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Medical image segmentation is one of the hot issues in the related area of image processing. Precise segmentation for medical
images is a vital guarantee for follow-up treatment. At present, however, low gray contrast and blurred tissue boundaries are
common in medical images, and the segmentation accuracy of medical images cannot be effectively improved. Especially, deep
learning methods need more training samples, which lead to time-consuming process. Therefore, we propose a novelty model for
medical image segmentation based on deep multiscale convolutional neural network (CNN) in this article. First, we extract the
region of interest from the raw medical images. Then, data augmentation is operated to acquire more training datasets. Our
proposed method contains three models: encoder, U-net, and decoder. Encoder is mainly responsible for feature extraction of 2D
image slice. The U-net cascades the features of each block of the encoder with those obtained by deconvolution in the decoder
under different scales. The decoding is mainly responsible for the upsampling of the feature graph after feature extraction of each
group. Simulation results show that the newmethod can boost the segmentation accuracy. And, it has strong robustness compared
with other segmentation methods.

1. Introduction

Medical imaging makes a critical difference in clinical di-
agnosis [1–3]. Recently, with the progress of medical im-
aging technology and the continuous development of
artificial intelligence image processing, medical image
processing technology has gradually developed into a key
research field. It is vital in clinical application. The aim of
medical image segmentation technology is to segment the
interested part by some deep automatic segmentation al-
gorithms and make the segmentation results as close as
possible to the original structure of the region [4]. Seg-
mentation of medical image has big significance in clinical
diagnosis and pathological diagnosis. Measuring lesion
volume with segmented images can assist doctors to de-
termine the disease and make treatment plans [5].

Medical imaging segmentation (MIS) is an indispensable
stage in ROI (region of interest) extraction, quantitative
analysis, and 2D reconstruction. The images will be seg-
mented with the same or similar features (such as intensity,

color, and texture) into separated areas, particularly to ex-
tract the lesion areas with special meanings or other regions
of interest (ROI) from the complex background, so as to
provide basis for clinical analysis [6]. Magnetic Resonance
Imaging (MRI) uses the principle of nuclear magnetic
resonance, which not only has high soft tissue resolution but
also provides rich and high-resolution three-dimensional
brain tissue information. Therefore, how to segment the
medical images accurately in MRI images is becoming a
challenging task in medical image research [7].

Through the analysis of research status, we summarize
three kinds of traditional MIS methods: (1) manual seg-
mentation method, which is tedious, excessive labor, sub-
jective, prone to error, and not suitable for large-scale
research [8]; (2) semiautomatic segmentation method,
which requires accurate control of prior parameters and
consumes much time in the process of parameter tuning [9];
(3) the traditional segmentation methods such as graph-
based, deformation model, and active appearance model
[10–12], which is based on simple registration method.
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However, due to the differences between the hippocampus,
in terms of the segmentation efficiency and accuracy, a
simple registration method is still not ideal.

Currently, deep learning has attracted more attention,
and the model based on deep CNN and its variants have
been diffusely used in various fields of medical image
processing and also achieved better results [13–15]. For
example, Cha [16] presented MR brain image automatic
segmentation method using a CNN network. The method
was independent on explicit features only requiring a single
MR (magnetic resonance) image. Lu et al. [17] used two-
dimensional convolutional neural network to evaluate the
segmentation of electron microscope images. Zhang et al.
[18] adopted deep CNN to evaluate the segmentation of
multimodal brain images. Although the models based on
CNN have obtained better performance, these methods
have a common problem, namely, all networks take image
block as input, due to a large amount of overlapping image
blocks, the redundant computation will increase the time
cost for testing the network, and the image block size will
influence the capability of the trained network. To solve the
problem of image segmentation, many researchers have
come up with many approaches based on the fully con-
volutional network (FCN) model to remedy limitations of
image segmentation. FCN can take the entire image as the
input of the network and generate the corresponding
output of the whole image, thus avoiding the problems
caused by the use of image blocks. However, it had low
efficiency. So, a deep multiscale CNN model is put forward
for medical image segmentation. The major contributions
are illustrated as follows:

(1) First, we extract the regions of interest from the raw
medical images. Then, the data augmentation is
operated to obtain more training dataset. The en-
coder, U-net, and decoder models are used for
constructing our proposed segment framework.

