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Abstract: Background: Deep learning (DL)-based models have demonstrated an ability to automati-
cally diagnose clinically significant prostate cancer (PCa) on MRI scans and are regularly reported
to approach expert performance. The aim of this work was to systematically review the literature
comparing deep learning (DL) systems to radiologists in order to evaluate the comparative perfor-
mance of current state-of-the-art deep learning models and radiologists. Methods: This systematic
review was conducted in accordance with the 2020 Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) checklist. Studies investigating DL models for diagnosing clinically
significant (cs) PCa on MRI were included. The quality and risk of bias of each study were assessed
using the checklist for AI in medical imaging (CLAIM) and QUADAS-2, respectively. Patient level
and lesion-based diagnostic performance were separately evaluated by comparing the sensitivity
achieved by DL and radiologists at an identical specificity and the false positives per patient, respec-
tively. Results: The final selection consisted of eight studies with a combined 7337 patients. The
median study quality with CLAIM was 74.1% (IQR: 70.6–77.6). DL achieved an identical patient-level
performance to the radiologists for PI-RADS ≥ 3 (both 97.7%, SD = 2.1%). DL had a lower sensitivity
for PI-RADS ≥ 4 (84.2% vs. 88.8%, p = 0.43). The sensitivity of DL for lesion localization was also
between 2% and 12.5% lower than that of the radiologists. Conclusions: DL models for the diagnosis
of csPCa on MRI appear to approach the performance of experts but currently have a lower sensi-
tivity compared to experienced radiologists. There is a need for studies with larger datasets and for
validation on external data.

Keywords: prostatic neoplasms; magnetic resonance imaging; deep learning

1. Introduction

Prostate cancer (PCa) continues to be a major public health problem, with an estimated
1,400,000 new cases and 375,000 deaths worldwide in 2020 [1]. Clinically significant
(cs, defined as Gleason Grade Group > 1) PCa is associated with significantly worse
survival and an increased risk for developing metastases [2]. Therefore, accurate methods
for the detection and characterization of PCa are critical for the selection of an appropriate
treatment plan. Magnetic resonance imaging (MRI) is a commonly used noninvasive
modality for the detection of csPCa. The PI-RADS (v2) guidelines were introduced as a
standardized system for reading and reporting findings at prostate MRI and are widely
used by radiologists in clinical practice [3]. Studies have shown a high sensitivity and
moderate specificity for PI-RADS [4]. However, the ability of PI-RADS to detect csPCa is
highly dependent on reader experience and has limited reproducibility due to high intra-
and inter-reader variability [5–7].

Artificial intelligence (AI) has the potential to revolutionize medical image analysis
by automating manual tasks, increasing diagnostic performance, and reducing the costs
of healthcare. Until recently, research on diagnostic AI applications in medical imaging
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primarily focused on radiomics in combination with traditional AI algorithms [8]. However,
studies showed that these systems have several limitations, including limited diagnostic
capabilities, poor generalization to external datasets, and a dependency on expert input [9,10].
In recent years, focus has shifted away from radiomics towards deep learning (DL), fueled
by an increasing availability of high-quality datasets, computing power, and more effective
algorithms [8]. Numerous studies have demonstrated that DL can be used to automatically
extract diagnostically relevant information from highly complex imaging data [11–13].

DL may improve the diagnosis of csPCa on MRI and reduce the need for invasive biop-
sies. Fully autonomous DL systems for the diagnosis of csPCa on MRI have been reported
to approach the diagnostic performance of expert radiologists. The tasks of diagnosis at the
patient level and lesion localization in particular have received attention from researchers
due to their relevance in clinical practice. Previous reviews and meta-analyses have investi-
gated the diagnostic accuracy of DL models but either did not compare the performance to
radiologists or included mainly traditional machine learning techniques [14–17].

We hypothesized that modern DL systems can achieve a diagnostic performance that
is comparable to that of expert radiologists. Therefore, the objective of this systematic
review was to provide a comprehensive overview of the available literature comparing
the diagnostic performances of DL-based systems and assessments by radiologists for the
patient-level diagnosis and localization of csPCa on MRI.

