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Activation of an appropriate innate immune response to bacterial infection is critical to 
limit microbial spread and generate cytokines and chemokines to instruct appropriate 
adaptive immune responses. Recognition of bacteria or bacterial products by pattern 
recognition molecules is crucial to initiate this response. However, it is increasingly clear 
that the context in which this recognition occurs can dictate the quality of the response 
and determine the outcome of an infection. The cross talk established between host and 
pathogen results in profound alterations on cellular homeostasis triggering specific cellu-
lar stress responses. In particular, the highly conserved integrated stress response (ISR) 
has been shown to shape the host response to bacterial pathogens by sensing cellular 
insults resulting from infection and modulating transcription of key genes, translation of 
new proteins and cell autonomous antimicrobial mechanisms such as autophagy. Here, 
we review the growing body of evidence demonstrating a role for the ISR as an integral 
part of the innate immune response to bacterial pathogens.

Keywords: eukaryotic translation initiation factor 2 alpha, cellular stress, bacterial pathogens, heme-regulated 
eiF2α kinase, general control non-derepressible 2, PKR-like eR kinase, PKR

iNTRODUCTiON

Microbial sensing by pattern recognition molecules (PRMs) triggers a robust innate immune 
response with the production of cytokines, chemokines, and antimicrobial factors (1–4). In the 
last decade, the concept that, in addition to microbial-associated molecular patterns recognition 
by PRMs, the host response can be tuned by the recognition of alterations in homeostasis induced 
by pathogens during progression of disease has been established (5–7). Such alterations on cell 
homeostasis allow the host to differentiate pathogenic organisms from those that do not represent 
a threat and, thus, adequate the immune responses to deal with the attack being mounted accord-
ingly. It is interesting that despite the multitude of virulence mechanisms among bacterial species, 
most of them converge to few common “patterns of pathogenesis” that include membrane damage, 
access to the cytosol, disruption of cytoskeleton, and protein aggregation among others (5–10).  
In a sense, these patterns of pathogenesis would align with the concept of danger-associated 
molecular patterns (DAMPs), which are host molecules whose presence indicate that there has 
been tissue damage such as, for example, extracellular ATP or the chromatin-associated protein 
high-mobility group box 1 (11–13). But they are not exactly the same as DAMPs as these are 
molecules that are released as a result of cellular death and that are recognized by receptors on other 
cells whereas patterns of pathogenesis induce alterations of cell homeostasis during infection and 
provides the infected cell with information to mount a more refined response and to adapt and, in 
many cases recover from the insult.

In this context, the cellular mechanisms to sense and respond to stress can be regarded as 
an integral part of the innate immune response. The integrated stress response (ISR), a com-
mon adaptive pathway that eukaryotic cells activate in response to diverse stress stimuli is one 
such mechanism. The core event in this pathway is the phosphorylation of eukaryotic translation 
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FigURe 1 | Integrated stress response (ISR) activation by bacterial pathogenesis patterns. This figure summarizes how cellular damage induced by different 
bacterial species is sensed by one or more eukaryotic translation initiation factor 2 alpha (eIF2α) kinases to activate defense mechanisms and homeostatic 
programs. We intentionally included a simplified representation of pattern recognition molecules (PRMs) recognition of microbes, PAMPs, and danger-associated 
molecular patterns (DAMPs) in all cartoons to strengthen the notion that these system act together to refine the cell response to the infection. (A) Pathogenesis 
pattern: bacterial growth; (B) pathogenesis pattern: membrane damage; (C) pathogenesis pattern: access to cytosol; (D) pathogenesis pattern: cytoskeleton 
disruption and protein aggregation.
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initiation factor 2 alpha (eIF2α) by one or more of four mem-
bers of the eIF2α kinase family (6). The phosphorylation of 
eIF2α results in a marked decrease in global protein synthesis 
accompanied by the induction of selected genes, including the 
transcription factor ATF4, both of which are important to pro-
mote cellular recovery (6, 7, 14). This type of response to stress 
mediated by the eIF2α kinases, parallels those mediated by the 
mTOR pathway or by autophagy in the sense that are highly 
conserved signaling modules that regulate essential metabolic 
circuits, both in homeostatic and stress conditions, from yeast 
to mammals (6, 8, 15). In the context of an infection, the power 
of this type of “sensing system” relies on the fact that it does 
not recognizes pathogens per  se but rather utilizes an ancient 
system that detects cellular stress/damage to sense insults that 
are caused by pathogenic bacteria regardless of its specific 
virulence factors.

