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Background: Although EGFR mutant tumors exhibit low response rates to immune checkpoint blockade overall, some EGFR
mutant tumors do respond to these therapies; however, there is a lack of understanding of the characteristics of EGFR mutant
lung tumors responsive to immune checkpoint blockade.

Patients and methods: We retrospectively analyzed de-identified clinical and molecular data on 171 cases of EGFR mutant
lung tumors treated with immune checkpoint inhibitors from the Yale Cancer Center, Memorial Sloan Kettering Cancer Center,
University of California Los Angeles, and Dana Farber Cancer Institute. A separate cohort of 383 EGFR mutant lung cancer cases
with sequencing data available from the Yale Cancer Center, Memorial Sloan Kettering Cancer Center, and The Cancer Genome
Atlas was compiled to assess the relationship between tumor mutation burden and specific EGFR alterations.

Results: Compared with 212 EGFR wild-type lung cancers, outcomes with programmed cell death 1 or programmed death-
ligand 1 (PD-(L)1) blockade were worse in patients with lung tumors harboring alterations in exon 19 of EGFR (EGFRD19) but
similar for EGFRL858R lung tumors. EGFRT790M status and PD-L1 expression did not impact response or survival outcomes to
immune checkpoint blockade. PD-L1 expression was similar across EGFR alleles. Lung tumors with EGFRD19 alterations harbored
a lower tumor mutation burden compared with EGFRL858R lung tumors despite similar smoking history.

Conclusions: EGFR mutant tumors have generally low response to immune checkpoint inhibitors, but outcomes vary by allele.
Understanding the heterogeneity of EGFR mutant tumors may be informative for establishing the benefits and uses of PD-(L)1
therapies for patients with this disease.
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Introduction

Epidermal growth factor receptor (EGFR) mutant lung cancers

represent a distinct subset of non-small-cell lung cancer

(NSCLC) with broad molecular and clinical heterogeneity.

Recurrent alterations in exons 18–21 are commonly observed [1–

3] and most, but not all, confer sensitivity to EGFR tyrosine

kinase inhibitors (TKIs) [4–6]. Even the most common EGFR

TKI-sensitizing alleles, EGFR L858R (EGFRL858R) and EGFR

exon 19 deletions (EGFRD19), have differences in outcomes with

TKIs [7, 8]. Despite initial responsiveness to EGFR TKIs,

acquired resistance is routine [4, 9–11]. The inevitability of resist-

ance has raised hopes of a role for immune checkpoint inhibitors

(ICIs), with the potential for more durable responses; however,

in contrast to preclinical studies [12], clinical evidence suggests

that EGFR mutant lung cancers rarely derive benefit from treat-

ment with ICIs [13–16]. Rates of positivity for potential predic-

tors of response to ICIs, such as tumor mutation burden (TMB)

and concurrent programed death-ligand 1 (PD-L1) plus CD8þ
tumor infiltrating lymphocyte expression, are low [17]. Yet re-

cent studies have emerged, such as ATLANTIC and IMpower150,

that have shown more encouraging results for PD-(L)1 blockade

in EGFR mutant lung cancers [18, 19].

We hypothesized that the molecularly heterogeneous features

of EGFR mutant lung cancers may provide insight into the out-

comes with ICIs and improve understanding of the determinants

of response in these tumors [20]. To test this, we established a

multi-institutional consortium and examined the molecular and

clinical features of 171 EGFR mutant lung cancer cases treated

with ICIs. A cohort of 212 patients with EGFR wild-type NSCLC

(previously published) treated with ICIs was used for compari-

son. Due to limited sequencing data available for ICI-treated

EGFR mutant cases in this study, we examined a separate cohort

of 383 patients with EGFR mutant lung cancer (irrespective of

treatment history) to examine the relationship between TMB and

EGFR mutation subtype.