2. Materials and Methods

An exhaustive systematic search and review was performed to identify recent literature
relevant to diagnostic DL for prostate MRI. For the scope of this study, deep learning was
defined as predictive modeling using an artificial neural network consisting of multiple
trainable layers. This work was carried out in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [18]. We have
attached the PRISMA checklist in supplementary (Table S1).

2.1. Eligibility Criteria

Records were assessed and filtered based on the following criteria: (i) year of publi-
cation is after 2013, (ii) focus on the detection or classification of prostate cancer on MRI
scans using DL modeling, (iii) a comparison is made between the diagnostic performance
of radiologists and the proposed DL system, (iv) size of the combined study cohort is at
least 300 patients, (v) full text is available. Articles that did not report the performance of
radiologists and AI at the same sensitivity cutoff and did not provide receiver-operating
characteristic (ROC) or free-response ROC (FROC) curves from which this could be ex-
tracted were excluded. Reports written in languages other than English were excluded.

2.2. Search Strategy and Sources

A list of keywords was compiled and used to search Medline, Embase, and Scopus. The
following keywords were used to search for studies relevant to the topic: ((Deep learning) OR
(Deep Neural Network) OR (DNN) OR (MACHINE LEARNING) OR (AI) OR (ARTIFICIAL
INTELLIGENCE)) AND ((prostate) OR (PCA)) AND ((MRI) OR (bpMRI) OR (magnetic
resonance imag*)). The relevance of the retrieved records was assessed by a single reviewer
(CR., with seven years of experience in DL and 1.5 years of experience in DL in medical
imaging) using the inclusion criteria described in Section 2.3. The records were retrieved in
December 2021.

2.3. Study Quality

The Checklist for Artificial Intelligence in Medical Imaging (CLAIM) [19] was used
to assess the scientific quality of the included studies. The CLAIM checklist comprises
41 elements that describe the best practices for AI research in medical imaging and was
created with the aim of helping authors and reviewers to evaluate AI manuscripts. It
contains separate sections for the title, introduction, methods, results, and discussion. It
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further divides the methods section into ‘data’, ‘ground truth’, ‘data partitions’, ‘model’,
‘training’, and ‘evaluation’ and divides the results section into ‘data’ and ‘model perfor-
mance’. Two reviewers independently (C.R. & S.J.F., with one year of experience in DL
in medical imaging, under the supervision of an expert uroradiologist [D.Y.] with nine
years of experience in prostate MRI) reviewed each of the included studies using CLAIM
to determine (1) whether each item was applicable to the study and (2) whether each
applicable item was adhered to. Any discrepancies between the ratings were resolved in a
deliberation between the reviewers. Since CLAIM does not include a standardized method
for determining a final quality score, we quantified the study quality as the percentage of
fulfilled checklist items out of all applicable checklist items. A Kruskall–Wallis test and
post-hoc Dunn’s test with Bonferroni correction were performed to determine whether
the study quality differed between the sections of the checklist. A copy of the CLAIM
checklist has been included in the supplementary material (Appendix A). The risk of bias
was evaluated for each of the included studies using the QUADAS-2 tool [20].

2.4. Study Selection and Data Extraction

Reference files were extracted from the searched databases and added to Mendeley
(Version 1.19.8, Elsevier, London, UK). A single reviewer (C.R) checked each title, abstract,
and key terms manually for their fit to the specified inclusion criteria. The selected studies
were fully read, and a predetermined list of characteristics relating to the study design,
patient cohort, and deep learning methodology were extracted (Table 1).

