CI, .7–.9 and ≥100  000 copies/mL: mHR, 0.6; 95% CI, 
.4–.7) and was decreased in financially independent patients 
(mHR, 1.7; 95% CI, 1.1–2.6).

Across the analyses, other demographic factors and the 
mode of transmission were not significantly associated with the 
virologic outcome.

Impact of InSTI Resistance Associated With Minor Mutations at Baseline

Among 646 patients with a pretreatment GRT, no one had major 
mutations. We detected minor mutations in 104 (16%) patients. 
The most common mutations were L74I (n = 65, 8.6%), V151I 
(n  =  14, 1.9%), and E157Q (n  =  14, 1.6%). All other RAMs 
were present in <1.6% of the cases (see Supplementary Table 
5). The highest prevalence of L74I was found among subtype 
A (14 of 24 patients, 41.2%) and subtype G (5 of 12 patients, 
41.7%) infections. L74I occurred among 30 of 364 (8.2%) of 
subtype B infections. We did not observe an effect of the pres-
ence of minor InSTI RAMs on both therapeutic outcomes 
studied (time to failure: mHR, 0.9; 95% CI, .4–1.9 and time to 
suppression: mHR, 1.0; 95% CI, .8–1.2; Figure 4). Most of the 
other risk factors found to correlate with the outcome in the pri-
mary analysis affected the therapeutic outcome in the subgroup 
(Supplementary Table 6).

DISCUSSION

To our knowledge, this is the first observational study to analyze 
the risk factors for failing InSTI-based therapy in drug-naive in-
dividuals living with HIV-1, including minor integrase RAMs.

In general, response to InSTI-based first-line treatment of drug-
naive patients was excellent. Nevertheless, a high viral load and/or 
a low CD4 count at baseline were associated with more treatment 
failures and shorter time to suppression. Among patients who 

presented with a baseline viral load ≥10  000 copies/mL, DTG 
therapy showed a superior activity in decreasing the time to viral 
suppression than other InSTIs studied. The superiority of DTG 
over first-generation InSTIs and other antiretroviral drugs in the 
treatment of drug-naive patients with a high viral load has been 
shown in various randomized, controlled studies [4–7]. However, 
contrary to the findings in those trials, high viral load/low CD4 
count at baseline also jeopardized treatment success among parti-
cipants on DTG in our study. These findings are in line with the New 
Antiretroviral and Monitoring Strategies in HIV-Infected Adults in 
Low-Income Countries (NAMSAL) and ADVANCE trials, which 
found evidence that treatment success while on DTG is impaired 
among patients with a baseline viral >100 000 copies/mL [35, 36]. 
Transmitted and acquired nonnucleoside reverse-transcriptase 
inhibitor drug resistances are important drivers to change to DTG 
in resource-limited settings [37]. DTG-based regimens are highly 
potent and cost-effective treatment options, although weight gain, 
in particular, in women of African origin under DTG even more 
aggravated with TAF-based regimens was described [32, 36].  
Nevertheless, taken together in resource-limited settings where 
frequent RNA monitoring is difficult, a first-line therapy with 
DTG might be safer and more reliable in patients who present 
with high baseline viral loads.

The presence of minor InSTI RAMs at baseline was not as-
sociated with worse outcome. Many of the minor RAMs we 
detected were present as polymorphisms even before InSTIs 
were introduced into the clinical routine in Europe [38]. 
L74I and V151I are polymorphic mutations. L74I was most 
common among subtype A and G infections [39]. E157Q is 
a common polymorphic mutation. Other large, randomized, 
controlled trials also found that InSTIs are effective among 
patients who carry E157Q mutant viruses [35]. All the other 
mutations we found, including T97A, are known to decrease 
InSTI susceptibility in combination with other mutations 
[40], which were not present in our patients. Hence, although 

Figure 4. Kaplan-Meier curves with time to virological failure and time to suppression comparing patients with and without minor integrase strand transfer inhibitor 
resistance-associated mutations. Abbreviations: CI, confidence interval.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa1614#supplementary-data
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pretreatment of minor InSTI RAMs is common among 
drug-naive individuals living with HIV-1 in Switzerland, it 
is reassuring that their presence does not affect treatment 
outcome.

Across all analyses, time to viral suppression was shorter if 
patients were financially independent. There was a trend that 
suggests that older age at treatment start also decreased the risk 
for failure and the time to suppression. These findings might be 
explained by better adherence in patients with more favorable 
social conditions and in older patients [41]. In the absence of 
RAMs, nonadherence to therapy has been shown to be the most 
common reason for treatment failure [3]. The proportion of pa-
tients who reported decreased adherence in our study was also 
significantly higher in the group that experienced failure. These 
results show that disparities that arise from demographic and 
economic factors in conjunction with presumably lower adher-
ence remain relevant even in a cohort that is subject to regular 
follow-up, is based in a high-income country with universal 
healthcare access, and for participants being treated with the 
most potent drug classes.

Although the SHCS is highly representative and a consid-
erable number of drug-naive participants had an integrase re-
sistance test available, the number of treatment failures was 
small, which may impair the study’s statistical power. We used a 
cutoff of 50 copies of RNA/mL to define a virological failure; the 
number of events was too small for multivariable analyses when 
we chose a cutoff of 200 or 500 RNA copies/mL. Furthermore, 
we had predominantly male White participants, which limited 
the generalization of these findings to a more diverse group.

CONCLUSIONS

Many of the risk factors commonly associated with therapeutic 
failure such as the severity of immunodeficiency, stage of the 
disease, and financial situation, were still relevant despite the 
potency of InSTIs. The chance for virological failure was con-
sistently associated with the baseline viral load and the CD4 
count, even in patients on DTG.
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