Methods

Cohorts of EGFR mutant lung cancers

Following IRB approval at each respective institution, patients with
EGFR mutant lung cancer treated with PD-(L)1 blockade therapy were
identified (Yale Cancer Center n¼ 37, Memorial Sloan Kettering Cancer
Center n¼ 67, University of California Los Angeles n¼ 35, Dana Farber
Cancer Institute n¼ 32). Patients were treated as part of a clinical trial
(n¼ 97; 56.7%) or standard-of-care (n¼ 74; 43.3%). Due to the retro-
spective nature of this study, scan intervals were not uniform between all
patients. Patients were included who received anti-PD-(L)1 alone or in
combination with anti-cytotoxic T-cell lymphocyte-4 (anti-CTLA-4),
and this treatment was their first exposure to ICIs. In a subset of patients
(n=15), ICIs were added to continuation of EGFR TKIs at TKI resistance.
In EGFRL858R and EGFRD19 cases treated with ICIs before EGFR TKIs,
this was due to the absence of information regarding their EGFR alter-
ation at the time of treatment (n¼ 7), because the patient was enrolled
on a specific clinical trial (n¼ 1) or because the tumor had a baseline
EGFRT790M mutation and was treated with anti-PD-1 plus anti-CTLA-4
therapy (n¼ 1). TMB was studied in data from a cohort of 383 patients
with EGFR mutant lung cancer, irrespective of treatment exposure, col-
lected from three sources: (i) The Cancer Genome Atlas (n¼ 53), (ii)

Yale University (n¼ 17), and (iii) Memorial Sloan Kettering Cancer
Center (n¼ 313). TMB was calculated as the total number of non-
synonymous mutations divided by the coding region captured for each
individual platform (see supplementary Methods, available at Annals of
Oncology online).

Results

Distinct EGFR subtypes have different outcomes
with immune checkpoint blockade

We investigated the impact of varying EGFR alleles on outcomes

with ICIs (anti-PD-1 or anti-PD-L1, with or without CTLA-4

blockade) in our cohort of 171 EGFR mutant cases from four

institutions (Table 1), focusing particularly on those 126 patients

with tumors with the two most common EGFR mutation sub-

types [EGFRL858R (n¼ 46) or EGFRD19 (n¼ 80)] (supplementary

Figure S1, available at Annals of Oncology online). These cases

were evaluated and compared with 212 patients with EGFR wild-

type (WT) NSCLC treated with ICIs [21]. EGFRD19 tumors had a

significantly lower overall response rate (ORR) compared with

EGFR WT tumors (5 of 76, 7% versus 47 of 212, 22%, respective-

ly, P¼ 0.002), whereas EGFRL858R tumors had similar response

rates compared with EGFR WT tumors (7 of 44, 16%, versus 47

of 212, 22%, respectively, P¼ 0.42) (Figure 1A). Progression-free

survival (PFS) was significantly reduced in both EGFRD19 [(WT

versus EGFRD19) HR (hazard ratio) 0.449, 95% CI (confidence

interval) 0.338–0.595, log-rank P< 0.001] and EGFRL858R [(WT

versus EGFRL858R) HR 0.578, 95% CI 0.412–0.811, log-rank

P¼ 0.001] subtypes compared with EGFR WT (Figure 1B).

Overall survival (OS) in the EGFRD19 group was reduced whereas

EGFRL858R tumors had similar OS compared with the EGFR WT

subgroup (HR 0.69, 95% CI 0.493–0.965, log-rank P¼ 0.03; HR

0.917, 95% CI 0.597–1.409, log-rank P¼ 0.69, respectively)

(Figure 1C). Overall, these data suggest that patients with

EGFRD19 mutant tumors, in particular, have a significantly

reduced benefit of treatment with ICIs.

Clinicopathologic features associated with
outcomes in EGFR mutant lung cancers

We examined the effect of clinical and pathologic features on re-

sponse to ICIs in patients with EGFRL858R and EGFRD19 mutant

lung cancers. ORR, PFS, and OS were all significantly improved

in patients who had received 0–2 prior lines of therapy compared

with those with 3þ lines of therapy (ORR: 9 of 47, 19%, versus 3

versus 73, 4%, P¼ 0.01) (PFS: HR 2.267, 95% CI 1.499–3.427,

log-rank P< 0.001) (OS: HR 1.845, 95% CI 1.204–2.826, log-

rank P¼ 0.004) (Figure 2A–C). When examined independently,

this difference in survival was statistically significant in the

EGFRD19 cohort but not within the EGFRL858R group

(supplementary Figure S2A–F, available at Annals of Oncology

online). Smoking history was assessed in patients with EGFRL858R

and EGFRD19 mutant lung cancers and positively associated with

response rate (P¼ 0.01), but not significantly for PFS or OS out-

comes (log-rank P¼ 0.06, P¼ 0.23, respectively). Among

patients with tumors resistant to EGFR TKIs, the presence or ab-

sence of EGFRT790M had no impact on the benefit from treatment
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with ICIs (Figure 2D–F), irrespective of EGFR allele

(supplementary Figure S3, available at Annals of Oncology

online).