In the present review, we focus on the emerging role of the 
ISR on host response to bacterial pathogens, which only recently 
began to be appreciated, in contrast to its well-established role 
in response to viruses. As obligate intracellular pathogens that 
highjack the host cell machinery to produce its own proteins, 
the link between viruses and the ISR is more obvious and more 
generally accepted. The impact of the ISR on viral infections has 
been extensively reviewed elsewhere (16–21). Here, we discuss 
recent data that implicate the ISR as an important component of 
cell autonomous anti-bacterial responses. As an emerging topic, 
there are still many gaps in our understanding of the mecha-
nisms underlying this process but we believe that our current 
knowledge already provides a conceptual framework to work 
with. As much as we tried to bring together evidence of a role 
for ISR in different bacterial infections, this is by no means an 
exhaustive review.
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eiF2α AND eiF2α-KiNASeS

Regulation of translation may be useful to coordinate several 
innate immune functions such as microbial sensing, microbial 
replication control, and induction of inflammatory cytokines. 
Translation shut down can help cells to cope with stress conditions 
and prevent further damage until the insult is gone. However, this 
happens in a context where cells still need to communicate that 
they are under attack in order to prevent infection spread and 
initiate adequate immune responses. Among metabolic sensors, 
eIF2α kinases have major roles in adjusting the protein synthesis 
machinery to enhance translation of mRNAs that are relevant to 
deal with the source of stress, including those induced by PRM 
activation, while shutting down the translation of unrelated pro-
teins (6, 7, 21). This ability to screen and modulate host protein 
synthesis can affect the quality of the innate immune responses 
both at the transcriptional and translational levels. In addition, 
the gene expression program induced during ISR adjusts the 
stress response according to cellular context, nature, and inten-
sity of stress stimuli (6, 7). Finally, although ISR is primarily a 
homeostatic-preserving program by which cells adapt to survive, 
severe and/or long-lasting stress can tip the balance toward cell 
death signaling by regulating the cell autonomous processes of 
autophagy and apoptosis (6, 7, 15).

The eIF2α kinases act as early responders to alterations in 
cellular homeostasis which is mainly due to the fact that these 
proteins are at the same time the sensors of stress and the 
kinases that phosphorylate eIF2α (6, 10, 20, 22). Each kinase 
dimerizes and autophosphorilates for full activation in response 
to distinct environmental and physiological types of stress. 
Double-stranded RNA (dsRNA)-dependent protein kinase 
(PKR) is activated mainly by dsRNA during viral infection 
but also by oxidative and ER stress, growth factor deprivation, 
cytokines, bacterial infections, and ribotoxic stress (23–27). 
Interestingly, caspase activity in the early stages of apoptosis 
was also shown to activate PKR, indicating a role for protein 
synthesis inhibition in apoptosis (28). PKR-like ER kinase 
(PERK) is activated by accumulation of unfolded proteins in 
the ER or perturbations in calcium homeostasis, cellular energy, 
or redox status (29–31). It has also been reported to respond to 
ATP depletion and subsequent sarcoplasmic/ER Ca2+-ATPase 
pump inhibition in the context of glucose deprivation in neu-
ronal cells and in pancreatic β cells (32, 33). Heme-regulated 
eIF2α kinase (HRI) is a sensor for low levels of intracellular 
heme as well as arsenite-induced oxidative stress, heat shock, 
nitric oxide, 26S proteasome inhibition, and osmotic stress 
(34–37). This array of types of stress activate HRI independently 
of heme but require the presence of heat shock proteins HSP90 
and HSP70 (37). General control non-derepressible 2 (GCN2) 
is highly conserved from yeasts to humans and is activated in 
response to amino acid deprivation when it binds to deacylated 
transfer RNAs (tRNAs) via histidyl-tRNA synthetase-related 
domain (38, 39). As one can appreciate, some types of stress can 
potentially activate more than one of these four kinases. Most 
likely, the eIF2α kinases act cooperatively to specifically tune 
cellular responses stress. Of note, all of these kinases have been 
reported to have roles independent of eIF2α phosphorylation 

but here we will focus on the ISR, which signals through  
eIF2α phosphorylation.