(2) Encoder is mainly responsible for feature extraction
of 2D image slice.

(3) In different scales of the decoder, it will acquire the
features of each encoder’s block by deconvolution
operation, and then the U-net joins them together.

(4) The decoding is mainly responsible for the upsam-
pling of the feature graph after feature extraction of
each group.

This paper is originated as follows. In Section 2, related
works are introduced for the image segmentation. Section 3
describes the proposed DMCNN in detail. In Section 4, we
conduct experiments and give analysis. Section 5 concludes
the work.

2. Related Works

2.1. Inception Model. In order to make the convolutional
neural network have better learning ability, the most direct
and effective method is to make the network layer deeper.
However, there are some disadvantages in this operation: (1)
if the training number and dataset are limited, more

parameters will easily lead to overfitting; (2) if the network is
larger, it is hard to utilize due to the greater endless com-
putation; (3) the deeper the network is, the gradient will
disappear, which leads to the diffusion of gradient. Under
this situation, it is difficult to optimize the network model.
Inception v1 is proposed in 2014 [19], the convolution layer
of 1× 1, 3× 3, and 5× 5, and pooling layer of 3× 3 are stacked
together, which increases the width of the network and also
enhances the adaptability of the network in terms of the
scale. This operation can extract features from different
scales. An important improvement in Inception v31 is de-
composition, the two-dimensional convolution of N×N is
divided into two-dimensional convolutions of 1×N and
N× 1. The advantage of this method is that it can not only
accelerate the computation but also increase the nonlinearity
of the network.

2.2. Batch Normalization. BN aims to add a standardized
processing for the input data of each layer in the training
process of neural network, which also belongs to the network
layer. Previously, we mentioned that in addition to the
output layer of the network, the parameters of the lower
layer of the network are updated during the training, which
caused the change of the distribution of the input data in the
latter layer. In each layer, it is better to add a preprocessing
operation. For example, the data in the third layer of net-
work are normalized. Then, it inputs the third layer for
calculation, so that we can solve the problem of “Internal
Covariate Shift” [20–22]. By introducing batch standardi-
zation method, the network’s convergence speed will be
greatly increased. The overfitting can also be controlled. The
dropout and regularization operation will be realized with
little utilization.

2.3. End-To-End Models and Jump Connections.
Compared to the traditional image block-based convolu-
tional neural network model, the end-to-end model utilizes
the entire image as input. The entire image will be generated
as output [23, 24]. The image block-based model needs to
foretell each size of pixel in the slice separately. Therefore,
the end-to-end model adopted in this paper can evidently
decrease the time consumption when segmenting images.
Generally, end-to-end models primarily include fully CNN
and faster CNN. It combines the feature maps of different
levels. Unlike FCN, the U-net model adopts jump con-
nection to join the feature information obtained from the
shrinking coding path and the deconvolution operation in
the expanded path together which is favourable for
obtaining multiscale feature information to strengthen the
network’s feature extraction ability.

3. Proposed DMCNN

3.1. Data Preprocessing. For the acquired medical images,
the region of interest should be extracted and preprocessed
to serve as the samples for training and testing the network.
After that, gray level regularization is carried out on all
acquired ROIs. And, the mean and SD (standard deviation)
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are measured. The gray level regularization is assessed by
subtracting mean value and dividing by SD. In the subse-
quent training and testing process, the extracted images are
transported into the network model as samples, and the
extracted region is shown in Figure 1. For example, the size
of the raw image is 256× 256, and after ROI extraction, we
get the 128×128 patch and input it into network for
training.