Performance metrics (sensitivity, specificity, and false positives per patient) for the
radiologist were extracted for PI-RADS ≥ 3 and PI-RADS ≥ 4 thresholds. For the DL
systems, sensitivity was assessed at the same level of specificity or false positives per
patient as the respective radiologist benchmarks to enable a direct comparison between the
specificity or false positives per patient at an identical sensitivity. When the latter metrics
were not explicitly reported, they were estimated from ROC or FROC curves. In the case
that an ROC curve was provided for the radiologists instead of explicit PI-RADS thresholds,
performance was estimated from the ROC curves at specificity cutoffs derived from the
literature (18.5% for PI-RADS ≥ 3 and 67.5% for PI-RADS ≥ 4) [4]. If the results of multiple
radiologists were separately reported, performance metrics were extracted for the most
senior radiologist. Differences in performance metrics between the radiologists and DL
were evaluated for statistical significance using a two-sided paired Wilcoxon’s test per
study. p-values below 0.05 were considered significant. Averages for the age and serum
prostate-specific antigen (PSA) levels of the combined cohort were derived using weighted
pooling. Other results were reported using descriptive statistics. Statistical analyses were
performed in R version v4.1.0 (R Foundation for Statistical Computing, Vienna, Austria,
with the additional packages FSA v0.9.2 (Ogle, 2022) and Hmisc 4.6-0, (Harrell Jr, 2021).

3. Results

An initial search yielded 1672 citations. After the removal of duplicates, 1638 were
eligible for the screening of the title and the abstract. The PRISMA flow diagram (Figure 1)
shows an overview of the selection process. The results of the bias assessment using
QUADAS-2 are shown in Appendix B.
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Table 1. An overview of the study characteristics for each of the included studies. T2W: T2-weighted imaging, ADC: Apparent Diffusion Coefficient map, DWI:
Diffusion-weighted imaging, FPP: False positives per patient [21–28].

Author Country No. Pat. Sequences Scanner Vendor Rad.
Exp.

PSA
(mg/L) Age Scoring

Level DL Approach Required
Expert Input Interpretability

AUC
(Patient
Level)

Sens. at
0.1 FPP

Sens. at
1 FPP

Saha et al. [27] The Nether-
lands 2732 T2W, ADC,

DWI
3T (Trio, Skyra,

Prisma) Siemens 25 yrs 7.85 65.8 Patients,
lesion U-Net - Heatmaps 0.862 0.64 0.9

Cao et al. [25] US 553 T2W, ADC 3T (Trio, Verio,
Skyra, Prisma) Siemens 19 yrs 6.2 62.5 Patient,

lesion
U-Net

(FocalNet) - Heatmaps - 0.3 0.65

Netzer et al. [23] Germany 1832 T2W, ADC,
DWI

3T (Prisma),
1.5T (Aera) Siemens 11 yrs 7.1 64.0 Patient,

sextant
U-Net

(nnUNet) - Heatmaps 0.85 - -

Cao et al. [26] US 417 T2W, ADC 3T (Trio, Verio,
Skyra, Prisma) Siemens 10 yrs - - Lesion,

voxel
U-Net

(FocalNet) - Heatmaps (by
Gleason) - 0.42 0.9

Deniffel et al. [28] Canada 499 T2W, ADC,
DWI 3T (Achieva) Philips 15 yrs 7.2 64.4 Lesion Classifier Prostate

location - 0.85 - -

Schelb et al. [24] Germany 312 T2W, ADC,
DWI 3T (Prisma) Siemens 10 yrs 6.9 64.0 Patient,

sextant U-Net - Heatmaps - - -

Hiremath et al. [22] US 592 T2W, ADC 3T (Trio, Verio,
Skyra, Achieva)

Siemens,
Philips 15 yrs 6.4 63.9 Lesion

Classifier
(AlexNet,

DenseNet)

Lesion
segmentation GradCAM 0.76 - -

Khosravi et al. [21] US 400 T2W 3T, 1.5T Siemens,
GE 17 yrs - - Patient

Classifier
(Inception

V1)
- Class activation

maps 0.78 - -
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Figure 1. PRISMA 2020 Flow diagram.

3.1. Study Characteristics

Eight studies were included in the final selection [21–28]. An overview of the selected
studies is shown in Table 1. An additional manual search to identify potentially missed
articles in the references of the included studies did not identify any missed articles. All
studies were published in or after 2019. The median pooled age across cohorts was 64 years
(IQR 64–65.8). The median pooled PSA was 7.4 mg/L (IQR 7.1–7.85). The median number
of included patients was 526 (IQR 413–902). One study ([25]) used a five-point Likert
scoring system instead of PI-RADS scores, as diffusion-weighted imaging was not available.
An overview of the study characteristics for each study is presented in Table 1. The median
level of experience of the most senior radiologist in each study was 15 years (IQR 10.8–17.5).
Characteristics of the evaluation strategies and cohorts for each study are presented in
Table 2.