We also evaluated whether tumor PD-L1 expression was asso-

ciated with response to ICIs in 73 cases for which staining was

available. First, we observed in agreement with published litera-

ture [22], that there was no difference in PD-L1 expression by

EGFR allele (supplementary Figure S4A, available at Annals of

Oncology online). We also noted that PD-L1 expression did not

correlate to smoking status in EGFR mutant cases. There was no

association between the efficacy of ICIs in tumors with �1% or

<1% PD-L1 positive staining (ORR: 3 of 23, 13%, versus 4 of 28,

14%, P> 0.99) (PFS: HR 1.370, 95% CI 0.761–2.466, log-rank

P¼ 0.29) (OS: HR 1.747, 95% CI 0.913–3.342, log-rank

P¼ 0.084) in EGFRD19 and EGFRL858R cases (Figure 2G–I,

supplementary Figure S4B, available at Annals of Oncology on-

line), irrespective of EGFR subtype (supplementary Figure S4C–

I, available at Annals of Oncology online). In EGFRD19 and

EGFRL858R tumors, we also noted no association between the effi-

cacy of ICIs and PFS or OS in patients with �50% (n¼ 4) or

<50% (n¼ 47) tumor PD-L1 expression, although this compari-

son was underpowered to make a conclusive association. Due to

Table 1. Characteristics of patients with EGFR mutant tumors treated with immune checkpoint inhibitors

Characteristics EGFRD19

(n 5 80)
EGFRL858R

(n 5 46)
EGFR20Ins

(n 5 28)
EGFRG719

(n 5 7)
EGFRL861Q

(n 5 5)
EGFROther

(n 5 5)
All EGFR
cases (n 5 171)

Smoking
Ever—no. (%) 27 (33.8) 20 (43.5) 10 (35.7) 6 (85.7) 2 (40) 3 (60) 68 (39.8)
Never—no. (%) 53 (66.3) 26 (56.5) 18 (64.3) 1 (14.3) 3 (60) 2 (40) 103 (60.2)
Pack-year (median) 0 0 0 27 0 20 0
Pack-year (range) 0–40 0–115 0–27 0–40 0–10 0–76 0–115
Pack-year data—Not available—no. (%) 0 (0) 1 (2.2) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0.6)

Prior lines of therapy—no. (%)
0–2 lines 29 (36.3) 21 (45.7) 14 (50) 4 (57.1) 4 (80) 3 (60) 75 (43.9)
3þ lines 51 (63.8) 25 (54.3) 14 (50) 3 (42.9) 1 (20) 2 (40) 96 (56.1)

Drug target—no. (%)
PD-1 66 (82.5) 36 (78.3) 24 (85.7) 7 (100) 3 (60) 4 (80) 140 (81.9)
PD-L1 5 (6.3) 7 (15.2) 1 (3.6) 0 (0) 1 (20) 1 (20) 15 (8.8)
PD-(L)1þCTLA-4 9 (11.3) 3 (6.5) 3 (10.7) 0 (0) 1 (20) 0 (0) 16 (9.4)

Progression-free survival (PFS)
Median 1.6 1.9 1.9 4.8 1.3 2.6 1.8
Range 0–40.5 0.1–17.7 0.2–6.4 1.7–37.6 0.9–5.1 1.2–8.7 0–40.5
Not available—no. (%) 3 (3.8) 2 (4.3) 2 (7.1) 1 (14.3) 0 (0) 0 (0) 8 (4.7)

Overall survival (OS)
Median 9.4 12.1 5.5 29.0 5.2 11.4 9.4
Range 0.1–71 0.3–63 0.6–73.3 2.2–64.8 0.9–13.5 5.2–19.0 0.1–73.3
Not available—no. (%) 3 (3.8) 1 (2.2) 2 (7.1) 3 (42.9) 0 (0) 0 (0) 9 (5.3)