The common signaling hub for all the stress stimuli that 
activate ISR is phosphorylation of the subunit α of eIF2 on 
serine 51 (6, 10, 20, 22). eIF2 is constituted by three subunits 
(α, β, and γ). When bound to GTP and Met-tRNAi

Met (initiator 
methionyl-tRNA), eIF2 form a ternary complex that deliv-
ers the initiator tRNA to the 40S ribosomal subunit. eIF2 is 
released from the ribosome bound to a GDP and to be ready for 
another round of translation initiation, the eIF2 complex must 
be recycled back to its active GTP-bound form. The guanine 
nucleotide exchange factor eIF2B exchanges GDP for GTP on 
the γ subunit and maintains the levels of the ternary complex 
available for new rounds of translation. Under a variety of stress 
conditions, however, phosphorylation of the α subunit of eIF2 
at Ser51 blocks general translation initiation, as it converts eIF2 
to a competitive inhibitor of eIF2B by blocking the GDP–GTP 
exchange reaction and reducing the dissociation rate of eIF2 
from eIF2B (6, 40, 41). Phosphorylation of eIF2α leads to a 
global arrest in translation but it does not affect all mRNA tran-
scripts alike. A subset of mRNAs that contain upstream open 
reading frames and often encode proteins that are important 
for stress recovery and re-establishment of homeostasis have 
selective increased translation (6).

One of the genes that are upregulated following eIF2α phos-
phorylation is the transcription factor ATF4. Studies using 
ATF4-deficient mice have shown it has critical roles in the regu-
lation of normal metabolic as well as redox processes such as 
regulation of obesity, glucose homeostasis, energy expenditure, 
and neural plasticity (42–44). Under stress conditions, increased 
ATF4 expression represents a signature of the ISR and is mainly 
due to translational control, as Atf4 is one of those mRNAs that 
have its translation augmented upon eIF2α phosphorylation in 
contrast with the general translational arrest observed for most 
transcripts (6, 45). As a transcription factor, ATF4 can activate 
several transcriptional programs that will ultimately determine 
the cell fate—from cell death to re-establishment of homeosta-
sis. The ability of ATF4 to interact with multiple other transcrip-
tion factors allows it to generate distinct tailored responses to 
different types of cellular stress. Thus, despite ATF4 being a 
master common regulator of ISR, its target genes will be highly 
dependent on stress intensity and cellular context (45–47). For 
example, when acting in combination with ATF3, ATF4 is a 
part of a program that aims to re-establish cellular homeostasis 
and promote survival (48). Conversely, when interacting with 
CHOP, ATF4 promotes cell death following ER stress (49).  
In addition to the interacting partners that cooperate with 
ATF4 to promote transcription of target genes, another set of 
interacting partners prevent ATF4 transcriptional activity as is 
the case for PHD3 during hypoxia and TRIB3 during amino 
acid starvation and ER (50–52).

iSR AND BACTeRiAL iNFeCTiONS

Eukaryotes have evolved in a context of constant interactions with 
prokaryotes and it is clear that the latter have contributed to shape 
those organisms throughout evolution. A human being harbors 
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more than 1,000 bacterial species as part of their microbiota and 
interacts with another incalculable number of bacterial species 
during its lifetime (53). The vast majority of these interactions 
does not result in disease and, in many cases, they are actually 
beneficial to the hosts. However, despite representing less than 1% 
of the total number of estimated bacterial species in our planet, 
pathogenic bacteria still cause millions of deaths every year.

In general, those bacteria that are considered as pathogenic 
are the ones endowed with certain attributes that allow them to 
(1) colonize the host; (2) find a nutritionally compatible niche 
in the host body; (3) avoid, subvert, or circumvent the host 
innate and adaptive immune responses; (4) replicate, using host 
resources; and (5) exit and spread to a new host (54). However, 
even though some bacteria display very well-defined virulence 
attributes, the pathogenic potential of a given bacterium can 
only really be observed upon interaction with its host. The final 
outcome of an infection is never the result of bacterial virulence 
alone but rather a cross talk between the host and the patho-
gen. This complicates the definition of “true pathogen” as the 
same bacterial pathogen can have different impact in different 
individuals. Thus, for the host, it is critical to be able to assess 
the potential threat that a given pathogen represents in order to 
establish an appropriate response.

During a bacterial infection, a multitude of signals exchanged 
by the two organisms establishes a cross talk that will ultimately 
determine the outcome of the infectious process. Many known 
bacterial virulence factors are only synthesized when bacteria go 
through major changes in metabolism in order to adapt to the 
dynamic conditions of the host environment (55). While doing 
that, bacterial pathogens may have profound effects on host cell 
homeostasis that, in turn, trigger cellular stress responses. Bellow, 
we will discuss how the ISR can be triggered by cellular alterations 
caused by bacterial infections and the impact of this response on 
host–pathogen interactions. The data discussed in the next sec-
tions are summarized in Figure 1.