3.1.1. MRI

Seven studies (87.5%) evaluated a DL system using bi-parametric MRI (T2-weighted
imaging [T2W] + diffusion-weighted imaging [DWI]), and one study (12.5%) used only the
T2W sequence. None of the included studies used dynamic contrast-enhanced imaging.
Six studies (75%) exclusively used images acquired using 3.0 Tesla scanners, while the
remaining two studies (25%) included a mixture of 1.5T and 3.0T scanners. MRI scan-
ner vendors included Siemens Healthineers (seven studies, 87.5%), Philips Healthcare
(two studies, 25%), and General Electric Healthcare (one study, 12.5%). Four studies (50%)
were performed using multi-center data.
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Table 2. An overview of the characteristics of the evaluation strategy and cohort for each of the included studies. TB: MRI-targeted biopsy; SB: systematic biopsy;
RP: radical prostatectomy; CV: cross validation. * In combined cohort. ** Included Gleason 3 + 4 = 7 in the definition of a low-risk group.

Author Description of Test Cohort Biopsy Method Train Size Test Size csPCa in Test Cohort Cohort Split Evaluation Strategy

Saha et al. [27] Biopsy naive men with elevated
PSA SB; TB (in-bore) 1584 studies 296 patients 86 patients (29%) institution held-out test set

Cao et al. [25] Patients who underwent RP RP 427 patients 126 patients 114 patients (90%) temporal held-out test set

Netzer et al. [23] Consecutive patients with clinical
indication for biopsy TB 806 studies 682 studies 235 exams (34%) temporal held-out test set

Cao et al. [26] Preoperative patients who later
underwent RP RP 333–334 studies 84–83 studies 442 lesions (61%) * CV CV (five-fold)

Deniffel et al. [28] Patients without prior known csPCa TB 449 patients 50 patients 19 patients (38%) random selection held-out test set

Schelb et al. [24] Consecutive patients with clinical
indication for biopsy TB; SB 250 patients 62 patients 26 patients (42%) random selection held-out test set

Hiremath et al. [22] Patients with prostate cancer
(various datasets) TB; SB; RP 368 patients 224 patients 199 lesions (63%) institution held-out test set

Khosravi et al. [21] Patients suspected for prostate
cancer (various datasets) TB; SB; RP 243 patients 40 patients 20 patients (50%) ** random selection held-out test set
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3.1.2. Pathology Annotations

The histopathological grades were obtained exclusively using MRI-targeted biopsies in
two studies (25%). Two studies (25%) used grades obtained through radical prostatectomy.
The four remaining studies (50%) used a combination of systematic biopsies, MRI-targeted
biopsies, and radical prostatectomy (Table 2).

3.2. Deep Learning Modeling

The majority of the included studies (n = 5, 62.5%) used a model architecture based
on U-Net [29]. The remaining three studies used a convolutional neural network (CNN)
classifier. Six studies described DL pipelines that could generate predictions completely
autonomously from the MRI input (i.e., without requiring any manual actions to generate
predictions). Deniffel et al. [28] required only the rough location of the prostate as a
bounding box. Another study by Hiremath [22] processed the scans at lesion level and
required lesion segmentations to crop the region-of-interest as the input for the model.

Four studies (50%) used only two-dimensional (2D) operations within their model ar-
chitecture, while two studies (25%) used three-dimensional (3D) operations. One study [23]
used a combination of 2D and 3D architectures. One study used a 2.5 approach [25] by sup-
plying two slices adjacent to the target slice as additional inputs to the model while using
2D operations within the model architecture. Khosravi et al. [21] applied transfer learning
to initialize the model’s parameters, using a model that was pretrained on ImageNet [30].
All other studies trained their models from scratch. Cao et al. [25] and Netzer et al. [23] both
evaluated the performance of a previously developed algorithm (‘FocalNet’ and ‘nnUNet’,
respectively). All but one of the proposed methods provided methods for the visual in-
spection of the DL predictions, which included prediction heatmaps (five studies, 62.5%),
gradient-weighted class activation mapping (Grad-CAM) [22,31], and class-activation
maps [21].