Best response—no. (%)
Complete/partial response 5 (6.3) 7 (15.2) 3 (10.7) 2 (28.6) 0 (0) 0 (0) 17 (9.9)
Stable disease 13 (16.3) 10 (21.7) 6 (21.4) 3 (42.9) 1 (20) 1 (20) 34 (19.9)
Progressive disease 58 (72.5) 27 (58.7) 18 (64.3) 2 (28.6) 4 (80) 4 (80) 113 (66.1)
Not available 4 (5) 2 (4.3) 1 (3.6) 0 (0) 0 (0) 0 (0) 7 (4.1)

EGFRT790M before ICI—no. (%)
Yes 37 (46.3) 17 (37.0) 0 (0) 1 (14.3) 0 (0) 0 (0) 55 (32.2)
No 38 (47.5) 29 (63.0) 27 (96.4) 6 (85.7) 5 (100) 5 (100) 110 (64.3)
Not available 5 (6.3) 0 (0) 1 (3.6) 0 (0) 0 (0) 0 (0) 6 (3.5)

EGFR TKI before ICI—no. (%)
Yes 74 (92.5) 43 (93.5) 7 (25) 4 (57.1) 3 (60) 2 (40) 133 (77.8)
No 6 (7.5) 3 (6.5) 21 (75) 3 (42.9) 2 (40) 3 (60) 38 (22.2)
Not available 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

PD-L1 expression—no. (%)
<1% 19 (23.8) 11 (23.9) 6 (21.4) 1 (14.3) 0 (0) 1 (20) 38 (22.2)
>1% 10 (12.5) 14 (30.4) 7 (25.0) 4 (57.1) 0 (0) 0 (0) 35 (20.5)
Not available 51 (63.8) 21 (45.7) 15 (53.6) 2 (28.6) 5 (100) 4 (80) 98 (57.3)

EGFR TKI, EGFR tyrosine kinase inhibitor; ICI, immune checkpoint inhibitor; PD-L1, programed death-ligand 1.
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lack of TMB data in PD-L1 stained cases, we were unable to assess

the correlation between TMB and PD-L1 expression, but we ac-

knowledge previous studies in lung cancer showing that PD-L1

expression and TMB are largely uncorrelated [23–25].

EGFRD19 mutant lung cancers have a lower tumor
mutation burden compared with EGFRL858R mutant
lung cancers

Due to the reported association between TMB and response to

ICIs, we investigated the TMB across EGFR mutation subtypes in

lung cancer [26]. A lack of sequencing data available from our co-

hort of 171 EGFR mutant tumors treated with immunotherapy

led us to compile data from a cohort of 383 sequenced cases of

EGFR mutant lung cancer from YCC, MSKCC, and TCGA, irre-

spective of treatment history (Table 2). Across all EGFR mutation

subtypes, the median TMB was 3.8 non-synonymous mutations/

megabase (Mb) with a mean TMB of 5.6 non-synonymous muta-

tions/Mb. This is notably less than the median TMB observed in

unselected NSCLC cases (7.4 non-synonymous mutations/Mb by

MSK-IMPACT) and the TMB cut-off associated with improved

outcomes with immunotherapy in NSCLC (10 non-synonymous

mutations/Mb) [21, 25, 27]. TMB was significantly lower in

EGFRD19 tumors compared with EGFRL858R tumors (Figure 3A,

supplementary Figure S5, available at Annals of Oncology online).

EGFRD19 mutant tumors had similar TMB compared with

EGFR20Ins (P¼ 0.35) and EGFRL861Q tumors, while the TMB in

the EGFRG719 group was higher than in EGFRD19 tumors

(P< 0.001) (Figure 3A).

We examined whether smoking history accounted for the dif-

ferences in TMB in each allele. As expected, there was an associ-

ation between ever smoking status and higher TMB in all EGFR

mutant tumors (data not shown), but this was less evident when

interrogating only EGFRL858R and EGFRD19 cases (Figure 3B).

Smoking status and pack-years were not different based on the

specific EGFR allele (Figure 3C and D) suggesting that there is a

difference in TMB between the two most common genetic sub-

types of EGFR mutant lung cancer that is not simply reflective of

differential smoking exposure.