BACTeRiAL gROwTH

The ability to survive and grow inside the host upon infection is 
one of the most common pathogenesis patterns as it represents 
the ability of a given pathogen to scape the host response and 
establish a replicative niche. For the host, being able to differentiate 
growing and dying bacteria, especially in the context of an acute 
infection, is key to mount a proper response. Molecules whose 
presence could indicate bacterial growth include peptidoglycan 
fragments released during bacterial cell division, quorum-
sensing inducers that are produced once the bacterial population 
reaches a certain density and bacterial pyrophosphates such as 
HMB-PP (5, 56–58). Alternatively, instead of direct detection of 
a molecule, bacterial growth sensing could be achieved by sensing 
of altered local levels of cellular nutrients such amino acids or 
oxygen (59–61).

Recently, the definition of PAMPs has been updated to 
allow the classification of those produced specifically by living 
microorganisms, the so-called Vita-PAMPs, and those that 
represent the degradation products of dead microorganisms, 
named PAPMs-postmortem (PAMPs-PM), as two different 
categories that have different biological activities (10, 62). 

Moretti et  al.  (10) has recently identified cyclic-di-adenosine 
monophosphate (c-di-AMP), a second messenger that is 
produced by live Gram-positive bacteria, as a Vita-PAMP. 
The authors show that phagocytes are able to discriminate 
live and dead Listeria innocua by sensing this Vita-PAMP 
through the innate immune sensor stimulator of interferon 
genes resulting in ER stress, PERK and eIF2α phosphoryla-
tion. Subsequently, an autophagic response ensued to sequester 
stressed ER membranes and prevent stress-induced cell death 
while also inducing an IFN-dependent response. Importantly, 
this response was blunted in phagocytes lacking PERK. Finally, 
following L. monocytogenes infection, mice engineered to have 
PERK-deficient macrophages presented lower systemic levels 
of IFN-I and higher bacterial burden on both liver and spleen 
when compared with WT controls. In this model, at a cellular 
level, there was no difference between the response induced by 
live L. innocua, a non-pathogenic bacteria, and live L. monocy
togenes, but there was differences when these were compared 
to dead bacteria. The response to any infection is multilay-
ered and dependent on the interaction of multiple sensing 
systems—each one of these systems provides the cells with 
different information that when combined determine the cells 
response and, ultimately, its fate. In this case, the ISR provided 
the cells with the ability to distinguish live from dead bacteria, 
which is crucial to mount appropriate response even though 
it was not able to differentiate between a pathogenic from a 
non-pathogenic species. Of note, when the authors tested their 
hypothesis in vivo, they used only L monocytogenes, most likely 
because L. innocua would have been readily cleared given its 
lack of virulence and would have not generated any of the 
responses observed against L. monocytogenes. This, once again, 
illustrates how important the context is: in the natural course of 
a real infection, L. innocua would probably have never caused 
the systemic infection that L. monocytogenes does and would 
have not reached circulating phagocytic cells or the liver or 
the spleen. However, when given directly to these cells in vitro, 
it induced the same response that the bacterial species that 
would have encountered these cells during infection. It would 
also be interesting to investigate if this response is restricted to 
phagocytic cells or can occur in other cell types.

A contrasting study showed that PERK activation and IFN-I 
production by myeloid cells during infection with L. monocyto
gens or treatment with the pore-forming toxin LLO is actually 
detrimental to the host. In this model, the PERK pathway is 
amplified by IFN-I resulting in the activation of another eIF2α-
kinase, PKR. This, in turn, served as an amplification loop for 
PERK-signaling leading to excessive ER stress and cell death. 
Consistent with this, mice deficient on CHOP, a pro-apoptotic 
factor that is downstream of PERK, are more resistant to  
L. monocytogenes infection than WT controls (63). This model 
could provide a partial explanation for why mice lacking IFN-I 
receptor have been consistently reported to be more resistant to 
L. monocytogenes than WT mice (64–66).

The opportunistic Gram-negative Pseudomonas aeruginosa 
causes both acute and chronic infections, especially in the 
respiratory tract (31, 67). Its ability to scape or subvert the 
host immune response constitutes its main virulence attribute.  
P. aeruginosa is able to form biofilms, a complex biological system 
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that protects the bacteria from host immune defense mechanisms 
and promotes persistent infection. This bacterium coordinates 
the production of biofilms and other virulence factors using 
quorum sensing, a cell-to-cell communication system that allow 
bacteria to perceive their population density by producing and 
sensing diffusible signal molecules. One of the quorum-sensing 
auto inducers produced by P. aeruginosa to regulate gene expres-
sion and communicate is N-(30oxododecanoyl)-homoserin 
lactone (HSL-C12) (31, 67). HSL-C12 is a lipid-like diffusible 
molecule that has multiple effects on mammalian cells including 
apoptosis and release of Ca2+ from the ER stores. By perturbing 
ER homeostasis, HSL-C12 induces the activation of PERK and 
eIF2α phosphorylation resulting in protein synthesis inhibition 
(31). If in the one hand this inhibition results in increased NF-κB 
activation and transcription of pro-inflammatory genes because 
IκB re-synthesis is blocked, on the other hand it prevents the 
translation into proteins of the transcribed genes resulting in 
an overall downregulation of the host response and, thus, can 
be considered a pathogen scape mechanism. This would be one 
instance where the pathogen evolved to manipulate and take 
advantage of a cell host sensing system.