3.3. Quality of Included Studies

The CLAIM evaluation for each of the studies included in this review is presented
in Figure 2. The median accordance with applicable CLAIM items by study was 74.1%
(IQR: 70.6–77.6, range: 67.5–82.9). The application of the CLAIM checklist revealed several
common weaknesses in the selected studies. Accordance with CLAIM by checklist item
is presented in Figure 3. The lowest accordance with CLAIM was found for the intended
sample size (item 19), which was not sufficiently reported by any of the included studies.
Descriptions of deidentification methods (item 12) were insufficient in seven studies (87.5%).
Methods for the mitigation and measurement of intra- and interrater variability (item 18),
the selection of the final model (item 26), and the validation on external data (item 32)
were insufficiently reported by six studies (75%). The median accordance was the lowest
for the reporting of the methods section (69.2%, IQR: 67.9–75) and the highest for the
title/abstract (100%, IQR: 100–100). The quality of reporting in the methods sections was
significantly lower than that in the introduction (p = 0.018) and discussion (p = 0.018)
sections. The assessment with QUADAS-2 found four studies at risk of bias [23,25,26,28]
and two studies with concerns regarding applicability [22,25]. Specifically, a high risk
of bias in the index test and reference standard was found in Cao et al. [26] due to the
exclusion of MRI invisible lesions from the analysis. Applicability concerns were found for
Hiremath et al. [22] because of the indirect comparison between the radiologist and DL as
part of a clinical nomogram.
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considered not applicable to the study were omitted from the calculation.

3.4. Diagnostic Accuracy at the Patient Level

The results of the patient-level analysis are presented in Figure 4. The average AUC for
diagnosing csPCa at the patient level by the DL systems was 0.82 (SD = 0.047). At cutoffs of
PI-RADS ≥ 3 and PI-RADS ≥ 4, the mean specificity of the radiologists was 19.8% (SD = 1.8%)
and 62.3% (SD = 10.4%), respectively. For PI-RADS ≥ 3, the sensitivities of the radiologists
and DL were identical at 97.7% (SD = 2.1%). For PI-RADS ≥ 4, the radiologists had an
average sensitivity of 88.8% (SD = 3.0%), while the sensitivity of the DL systems was lower at
84.2% (SD = 7.2%). This difference was not significant (p = 0.43). In addition, no significant
differences in sensitivity or AUC between the radiologists and DL were reported by the
included studies.
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compared to the respective radiologist benchmarks [22–24,27,28]. (*) The radiologist’s performance
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3.5. Lesion Localization Performance

Sensitivities for the DL and radiologists for the localization of csPCa lesions are
presented in Table 3. Three studies evaluated the lesion localization performance of the
DL models using FROC curves and showed a mean sensitivity at 0.1 false positives per
patient of 0.45 (SD = 0.17) and a mean sensitivity at one false positive per patient of 0.82
(SD = 0.14). Radiologists performed better than the respective DL systems at all thresholds.
The differences in sensitivity between the DL and radiologists were not evaluated for
statistical significance due to the heterogeneity in the reported levels of false positives per
patient.

Table 3. Relative performance of deep learning and radiologists for the localization of csPCa lesions
(ISUP > 1) at the same levels of false positives (FP) per patient. (*) Cao et al. [25] reported performances
for multiple radiologists; the presented scores are for the best-performing radiologist.