Discussion

Despite the success of EGFR TKIs in EGFR mutant lung cancer,

all patients eventually develop acquired resistance to these thera-

pies. ICIs have recently emerged as a therapeutic approach in

lung cancer with the potential for durable responses but current

data suggest that there is limited efficacy in EGFR-driven cancers

[13–16]. For example, the ImmunoTarget group assessed re-

sponse to ICIs across various molecular subgroups of lung cancer

and found that tumors with KRAS, BRAF, or MET exon 14 altera-

tions were more likely to derive benefit than cases with EGFR,

ALK, and RET alterations [28, 29, 30]. Yet, some EGFR mutant

tumors do respond to ICIs [18, 19]. In this study, we assembled

the largest cohort of EGFR mutant cases treated with ICIs to

retrospectively interrogate how genetic, molecular, and clinical

factors impact response and survival in this subset of lung cancer.

Using this multi-institutional collection of patients, we identified

Figure 1. Response, progression-free survival, and overall survival of EGFRL858R and EGFRD19 mutant tumors to immune checkpoint blockade.
(A) Response rate in tumors with EGFRD19 (n¼ 76) or EGFRL858R (n¼ 44) mutations, and wild-type for EGFR (WT) (n¼ 212). Overall response
rate is indicated on each bar in white. Statistics were calculated using Fisher’s exact test. (B) Progression-free survival in tumors with EGFRD19

(n¼ 77) (HR 0.449, 95% CI 0.338–0.595, log-rank P< 0.001) or EGFRL858R (n¼ 44) (HR 0.578, 95% CI 0.412–0.811, log-rank P¼ 0.001) alterations
compared with lung tumors that are EGFR wild-type (n¼ 212). (C) Overall survival in tumors with EGFRD19 (n¼ 77) (HR 0.69, 95% CI 0.493–
0.965, log-rank P¼ 0.03) or EGFRL858R (n¼ 45) (HR 0.917, 95% CI 0.597–1.409, log-rank P¼ 0.69) alterations compared with lung tumors that
are EGFR wild-type (n¼ 212). HR, hazard ratio; CI, confidence interval.
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Figure 2. Clinicopathologic features associated with response, progression-free survival, and overall survival of EGFRL858R and EGFRD19 mutant
tumors. (A) Response rate of tumors with 0–2 (n¼ 47) or �3 (n¼ 73) prior lines of therapy, P¼ 0.01. (B) Progression-free survival with 0–2
(n¼ 46) or �3 (n¼ 75) prior lines of therapy (HR 2.267, 95% CI 1.499–3.427, log-rank P< 0.001). (C) Overall survival with 0–2 (n¼ 48) or �3
(n¼ 74) prior lines of therapy (HR 1.845, 95% CI 1.204–2.826, log-rank P¼ 0.004). (D) Response rate in tumors harboring EGFRT790M (T790Mþ,
n¼ 52) or negative for EGFRT790M (T790M�, n¼ 56) that had prior EGFR tyrosine kinase inhibitor (EGFR TKI) treatment, P¼ 0.21. (E)
Progression-free survival in tumors harboring EGFRT790M (n¼ 52) or negative for EGFRT790M (n¼ 57) that had prior EGFR TKI treatment (HR
1.348, 95% CI 0.905–2.007, log-rank P¼ 0.15). (F) Overall survival in tumors harboring EGFRT790M (n¼ 50) or negative for EGFRT790M (n¼ 60) that
had prior EGFR TKI treatment (HR 0.878, 95% CI 0.574–1.343, log-rank P¼ 0.55). (G) Response rate in tumors with <1% PD-L1 expression
(n¼ 28) or �1% PD-L1 expression (n¼ 23), P> 0.99. (H) Progression-free survival in tumors with <1% PD-L1 expression (n¼ 29) or �1% PD-
L1 expression (n¼ 22) (HR 1.370, 95% CI 0.761–2.466, log-rank P¼ 0.29). (I) Overall survival in tumors with <1% PD-L1 expression (n¼ 30) or
�1% PD-L1 expression (n¼ 21) (HR 1.747, 95% CI 0.913–3.342, log-rank P¼ 0.084). Statistical analysis for response rate used Fisher’s exact test
and statistical analysis for Kaplan–Meier plots used the log-rank test. CI, confidence interval; CR, complete response; HR, hazard ratio; PD-L1,
programed death-ligand 1; PR, partial response; SD, stable disease; PD, progressive disease.
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Table 2. Characteristics of cases included in the tumor mutation burden analysis

Characteristics EGFRD19 EGFRL858R EGFR20Ins EGFRG719 EGFRL861Q EGFRG719 1

EGFRL861Q
EGFROther All EGFR cases

Yale Cancer Center
Number of cases
with TMB

12 5 0 0 0 0 0 17

TMB median 1.8 2.5 n/a n/a n/a n/a n/a 2.0
TMB range 0.1–4.1 2.0–4.1 n/a n/a n/a n/a n/a 0.1–4.1
Smoking (ever/
never)—no. (%)