As mentioned above, nutrient availability is a critical limita-
tion for invading microorganisms. Iron is a nutrient indispen-
sable for growth of almost living organisms and is unlikely to 
be readily available for invading microorganisms resulting in 
fierce competition between host and pathogens (59). Like many 
other bacteria, P. aeruginosa has developed several mechanisms 
to acquire iron during infection. In a recent study, it was demon-
strated that the iron-chelating siderophore pyoverdine produced 
by P. aeruginosa limits the concentration of iron in the cell 
medium resulting in the activation of HRI, eIF2α phosphoryla-
tion, and induction of Gadd34 transcription in human bronchial 
epithelial cells. This response had cytoprotective effect and was 
turned off when the medium was supplemented with iron (61).

These few examples demonstrate that host cells can detect 
growth of bacteria by sensing molecules that accumulate as the 
number of bacteria increase including those that bacteria use 
to communicate with each other, such as quorum-sensing auto 
inducers and second messengers as well as molecules that bacte-
ria use to acquire nutrients.

MeMBRANe iNTegRiTY

The detection of this type of stress is highly conserved. Damage of 
the plasma membrane is an archaic threat that needs to be faced 
with efficient cell autonomous defense mechanisms (5). Recently, 
a pivotal role for GCN2 in the response to membrane damage 
has been uncovered in different models. For example, it has been 
demonstrated that membrane permeabilization by the detergent 
digitonin induces a robust response characterized by GCN2 
phosphorilation and ATF3 expression (68). In Drosophila, the 
damage caused by Pseudomonas entomophila in gut cells induces 
a starvation-like state, resulting in GCN2 and eIF2α phospho-
rylation and concomitant inhibition of the mTOR pathway by the 
AMP-activated kinase (AMPK). In this model, these two stress 
response pathways together shut down translation of new proteins 
and trigger innate immune responses (69).

In mammalian cells, disturbance of membrane integrity 
caused by bacterial pathogens can also trigger stress responses 
(8, 15, 68). Pore-forming toxins represent an important class 
of bacterial exoproducts that can induce membrane damage 
leading to stress responses (70). In human epithelial cells, the 
α-toxin produced by Staphylococcus aureus induces the forma-
tion of pores on cellular membranes resulting in potassium 
efflux, failure of nutrient transport and loss of ATP which, in 
turn, activates both GCN2 and the energy sensor AMPK, with 
subsequent eIF2α phosphorylation and mTORC1 deactivation 
(similar to what was reported in Drosophila) (15, 71). Low intra-
cellular concentrations of potassium is known to trigger several 
responses in infected or stressed cells including the activation 
of inflammasomes and caspases (15, 71), as well as activation 
of multiple kinases such as p38 and CREB, in addition to the 
aforementioned AMPK and GCN2 (71–73). Activation of GCN2 
induced by potassium efflux caused by membrane perforation 
indicates that cells may exploit the dependence of nutrient trans-
port across the plasma membrane on physiological ion gradients 
to indirectly sense perturbations on ion concentration. Both 
removal of the pore from the plasma membrane by dynamin-
dependent endocytosis and the metabolic reprogramming 
activated by the ISR are essential for cellular recovery as cells 
that are not able to activate this program are more susceptible 
to α-toxin (74, 75).