3.2. Data Extension. Since labeled public medical image
datasets are little online and they are inconvenient to use,
training a deep CNN model is troublesome [25]. In our
proposed model, we first adopt some newest data argu-
mentation methods to expand the raw data in order to in-
crease the number of available training samples. In this paper,
five data expansion methods are adopted including vertical
direction reversal, random angle rotation, random transla-
tion, horizontal direction reversal, and image deformation.
Figure 2 shows an example of the image expansion.

3.3. Proposed Network Model. To raise the accuracy of
medical image segmentation, spatial information of images
and relevant information between 2D slices are effectively
utilized. The proposed deep multiscale convolutional neural
network model contains three parts: encoder, U-net, and
decoder as shown in Figure 3.

3.3.1. Encoder. It is mainly responsible for feature extraction
of 2D slices, whose network structure is shown in Figure 4.
Small convolution kernel in convolutional network is
conducive to capturing local information, while large con-
volution kernel is conducive to capturing global informa-
tion. However, ROIs are different in 2D slices, and it is
difficult to select an accurate and universal convolution
kernel. For this purpose, we use three different convolution
layers (1× 1, 3× 3, 5× 5) to extract information of multiple
scales in Inception V1, which can extract more features.
Additionally, to reduce the amount of computation,
asymmetric convolution kernel is used in this experiment to
decompose theN×N two-dimensional convolution into two
one-dimensional convolutions with 1×N and N× 1.

Meanwhile, to expand the receptive field of convolution
and perfectly obtain multiscale information without in-
creasing the size of parameters, this paper adds dilated
convolutions with expansion coefficients of 2 and 4, re-
spectively. For an ordinary convolution layer of 3× 3, the
receptive field of its convolution kernel is 3× 3. In this paper,
after the employment of dilated convolution (DC), the size
of parameters remains unchanged, but the receptive field of
the convolution kernel becomes 7× 7 and 15×15. It can be
seen that DC greatly increases the receptive field of the
convolution layer without increasing parameters number.
As shown in Figure 4, there are three kinds of dilated
convolution with expansion coefficients of 1, 2, and 4, re-
spectively, in the encoded part, and the receptive fields of the
corresponding convolution kernel are 3× 3, 7× 7 and
15×15, respectively. After using the three receptive fields

with different sizes, it is not only conducive to feature ex-
traction but also conducive to better capturing the patho-
logical area features.

Then, after cascading the feature graphs extracted from
five different convolution layers, we utilize two ordinary 3× 3
convolution layers in feature extraction process. Finally, to
reduce the size of the feature map, it connects a maximum
pooling layer. In Figure 4, the number of channels in each
convolution layer is 16. Considering the convergence of
networks, batch normalization is added behind the convo-
lution layer, and ReLu layer is used as the activation function.

3.3.2. U-Net Model. Figure 5 shows the proposed U-net
network structure employed. The U-net network structure
contains two parts as follows:

(a) Contractile encoder part on the left. It processes
input medical images.

(b) Decoder part on the right. It produces labeled
output.

(c) The skip connection. It can cascade the features of
each block in the encoder. Features are obtained by
deconvolution operation in the decoder.

The U-net model in this paper is displayed as Figure 5.
The proposed entire U-net network consists of twenty-

eight convolution layers. In here, twenty-four convolution
layers are spread over four convolution blocks and four
deconvolution blocks. The contraction encoder in deep
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Figure 1: Extracted ROI.
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Figure 2: Proposed medical image segment model.
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multiscale U-net covers four convolution blocks shown in
left of Figure 4. Each convolutional block contains two
convolutional layers (conv). Each convolutional layer uti-
lizes a 3× 3 convolutional kernel to carry out the convo-
lution. The step size is 1. Synchronously, each convolutional
layer follows a BN layer and a ReLu layer to modify the
network performance. ReLu activation function has sparse
ability, and it can better learn the relatively sparse features
from the effective data dimension and play the role of feature