7/5 (58.3/41.7) 4/1 (80/20) n/a n/a n/a n/a n/a 11/6 (64.7/35.3)

Smoking (ever/
never)—data not
available—no. (%)

0 (0) 0 (0) n/a n/a n/a n/a n/a 0 (0)

Smoking (pack-
year)—range

0–120 0–30 n/a n/a n/a n/a n/a 0–120

Smoking (pack-
year)—median

1.5 10 n/a n/a n/a n/a n/a 4.5

Smoking (pack-
year)—data not avail-
able—no. (%)

0 (0) 0 (0) n/a n/a n/a n/a n/a 0 (0)

Memorial Sloan Kettering Cancer Center
Number of cases
with TMB

139 90 19 18 9 1 37 313

TMB median 3.8 4.7 2.8 7.3 3.8 5.7 11.3 4.1
TMB range 0.9–30.2 0.9–17.9 0.9–9.2 2.8–22.6 1.9–10.2 n/a 0.9–91.8 0.9–91.8
Smoking (ever/
never)—no. (%)

39/62 (28.1/44.6) 28/40 (31.1/44.4) 3/10 (15.8/52.6) 12/2 (66.7/11.1) 6/2 (66.7/22.2) 1/0 (100/0) 13/7 (35.1/18.9) 102/123 (32.6/39.3)

Smoking (ever/
never)—data not
available—no. (%)

38 (27.3) 22 (24.4) 6 (31.6) 4 (22.2) 1 (11.1) 0 (0) 17 (45.9) 88 (28.1)

Smoking (pack-
year)—range

0–99 0–51 0–67.5 0–47.3 0–15 n/a 0–108 0–108

Smoking (pack-
year)—median

0 0 0 6.3 6.5 30 18.5 0

Smoking (pack-
year)—data not avail-
able—no. (%)

40 (28.8) 23 (25.6) 6 (31.6) 4 (22.2) 1 (11.1) 0 (0) 17 (45.9) 91 (29.1)

The Cancer Genome Atlas
Number of cases
with TMB

23 22 2 3 3 n/a n/a 53

TMB median 1.3 1.6 1.5 2.2 3.0 n/a n/a 1.4
TMB range 0.7–11.9 0.7–33.9 1.3–1.7 1.0–3.0 1.3–6.3 n/a n/a 0.7–33.9
Smoking (ever/
never)—no. (%)

7/15 (30.4/65.2) 14/6 (63.6/27.3) 0/1 (0/50) 3/0 (100/0) 2/1 (66.7/33.3) n/a n/a 26/23 (49.1/43.4)

Smoking (ever/
never)—data not
available—no. (%)

1 (4.3) 2 (9.1) 1 (50) 0 (0) 0 (0) n/a n/a 4 (7.5)

Smoking (pack-
year)—range

n/a n/a n/a n/a n/a n/a n/a n/a

Smoking (pack-
year)—median

n/a n/a n/a n/a n/a n/a n/a n/a

Smoking (pack-
year)—data not avail-
able—no. (%)

n/a n/a n/a n/a n/a n/a n/a n/a

TMB, tumor mutation burden; n/a, not applicable.
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allele-specific differences in response to immune checkpoint in-

hibition. EGFRL858R tumors had a similar response rate and OS

outcomes to an EGFR wild-type lung cancer population, while

EGFRD19 cases did substantially worse. Of note, we did observe

substantially worse PFS between both EGFRL858R and EGFRD19

lung cancer cases compared with EGFR wild-type lung cancer

cases. The underlying cause for this discrepancy is unknown, but

it may be reflective of the variable scanning intervals represented

by this multi-institutional cohort composed of both on-trial and

off-trial cases. A recent report evaluating outcomes of 27 patients

with EGFR mutant tumors on ICIs found the best ORR in cases

with less common EGFR alterations, such as G719X and exon 20

insertions, highlighting potential differences between EGFR

alleles [31].