Invasive bacteria such as Salmonella Tiphymurium, Shigella 
flexneri, and Listeria monocytogenes also cause membrane dam-
age during their internalization process. Similar to what was 
described above, all three bacteria trigger an acute intracellular 
amino acid starvation program that induces stress responses 
dependent on GCN2 and eIF2α phosphorylation at the same 
time as it disarms mTOR signaling unleashing an autophagic 
response (8, 68). However, the response that ensues is different 
for these three bacteria. (i) During infection with S. flexneri, a 
Gram-negative bacterium that escapes to and replicates in the 
host cell cytoplasm, amino acid starvation persists up to 4  h 
after infection allowing not only the induction of autophagy but 
also GCN2- and eIF2α-dependent formation of stress granules 
in the cytosol as well as reprogramming of the transcriptional 
response orchestrated by ATF3 (8, 76). (ii) L. monocytogenes, 
a Gram-positive bacterium that similar to S. flexneri escapes 
to and replicates in the cytosol, also triggers a state of amino 
acid starvation characterized by activation of GCN2, eIF2α 
phosphorylation, and transcriptional upregulation of ATF3. 
In this case, however, this response is very transient peaking 
at 1  h and is completely normalized after 4  h post-infection. 
The kinetics of this response parallels the kinetics of the pore-
forming toxin LLO-dependent scape from the internalization 
vacuole and coincides with the maximal targeting of L. mono
cytogenes to autophagosomes (68). (iii) Salmonella, in contrast 
to the bacteria described above, remains in vesicles known as 
Salmonella-containing vacuoles (SCV) after its internalization. 
The damages to the SCV membranes trigger the same GCN2-
dependent early amino acid starvation program described above. 
However, following Salmonella infection membrane integrity 
and cytosolic amino acid concentration are readily normalized 
allowing mTOR to be reactivated at the surface of the SCV and 
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promoting bacterial scape from autophagy (8). Thus, these three 
model invasive bacteria all induce GCN2-dependent ISR during 
their entry processes but each one of them deal with it in different 
ways once again highlighting that bacteria have also evolved to 
counteract ISR-mediated responses.

Adherent-invasive Escherichia coli (AIEC), which is abnor-
mally abundant in the intestinal mucosa of Crohn’s disease 
patients, also induces phosphorylation of GCN2 with subse-
quent eIF2α phosphorylation and increased ATF4 levels. Upon 
activation of this pathway, ATF4 binds to promoters of multiple 
autophagy-related genes including MAP1LC3B, Becn1, SQSTM1, 
ATG3, and ATG7. This is necessary to initiate autophagy and 
restrict bacterial growth as depleting cells from GCN2 resulted in 
impaired autophagy, increased bacterial replication, and elevated 
pro-inflammatory cytokine production both in vitro and in vivo. 
The authors go on to show that the GCN2–eIF2α–ATF4 pathway 
is activated in ileal biopsies from patients with noninflamed 
Crohn’s disease but not on those with inflamed Crohn’s disease, 
indicating that failure to activate this stress response could be 
one of the mechanisms contributing to active disease (77).

Thus, it appears that a nutrient sensor, GCN2, may also func-
tion as a sentinel of membrane integrity and that the responses 
it triggers are essential to prevent abyssal ATP loss and irrevers-
ible damage. In addition, in the case of invasive pathogens, this 
response might affect their ability to replicate within the host cell 
due to increase in autophagic activity as a consequence of amino 
acid starvation as well as production of inflammatory factors 
induced by the stress transcription factors ATF3 and ATF4.

ACCeSS TO CYTOSOL

Many pathogens are able to deliver molecules directly into the 
cytosol of host cell. This may be achieved by AB-toxins when 
the B subunit binds to specific receptors on the surface of the 
cells and translocates the active subunit A into the cell (78), by 
pore-forming toxins such as listeriolysin O (mentioned above) 
and streptolysin O (70), or secretion systems such as the type III 
secretion systems of Yersinia and Salmonella (79), the type IV 
secretion system of Legionella, Coxiella, and Brucella (80), and 
the type VI secretion system of Pseudomonas and Vibrio (81, 82).

Shiga-toxigenic E. coli produces Shiga toxin (Stx) 1 and 2 
that cause hemorrhagic colitis and hemolytic uremic syndrome.  
A newly described toxin, namely subtilase cytotoxin (SubAB), 
was shown to bind to and be internalized by target cells through 
clathrin-, lipid rafts-, and actin-dependent pathways. Once it 
reaches the ER, SubAB cleaves the chaperone Bip/Grp78 initiating 
an ER-stress induced ISR resulting in cytotoxicity. This response 
also included the formation of stress granules induced not only 
by PERK but also as a result of PKR activation (14).

Yang et  al. (83) show that P. aeruginosa infection induces a 
strong activation of the GCN2–eIF2α–ATF4 pathway that is 
largely dependent on production of pyocianin during initial 
infection and that ultimately results in bacterial clearance through 
autophagy. Pyocianin is a cell permeable toxin considered to be a 
major virulence factor for P aeruginosa. In vivo, in rats, infection 
with a mutant bacterial strain that does not produce pyocianin 
and, thus, does not activate of the GCN2–eIF2α–ATF4 pathway 

results in higher number of colony-forming units in the lungs, 
more extensive alveolar wall thickening and higher mortality 
when compared to infection with the WT strain. Although indi-
rect, these data suggest a role for the ISR in preventing prolonged 
infection and immunopathology. Interestingly, reduction of 
pyocianin production by P. aeruginosa in chronic airways infec-
tions has been associated with better host adaptation and worse 
outcomes in cystic fibrosis patients (84).