automatic decoupling. In each convolution block, its first
convolution layer can double feature graphs. The number of
feature graphs will be increased to 64. After four convolution
layers, the number of feature graphs is increased from 64 to
1024. Between each convolution block, the sampling method
of traditional U-net adopts maximum pooling. In this paper,
we use the 2× 2 convolution kernel with step length 2 for
down-conv operation to achieve a convolution block feature
on the image of the sampling operation. Through this down-
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Figure 3: Proposed medical image segment model.
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Figure 4: Encoder structure.
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Figure 5: Deep multiscale U-net model.
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conv operation, the size of feature graph is reduced by half
with iterative deepening, so that the size of input original
image is decreased from 128×128 layer by layer to 8× 8.

The expansion decoder of the U-net model contains
three deconvolution blocks as shown in the right of Figure 6.
The deconvolution up-conv operation adopts the 3× 3
convolution kernel. The step size is 2, and the size of the
feature graph is increased by twice the original size through
the deconvolution operation. This process can recover the
feature graph as the raw input image in the last deconvo-
lution block. Meanwhile, the number of feature graphs is
halved after each deconvolution operation. The feature
graphs obtained by deconvolution are cascaded with the
corresponding feature graphs in the convolution block as the
feature input of the deconvolution block. Two convolution
layers are in each deconvolution block. The 3× 3 convolu-
tion kernel is utilized (the step size is 1). The first convo-
lution layer will reduce the number of feature graphs by half
after every cascading. Not exactly the same as the original
U-net structure, the presented U-net structure is filled with
zero filler in each convolution layer. According to formula
(1), the output size of the deep multiscale CNNmodel can be
guaranteed to be consistent with the input image data size by
using zero padding:

Ioutput �
Iinput − F + 2P 

S + 1
, (1)

where Iinput and Ioutput are on behalf of the input and output
images’ size in DMCNN, respectively. F represents the
convolution kernel with size 3× 3. P denotes the fill size with
1× 1. S� 1 stands for step size in this paper.

At the end of the proposed U-net model in this paper, we
skillfully adopt a convolution layer (whose size is 1× 1) to
lessen the number of feature graphs to 1. The final output
will be disposed by the Sigmoid function. We can obtain the
value of each pixel between 0 and 1. The lesion area is a
probability distribution. Through the above processing, the
final image is considered as the probability graph of
DMCNN. The value corresponding to each pixel indicates
the probability that the point belongs to the lesion.

3.3.3. Decoding Part. It is mainly responsible for upsam-
pling the feature graph after extracting each group feature,
and the structure is shown in Figure 7. The decoder section
contains one deconvolution layer and one convolution layer.
Both deconvolution and convolution have batch-normali-
zation and ReLu. After the upsampling, the feature graph
becomes the same resolution as the input image. Finally, the
final segmentation result is obtained by softmax classifier to
analyze the end-to-end segmentation.

3.4. Loss Function. Different from the commonly used pixel
point-based softmax loss function [26, 27], Dice loss
function is based on region loss function. In medical image
segmentation, Dice index is often used to measure the
overlap rate between the object and the detection area. If the
Dice value is larger, then the overlap degree is higher, and

the segmentation effect is better. However, Dice index
cannot be directly used as a loss function, so we use the
improved Dice function. Dice function is a function that
gives feedback to network parameters after independent
evaluation for each area [28]. The calculation form and
process of Dice function are in good agreement with medical
image segmentation. Therefore, Dice loss function used in
this paper is defined as follows:

Dice(g, p) � 1 −
2vi pigi


v
i p

2
i + g

2
i( 
, (2)

where g stands for the ground truth. p is the predicted value.
v is the number of pixels in each image block. Dice always is
used as a loss function, when comparing the probability
graph with the labeled. The background part whose labeled
value is 0 will not be calculated into the loss to avoid the
situation of unbalanced category and accelerate the con-
vergence of the network and improve the segmentation
accuracy.