Study FP Per Patient Sensitivity (Expert) Sensitivity (DL) Difference

Cao et al. [26] 0.625 81% 79% −2%

Cao et al. [25] *
0.15 48.7% 40.6% −8.1%
0.5 65% 52.5% −12.5%
1.24 77.5% 65.6% −11.9%

Saha et al. [27] 0.29 91% 78.5% −12.5%

DL detected several lesions that were not detected by radiologists. Cao et al. [25]
reported that 5.6% of csPCa lesions detected by their DL model were missed by the best-
performing radiologist at 0.44 false positives per patient. Conversely, up to 23.7% of
lesions detected by the best radiologist (radiologist #2) were not detected by the DL model.
Compared to the least accurate radiologist (radiologist #3) in Cao et al. [25], 13.8% of
the lesions detected by DL were missed by the radiologists, while only 10.6% of lesions
detected by the radiologist were missed by the AI. Saha et al. [27] reported that their model
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correctly identified clinically significant lesions in three patients that were missed by four
radiologists.

4. Discussion

This systematic review reports on studies that compared the diagnostic performance of
DL and radiologists for the detection and localization of csPCa on MRI. The final selection
included eight studies, which each compared a DL model to clinical assessment using PI-
RADS or Likert scores. Our primary finding is that DL achieved a diagnostic performance
that was comparable to radiologists, although slightly lower for both patient-level diagnosis
and lesion localization tasks. More large-scale studies are needed to further develop DL
as a potential alternative to assessment by radiologists in the future. The included studies
were evaluated on the quality of the included studies with the CLAIM checklist. We found
that the overall quality for the included studies was good (74.1%).

The CLAIM checklist revealed several common weaknesses in the quality of the in-
cluded studies. In line with the findings of previous systematic reviews on this topic [14,16],
we found a lack of validation on external data. Without validation on external data, only
limited conclusions can be drawn about the expected performance on data obtained from
different scanners and vendors. Secondly, we found that the majority of studies failed to
report relevant details pertaining to the DL modeling, particularly regarding the strategy
for selecting the final model and the initialization of the model parameters. Incomplete
descriptions of methodology negatively impact the reproducibility of the study, and the
use of guidelines and checklists (such as the CLAIM checklist) can help authors identify
weaknesses in their study design and in the reporting of the results.

Both reviewers agreed that CLAIM was effective at evaluating the completeness of
the reporting and recommended its use by authors as a guideline when writing reports;
however, we found that, in several cases, evaluation with CLAIM did not accurately reflect
the perceived study quality due to overly specific criteria which are rarely completely
adhered to.

DL systems demonstrated good performance for the diagnosis of csPCa, achieving
an identical patient-level performance to radiologists at a threshold of PI-RADS ≥ 3. The
lower sensitivity found for diagnosis at a threshold of PI-RADS > 4 and lesion localization
indicated that DL systems are currently performing slightly worse than radiologists. This
result can be primarily attributed to the use of small datasets. The performance of DL is
highly dependent on the number of images used for training and scales with the size of the
dataset. Previous work by Hosseinzadeh et al. [32] demonstrated that global expert-level
performance may only become achievable beyond 2000 training samples. In this study,
we only included studies with more than 300 patients; yet, the median population size
was only 526. We recommend that researchers aim to perform future studies with larger
annotated datasets to enable a fair comparison between radiologists and AI. Multiple
authors [23,24,28] indicated that the availability of larger annotated datasets would likely
lead to improved diagnostic performance. Another factor to consider is that the radiologist
benchmarks in the included studies were relatively strong, with the experience of the
radiologists ranging from 10 to 18 years, and DL may already outperform less experienced
radiologists at local institutions [32].

A shared decision-making strategy between DL and experts may have the potential to
improve the detection of csPCa in clinical practice. Three studies evaluated a hybrid classi-
fier that combined DL predictions with radiologist scores. Hiremath et al. [22] developed
and validated an integrated nomogram, which combines clinical parameters, PI-RADS,
and DL predictions to diagnose csPCa. They showed that the combination of PI-RADS and
DL achieved a significantly better diagnostic accuracy than DL and PI-RADS individually.
Similarly, Schelb et al. [24] reported a significant improvement in the positive predictive
value for PI-RADS ≥ 3 and PI-RADS ≥ 4 detections by using DL to reduce false positive de-
tections. It is important to note that the combination of DL and radiologist predictions was
performed automatically in these studies, which takes the final decision out of the hands of
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the expert. Therefore, these experiments are not completely analogous to concurrent-reader
computer-aided diagnosis, which involves a final decision by an expert [8,33]. Studies
using such concurrent-reader DL systems are currently needed to show that radiologists’
decisions can be positively influenced by AI systems and to demonstrate a higher level of
efficacy for the clinical application of DL in the diagnostic imaging process [34].