ACTiN CYTOSKeLeTON DiSRUPTiON

Another common feature employed by various highly divergent 
pathogenic bacterial species is the disruption of the host cell 
cytoskeleton. Invasive bacteria such as S. flexneri, L. monocy
togenes, Mycobacterium marinum, and Rickettsial species exploit 
the actin-based motility to move inside the cell and from one cell 
to the other without never being exposed to immune defenses 
outside the cells (5, 85). Other bacterial pathogens, such as E. coli 
and Citrobacter freundii, produce hallmark attaching and effac-
ing lesions that are characterized by localized destruction of the 
brush border villi of enterocytes, intimate attachment of bacteria 
to the residual apical membrane and formation of a dense plaque 
of actin cytoskeletal filaments beneath adherent bacteria that is 
essential for their pathogenesis (86, 87). Finally, some pathogens 
manipulate host actin cytoskeleton to either induce their own 
uptake or to avoid phagocytosis (88–90).

Polysomes, mRNAs, elongations factors, and aminoacyl-
tRNA synthetases are found associated with actin filaments 
indicating that the cytoskeleton might actually act as a platform 
to facilitate the assembly of components involved translation 
(91–93). GCN2 has been recently implicated as a sensor of 
F-actin depolymerization. Disruption of the actin cytoskeleton 
by drugs such as latruculin-B and cytochalasin-D induces GCN2 
activation followed by eIF2α phosphorylation, attenuation of 
global translation, and augmented ATF4 and CHOP expression 
(94). In nutrient-replete cells, GCN2 is kept in a latent state 
by the interaction with other proteins such as the eukaryotic 
elongation factor 1A (eEF1A) that delivers aminoacyl-tRNAs 
to ribosomes during the elongation step of protein synthesis 
(95, 96). During starvation periods, however, uncharged tRNA 
displaces eEF1A from GCN2 allowing its autophosphorilation 
and eIF2α phosphorylation (97, 98). Another binding partner 
of eEF1A is F-actin. In yeasts, the same mutations that affect 
binding of eEF1A to aminoacyl-tRNAs also result in actin bind-
ing and buding defects that lead to GCN2-dependent eIF2α 
phosphorylation (99, 100). Thus, it has been proposed that upon 
F-actin disruption eEF1A is displaced from GCN2 and bound  
to F-actin leaving GCN2 free to initiate the ISR (94). In addition, 
F-actin disruption also leads to deacylated tRNA accumulation, 
which in turn might also contribute to the activation of GCN2 
resulting in global protein synthesis arrest and reduction of 
amino acylated tRNA levels (94).

As mentioned above, two invasive pathogens—L. monocyto
genes and S. flexneri—that exploit the actin cytoskeleton of the 
cell to move around the cell and infect neighboring cells were 
shown to induce a GCN2-dependent starvation program as a 
consequence of membrane damage. It is possible that disruption 
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of F-actin could impede the proper function of amino acid 
transporters on the plasma membrane triggering this response. In 
summary, infection with L. monocytogenes and S. flexneri could 
potentially activate GCN2 in multiple ways: when bacteria escape 
from the vacuole into the cytosol causing membrane damage (as 
it has been experimentally demonstrated) or by disrupting the 
actin cytoskeleton.

PROTeiN AggRegATiON

Heme-regulated eIF2α kinase is able to sense and respond to a 
variety of types of cellular stress including heme deprivation, 
oxidative stress, heat shock, and proteasome inhibition, all of 
which are known to result in accumulation of misfolded protein 
aggregates in the cytosol (35, 36, 101, 102). As it has been previ-
ously shown that infection with bacterial pathogens trigger the 
formation of large PRM oligomeric complexes in the cytosol, 
one may speculate that this is the common feature among all 
these types of stresses that is actually sensed by HRI (103–106). 
This could serve as a sensing system to monitor misfolding of 
large protein complexes and formation of toxic aggregates in the 
cytosol and trigger damage control mechanisms such as ISR and 
autophagy.