4. Results and Discussion

4.1.Dataset andEvaluation Index. The dataset is from ADNI
(Alzheimer’s Disease Neuroimaging Initiative: adni.loni.usc.
edu) [29, 30]. In this advanced researches, 100 groups of
brain MRI images and segmented hippocampal tags are
obtained from ADNI library. From this group, 80 groups are
randomly selected for cross-validation, and the remaining 20
groups are for testing.

To improve the segmentation veracity, this study pre-
processes the data with three steps. First, consider that the
hippocampus only accounts for a small part of the whole
brain MRI image and other parts are invalid areas. The pixel
values in brainMRI are statistically analyzed, and the images
are cropped into 80× 80× 40 including the hippocampus
and the blank area around it. In this way, invalid background
information can be reduced without any influence on the
integrity of valid information. Second, to accelerate the
convergence of the network and consider the inconsistency
of the pixel values of MRI images in ADNI, the mean and SD
methods are utilized to normalize the images. Thirdly,
making allowances for the small number of samples in the
dataset, we enhance the obtainedMRI images by left rotation
and right rotation and finally obtain 400 MRI images.

To accurately reflect the performance differences be-
tween algorithms, we use uniform platform. The hardware
environment of the experiment is NVIDIA GTX1060Ti,
Intel Corei7 processor, and the software environment was
Keras2.2.4. In the experiment, glorot normal distribution
method is used to initialize the weight. The image size is
300× 300 pixel used in this section. Execution environment
is GPU and Geforce GTX 1060. The parameters used in
DMCNN are given in Table 1.

To quantitatively evaluate the performance of the new
approach, dice similarity coefficient (DSC), sensitivity
(SEN), and predictive positivity value (PPV) are selected as
the evaluation indexes for the medical image segmentation
result. They are defined as follows:
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DSC � 2
P∩T
P + T

,

SEN �
P∩T
T

,

PPV �
P∩T
P

,

(3)

where P denotes the lesion region segmented by the pre-
sented algorithm. T expresses the region of Ground truth.
P∩T represents the pixel region of the intersection between
the algorithm’s segmentation region and the true segmen-
tation region.

4.2. Comparative Analysis of Segmentation. In this paper,
100 images before augmentation and 400 images after
augmentation are segmented by the proposed method. The
evaluation indexes in above section are used for evaluation.
The comparison results of DSC, SEN, and PPV are given in
Table 2.

From Table 2, it reveals that data augmentation can
greatly improve the segmentation accuracy. This also fully
proves the importance of datasets in the deep learning model
construction process. The size of the datasets can directly
affect the learning capability of the model.

To verify that DMCNN can effectively capture infor-
mation between slices, we conduct the comparison between
multiscale convolutional neural network and single-scale
CNN in this paper. Other conditions remain unchanged.

Input

Output

Down-conv
Conv + BN +

ReLu

Conv + BN +
ReLu

Conv block

(a)

Input

Output

Conv + BN +
ReLu

Conv + BN +
ReLu

Up-conv block

Up-conv

(b)

Figure 6: Convolution block and Up-convolution block structure.

Input Output

16
16 1

Deconv + BN + ReLu
Conv + BN + ReLu

Figure 7: Decoder structure.

Table 1: Parameters in this experiment.

Learning rate 0.001
Batch size 8
L2 regularization 0.0001

Table 2: Hippocampus segment results with DMCNN.

Images DSC SEN PPV
100 88.37 89.65 89.54
400 90.58 91.92 92.73

Table 3: Hippocampus segment results with DMCNN and single-
scale CNN.

Method DSC SEN PPV
Single-scale CNN 86.54 86.95 87.31
Multiscale CNN 91.26 90.89 91.57

Table 4: Hippocampus segment results with different U-net
models.

Method DSC SEN PPV
U-net 89.26 88.73 89.45
2D U-net 89.65 89.21 90.14
Proposed 91.23 90.87 91.58

Table 5: Hippocampus segment results with different methods.