The generalizability of AI systems continues to be an important challenge for the
application of AI in clinical practice [9]. The ability of models to retain their diagnostic
performance when applied to external data is often impaired by their sensitivity to diag-
nostically irrelevant differences between imaging data obtained from different centers and
vendors. When such differences are misinterpreted by the model, they can severely impact
diagnostic performance. Previous studies showed that radiomics-based machine learning
models are particularly affected by this [9]. Three studies that evaluated their model on
external data reported stable performance across internal and external datasets, indicating
that DL was relatively robust regarding differences in image acquisition [22,23,27]. This
can be partially explained by the extensive regularization strategies that are commonly
included in modern DL pipelines to prevent overfitting, such as L2-penalties, weight decay,
and data augmentation, which help the model to learn robust features during training [35].

An important role for MRI in PCa is to reduce the number of unnecessary biopsies
in patients suspected of harboring csPCa [36,37]. Since DL predictions are given on a
continuous scale, they allow for more precise configurability compared to PI-RADS, which
is reported on a five-point Likert scale. The ability to threshold predictions at any sensitivity
and specificity tradeoff within the diagnostic capabilities of the model may be used to
create better biopsy strategies than those based on PI-RADS. Two studies used decision
curve analysis to determine whether the number of biopsies could be safely reduced
using a biopsy strategy based on DL predictions. In Deniffel et al. [28], decision curve
analysis showed that a biopsy strategy based on their calibrated DL model could avoid
3.7 times more unnecessary biopsies compared to strategies based on PI-RADS. Similarly,
Hiremath et al. [22] concluded that a combined strategy based on DL and PI-RADS prevented
more biopsies compared to strategies based on PI-RADS + clinical parameters alone.

Two studies noted a limited ability of DL to detect smaller csPCa lesions, which re-
quires further investigation [25,27]. According to Cao et al. [25], the sensitivity of the AI was
more affected by the size of the lesion than by the aggressiveness of the lesion, indicating
that DL models may be biased towards detecting larger lesions. A potential solution could
be to adjust the predicted likelihood for smaller lesions during post-processing. The spatial
congruity between the DL-generated predictions and radiologist annotations was also
lower for smaller lesions, which can be partly explained by their relative sensitivity to
minor sequence misalignments and inconsistencies in labelling. This naturally leads to
more variance in congruity metrics such as the Dice score [27]. Saha et al. [27] suggests
that the use of probabilistic labels during training could potentially help mitigate this
problem by conditioning the model to account for labelling variability in its predictions.
This variability in spatial congruity for smaller lesions may also affect the comparison for
the lesion localization task using FROC analysis, in which a criterion based on a minimum
overlap or proximity is used to determine whether a detection by the DL system counts as
a true positive or false positive [25–27].

In this review, we compared the performance of AI systems to that of radiologists
directly using the FP rate and specificity at specific sensitivity cutoffs. In practice, it cannot
be guaranteed that a specific trade-off between sensitivity and specificity/FP rates will
be maintained over time. To prevent significant divergence from the intended operating
point of an AI system, the performance may be tracked and recalibrated periodically after
deployment.