The outcomes on ICIs contrast with those on EGFR TKIs,

where EGFRL858R tumors have a worse durability of response to

EGFR TKIs compared with EGFRD19 tumors, highlighting

the context specificity of genotypic responses to different thera-

peutic agents [32–34]. One limitation of our study was the lack

of sufficient sequencing data to directly compare TMB to re-

sponse in our cohort of 171 EGFR mutant patients treated with

ICI. To address this, we employed a separate cohort of 383

Figure 3. Characterization of EGFR allele-specific tumor mutation burden (TMB) and smoking history. (A) TMB was calculated for EGFR mu-
tant tumors harboring deletions in exon 19 [(D19) (n¼ 174)], mutations in exon 21 [L858R (n¼ 117) and L861Q (n¼ 12)], insertions in exon
20 [(20ins) (n¼ 21)], mutations in exon 18 [(G719) (n¼ 21)], or co-mutations at positions G719 and L861Q (n¼ 1). Data were combined from
Memorial Sloan Kettering Cancer Center, the Yale Cancer Center, and The Cancer Genome Atlas cohorts. Data were transformed within each
cohort to within-cohort percentile rank to permit unified analysis, and median TMB percentile rank is indicated. (B) TMB in EGFRL858R and
EGFRD19 mutant tumors from patients with ever (n¼ 99) or never (n¼ 129) smoking status (median 3.8 versus 3.1, P¼ 0.37). (C) Percentage of
ever and never smokers within the EGFRL858R and EGFRD19 mutant tumors groups (P¼ 0.14). (D) Pack-years in EGFRL858R and EGFRD19 mutant
tumors groups (P¼ 0.58). Statistics were calculated using the Fisher’s exact test.
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EGFR mutant cases with sequencing data available in which we

found that EGFRD19 tumors had substantially fewer non-

synonymous mutations compared with EGFRL858R tumors [35]

aligning with the immunotherapy response data. At present, it

is unclear what is driving the difference in the TMB between

these alleles. It is possible that the increased mutation burden in

EGFRL858R tumors reflects the generally more advanced age of

patients with EGFRL858R at diagnosis compared with patients

with EGFRD19 alterations [36, 37]. This association would sug-

gest that a clock-like mutational process is at play in EGFR mu-

tant tumors, but additional studies are needed to validate this

hypothesis [38]. In addition, recent work has found that p53

alterations are associated with EGFR mutant lung cancer with

higher TMB possibly suggesting a more genetically unstable and

aggressive tumor state [35].

We also found that outcomes of patients treated with ICIs were

not affected by EGFRT790M status or PD-L1 expression levels

before immunotherapy. Although we found that fewer prior lines

of therapy were associated with increased response to ICI, we un-

equivocally support the guidance that EGFR TKIs should be the

preferred first line treatment option for patients with EGFR mu-

tant lung cancer (irrespective of TMB or PD-L1). This guidance

is based on substantially higher response rates to EGFR TKIs, the

overall low rates of response to PD-(L)1 blockade in this subset of

lung cancer, lack of efficacy of PD-L1 blockade in PD-L1þ, TKI

naı̈ve, EGFR mutant lung cancer [16], and risk of synergistic tox-

icity with initial PD-1 blockade followed by osimertinib [39, 40].

This study combined data from multiple institutions, which

has advantages and disadvantages. A major advantage is that by

pooling data we were able to examine a larger cohort than we

would have done individually; however, there is also heterogen-

eity in the analytical tools used at different institutions, although

we aimed to normalize data to the size of the exome sequenced.

Another possible limitation of this study was the inclusion of

cases treated with different single agent ICIs [e.g. PD-1 (n¼ 140)

and PD-L1 (n¼ 15)] or combinations of ICIs [e.g. PD-

1þCTLA-4 (n¼ 15) or PD-L1þCTLA-4 (n¼ 1)]. It is possible

that these treatment subsets might display unique survival out-

comes that are masked by combining the cases.

In summary, our analysis revealed that EGFR mutant tumors

have differing responses to ICIs and underlying molecular pro-

files. These data serve as a foundation for further investigating

which patients with EGFR mutant disease have a higher likeli-

hood of benefitting from immunotherapies, in particular when

combined with chemotherapy or antiangiogenesis agents. Studies

in animal models of EGFR mutant lung cancer with varying base-

line mutations and TMB will also be valuable tools for evaluating

such approaches. More broadly, our data provide rationale for

evaluating genomic and molecular subsets within tumor types

with lower TMB to better understand which features are associ-

ated with successful outcomes with ICIs.
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