Method DSC SEN PPV Time
TLWK 84.62 83.17 86.54 11.5 s
MNF 87.13 86.45 87.53 11.8 s
SUSAN 88.62 88.92 89.85 10.2 s
DMCNN 92.54 91.87 92.08 8.5 s
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(a) (b) (c) (d) (e)

Figure 8: Segmentation of hippocampus with different algorithms. (a) Original images of hippocampus with initial seed points (blue).
Results of the (b) TLWK model; (c) MNF method; (d) SUSAN method; (e) DMCNN method.

(a) (b) (c) (d) (e)

Figure 9: Segmentation results: (a) original image; (b) TLWK method; (c) MNF method; (d) SUSAN method; (e) DMCNN method.
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The effectiveness of the proposed model can be observed
from Table 3.

We can see that the segmentation accuracy of DMCNN
is significantly higher than that of single-scale CNN, which
further verifies that DMCNN can better learn more feature
information between slice sequences than single-scale CNN.

Meanwhile, we study the effect of different network
models on experiment results. Two representative seg-
mentation methods including U-net and 2D U-net network
model are compared with our deepmultiscale U-net given in
Table 4. The segmentation accuracy obtained by the
DMCNN method is higher than that of the other two
methods, indicating that it can extract features more effi-
ciently and improve the segmentation accuracy.

Compared with the multiple groups of up- and down-
sampling layers in U-net and 2D U-net networks, the
proposed network model only contains one up- and
downsampling layer, which greatly reduces the size of the
parameters. The number of parameters of the encoding part
and decoding part is below 5000, which significantly reduces
the computation time in this article.

We also conduct comparison experiment with state-of-
the-art segment methods including TLWK [31], MNF [32],
and SUSAN [33] on our medical data. The results are given
in Table 5.

TLWK adopted the traditional random forest regression
method, and MNF adopted the multiscale method. They are
all automatic segmentation methods, due to the large gap
between different individuals, and the accuracy and

efficiency of segmentation are often not ideal, which is not as
high as the precision of the automatic segmentation method
in this paper. SUSAN simply improves 2D U-net, so the
results are not very good. In general, the proposed method
combining convolution neural network and multiscale
U-net model is superior to other current methods for
medical image segmentation. And, the time consumption is
shorter than other methods too.

Figures 8–10 are the segmentation comparison results in
terms of hippocampus, retinal blood vessel, sarcoma, and
meningioma.

Given the segmented image, the IoU measure gives the
similarity between the predicted region and the ground truth
region for an object and is defined by following equation:

IoU �
TP

FP + TP + FN
, (4)

where TP, FP, and FN denote the true positive, false positive,
and false negative counts, respectively. The results are given
in Table 6. We can see that the proposed segment method
has the better result.

5. Conclusions

This paper proposes a medical image segmentation method
based on multiscale convolutional neural network. This
method can realize automatic segmentation of medical
images and has high accuracy of segmentation. The CNN
model in this paper not only reduces the amount of com-
putation but also effectively captures multiscale information.
In addition, the use of U-net fully mines the relevant in-
formation between slice sequences. Taking relevant medical
image segmentation as an example, the experimental results
on ADNI database show that the segmentation method in
this paper is superior to other methods. The proposed
method can perform segmentation tasks more easily and
accurately. In the future, studying on deeply deep learning
methods to segment images and applying them into different

(a) (b) (c) (d) (e)

Figure 10: Segmentation results: (a) original image; (b) TLWK method; (c) MNF method; (d) SUSAN method; (e) DMCNN method. The
first row is sarcoma, and the second is meningioma.

Table 6: IoU results with different methods.

Method Hippocampus Retina Sarcoma Meningioma
TLWK 72.48 81.73 75.48 73.69
MNF 78.31 84.56 79.35 78.24
SUSAN 82.37 88.57 82.54 81.53
DMCNN 89.62 90.24 89.66 88.74
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types of images and different practical engineering are
warranted.
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