CONCLUDiNg ReMARKS

Even at a single cell level, the response to an infection is multi-
layered and involves sensing, effector, and homeostatic mecha-
nisms. Each one of these elements has, in itself, multiple layers 
of complexity and, together, they generate a full-blown response. 
Sensing of microbes or their products by PRMs is pivotal and 
activates robust inflammatory responses. Since the discovery of 
PRMs, there has been much debate on how the cells can tailor 
the response to specific pathogens using a limited number of 
receptors that recognize structures that are present in many dif-
ferent microorganisms, including non-pathogenic. This can be 
achieved by different means including the combinatorial effect of 
several PRMs (107), the compartmentalization of PRMs that only 
allows recognition of certain PAMPs when presented in specific 
compartments of the cell (108) and the sensing of vita-PAMPs 
versus PAMPs-PM (62). The recognition of pathogenesis patterns 
by the ISR represents another layer in the host response. Sensing 
alterations on homeostasis and cell damaged caused by infection 
can instruct the host to generate a more refined and specific 
response while triggering protective gene expression programs 
that enable cells to recover from the initial stress and re-establish 
homeostasis. Given its origins early on evolution, stress responses 
may actually represent an ancient innate defense mechanism 
against invading pathogens.

In this review, we discussed evidence showing that the ISR can 
have an important role in shaping the autonomous cell response 
to bacteria with varying levels of virulence. In this context, the 
ISR acts in concert with other sensing systems to adequate the 
response to the threat. Thus, the ISR during bacterial infection 
cannot be analyzed isolated from the context. This generates a 
complexity that represents a challenge for dissecting the precise 
role and the relevance of each component in the final response. 

While there are still many gaps to be filled before we have a more 
comprehensive overview, the picture that emerges is that the 
ISR can influence the quality of the response initiated by innate 
immune recognition.

For the most part, the studies discussed in this review show 
that several bacteria are able to activate or manipulate the ISR 
during infection, through different eIF2α kinases and signal-
ing pathways, resulting in specific transcriptional programs. 
However, in many cases, it is yet to be defined how this affects 
the outcome of the infection. In some cases, it is clear that it can 
affect the ensuing immune response. For example, ISR activation 
in phagocytic cells infected by Listeria was shown to be criti-
cal for IFN-I production and bacterial clearance. On the other 
hand, eIF2α phosphorylation induced by the HSL-C12 from 
P. aeruginosa results in downregulation of translation of pro-
inflammatory cytokines such as IL-6 and KC. We believe that 
understanding how the ISR can affect qualitatively the response to 
a given pathogen is a major avenue for future work. In this sense, 
as we progress, it would be important to determine how the ISR 
impact on how cells communicate infection to the neighboring 
cells as well as to immune cells and how this can qualitatively 
affect the immune response, including in subsequent exposures 
to the same pathogen. Finally, it would be interesting to see if the 
homeostatic adaptations during infection can lead to persistent 
alterations in the infected cell rendering it more resistant to fol-
lowing infections.

The interplay between ISR and autophagy is also a common 
theme in most of the studies mentioned here. Interestingly, 
two studies discussed above showed that in the absence of the 
GCN2–eIF2α–ATF4-autophagy pathway, opportunistic bacteria 
such as AIEC and P. aeruginosa establish persistent infection that 
perpetuate inflammation contributing to worsen the pathology in 
Crohn’s disease and cystic fibrosis, respectively. It will interesting 
to investigate how ISR could affect the development of chronic 
complex diseases that are known to have a microbial component 
to it such as the two mentioned above.

As we mentioned above, co-evolution of pathogens and their 
hosts have shaped (and continue to do so) their interactions. 
In this constant arms race, both sides try to adapt in order to 
survive. Thus, it should come as no surprise that some bacteria 
might be able to scape or even take advantage of the ISR to 
manipulate the host cell response. Indeed, being able to subvert 
host responses is part of the very definition of what a pathogen is. 
In this case, failure to activate the ISR properly could lead the host 
to underestimate the infectious threat. As it is well documented 
for several viruses, we expect that as our knowledge increases, 
we will uncover many bacterial strategies to tamper with the ISR.

Because of the significant overlap between the eIF2α kinases in 
addition to the complexity of many host–pathogen interactions, 
at this point, it is difficult to clear define the role of each of the 
ISR sensors in response to bacterial pathogens and most likely a 
combination of them are responsible for an appropriate response. 
Future work will help us understand how these pathways are 
activated and manipulated by bacterial pathogens and how can 
we use this knowledge to develop new treatments to prevent or 
cure infection. For example, if we are able to safely increase the 
signals generated by cells of the innate immunity by manipulating 
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the ISR, we might be able to improve the adaptive immunity 
generated by vaccines.
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