This study has limitations. First, the performances of the algorithms were only com-
pared using selected separate performance metrics. Systematic literature reviews by [14–16]
previously concluded that there is a lack of consistency and clarity in the reporting of per-
formance metrics in diagnostic AI, which hampers attempts to compare the performance of
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different works. For this reason, we limited our analysis to sensitivity at equivalent levels
of specificity and false positives per patient, as these are common practices for reporting
diagnostic performance for classification and localization tasks, respectively. Secondly, the
assessment of study quality using the CLAIM checklist and guidelines left some room for
interpretation; therefore, others may arrive at different CLAIM scores than ours. Third, we
only considered studies with at least 300 patients for inclusion in this review, because DL
requires large numbers of training samples, and small numbers of training samples are
less likely to yield reproducible results [32]. However, this means that the performances
reported in our study may not be reflective of those achieved by smaller-scale studies.
Fourth, the assessment using QUADAS-2 found multiple included studies at risk for bias,
which may limit the generalizability of our results. Fifth, the identification of relevant
articles was carried out by a single reviewer. Human error may potentially have resulted
in relevant articles being missed, although an additional manual reference search was
performed to mitigate this risk. Lastly, the majority of studies included in this review were
performed with scans acquired using systems of Siemens Healthineers, which makes our
present results potentially less applicable to scanners from different vendors.

In conclusion, DL models for the detection of csPCa on MRI appear to approach the
performance of expert radiologists but have a lower sensitivity compared to experienced
radiologists for the diagnosis of csPCa at the patient level at a threshold of PI-RADS ≥ 4
and for the localization of csPCa lesions. DL studies have been performed with relatively
small datasets so far, and there is a need for studies that evaluate the performance of DL
using larger training datasets. Shared decision making between DL and radiologists has
shown potential to improve diagnostic performance.
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Appendix A

Table A1. CLAIM: Checklist for Artificial Intelligence in Medical Imaging [19].

Section/Topic No. Item

Title/Abstract

1 Identification as a study of AI methodology, specifying the category of technology used (e.g., deep learning)

2 Structured summary of study design, methods, results, and conclusions

https://www.mdpi.com/article/10.3390/life12101490/s1
https://www.mdpi.com/article/10.3390/life12101490/s1
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Table A1. Cont.

Section/Topic No. Item

3 Scientific and clinical background, including the intended use and clinical role of the AI approach

4 Study objectives and hypotheses

Methods

Study Design 5 Prospective or retrospective study

6 Study goal, such as model creation, exploratory study, feasibility study, and non-inferiority trial

Data 7 Data sources

8 Eligibility criteria: how, where, and when potentially eligible participants or studies were identified
(e.g., symptoms, results from previous tests, inclusion in registry, patient-care setting, location, dates)

9 Data pre-processing steps

10 Selection of data subsets, if applicable

11 Definitions of data elements, with references to Common Data Elements

12 De-identification methods

13 How missing data were handled

Ground Truth 14 Definition of ground truth reference standard, in sufficient detail to allow for replication

15 Rationale for choosing the reference standard (if alternatives exist)

16 Source of ground-truth annotations; qualifications and preparation of annotators

17 Annotation tools

18 Measurement of inter- and intrarater variability; methods to mitigate variability and/or resolve
discrepancies

Data Partitions 19 Intended sample size and how it was determined

20 How data were assigned to partitions; specify proportions

21 Level at which partitions are disjoint (e.g., image, study, patient, institution)

Model 22 Detailed description of model, including inputs, outputs, and all intermediate layers and connections

23 Software libraries, frameworks, and packages

24 Initialization of model parameters (e.g., randomization, transfer learning)

Training 25 Details of training approach, including data augmentation, hyperparameters, and number of models
trained

26 Method of selecting the final model

27 Ensembling techniques, if applicable

Evaluation 28 Metrics of model performance

29 Statistical measures of significance and uncertainty (e.g., confidence intervals)

30 Robustness or sensitivity analysis

31 Methods for explainability or interpretability (e.g., saliency maps), and how they were validated

32 Validation or testing on external data

Results

Data 33 Flow of participants or cases, using a diagram to indicate inclusion and exclusion

34 Demographic and clinical characteristics of cases in each partition
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Table A1. Cont.

Section/Topic No. Item

Model
performance 35 Performance metrics for optimal model(s) on all data partitions

36 Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)

37 Failure analysis of incorrectly classified cases

Discussion

38 Study limitations, including potential bias, statistical uncertainty, and generalizability

39 Implications for practice, including the intended use and/or clinical role

Other
information

40 Registration number and name of registry

41 Where the full study protocol can be accessed

42 Sources of funding and other support; role of funders
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