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Real-time threshold determination
of auditory brainstem responses
by cross-correlation analysis

Haoyu Wang,1,2,3,4,6 Bei Li,1,6 Yan Lu,4 Kun Han,1 Haibin Sheng,1,2,3 Jialei Zhou,5 Yumeng Qi,4 Xueling Wang,1,2,3

Zhiwu Huang,1,2,3 Lei Song,1,2,3,* and Yunfeng Hua1,2,3,4,7,*

SUMMARY

Auditory brainstem response (ABR) serves as an objective indication of auditory
perception at a given sound level and is nowadays widely used in hearing function
assessment. Despite efforts for automation over decades, ABR threshold deter-
mination by machine algorithms remains unreliable and thereby one still relies on
visual identification by trained personnel. Here, we described a procedure for
automatic threshold determination that can be used in both animal and human
ABR tests. Themethod terminates level averaging of ABR recordings upon detec-
tion of time-locked waveform through cross-correlation analysis. The threshold
level was then indicated by a dramatic increase in the sweep numbers required
to produce ‘‘qualified’’ level averaging. A good match was obtained between
the algorithm outcome and the human readouts. Moreover, the method varies
the level averaging based on the cross-correlation, thereby adapting to the
signal-to-noise ratio of sweep recordings. These features empower a robust
and fully automated ABR test.

INTRODUCTION

The auditory brainstem responses (ABRs) are brain electrical potential changes due to synchronous

neuronal activities evoked by suprathreshold acoustic stimuli (Jewett et al., 1970). These responses are

detectable using non-invasive surface electrodes placed on the scalp of the test subject and thereby widely

used for hearing function assessment. In rodent and cat, a typical ABR waveform is composed of initial five

peaks in the early onset of sound-evoked potentials, representing synchronous activities arising from pro-

jections along the auditory ascending pathway including auditory nerve, cochlear nucleus, superior olivary

complex, lateral lemniscus, and inferior colliculus, respectively (Henry, 1979; Melcher et al., 1996), whereas

human has slightly different peak generators as demonstrated with intracranial recordings (Moller and Jan-

netta, 1983) and neuromagnetic responses (Parkkonen et al., 2009). Nowadays, ABRs are of high clinical

relevance for objective analysis of hearing function, especially for newborn hearing screening, screening

for auditory neuropathy, acoustic neuroma, and central hearing loss (Lewis et al., 2015; Roeser et al.,

2007), as well as possible in the future for assessing ‘‘hidden hearing loss’’ (Kujawa and Liberman, 2009;

Mehraei et al., 2016; Ridley et al., 2018).

Although the ABR test itself is an objective measurement, the determination of threshold involves human

interpretation of the ABR waveform. The readout of ABR threshold requires a trained personnel to super-

vise waveform recognition, which is labor demanding. Besides, such interpretations oftentimes are subjec-

tive and may introduce errors that vary from person to person depending on his/her skill and experience,

especially in cases with atypical waveform or with high background noise (Vidler and Parkert, 2004). In order

to accurately detect mild hearing threshold elevation in the diagnosis of, e.g., progressive hearing loss

(Barreira-Nielsen et al., 2016) and age-related hearing loss (Gates and Mills, 2005; Sergeyenko et al.,

2013), unbiased automatic approaches with high precision and reliability are essential, particularly when

screening is involved. Over decades, many attempts were made to automate the procedure based on,

e.g., (1) waveform similarity by means of comparing either existing templates (Davey et al., 2007; Elberling,

1979; Valderrama et al., 2014) or matching features learned by artificial neural network from human anno-

tation (Acır et al., 2006; Alpsan and Ozdamar, 1991; McKearney and MacKinnon, 2019; Sanchez et al., 1995;

Vannier et al., 2002); (2) waveform stability quantified by cross-correlation function between single-sweeps
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(Bershad and Rockmore, 1974; Weber and Fletcher, 1980), interleaved responses (Berninger et al., 2014;

Ozdamar et al., 1994; Xu et al., 1995), or responses at adjacent stimulus levels (Suthakar and Liberman,

2019); (3) the ‘‘signal quality’’ through scoring procedures like F-ratios (Cebulla et al., 2000; Don and

Elberling, 1994; Elberling and Don, 1984; Sininger, 1993); (4) neurophysiological parameters from fitting

the responses to different stimulus intensities (Nizami, 2002; Schilling et al., 2019). However, owing to het-

erogeneity in inter-subject waveform and signal-to-noise-ratio (SNR) introduced by variations in test sub-

ject conditions, electrode placement/impedance, as well as acquisition settings, the accurate threshold

determination is only possible under a narrow range of experimental settings, which hampers direct com-

parisons of ABR results across laboratories.

In this study, we proposed an automated approach for real-time ABR threshold determination. Instead of

using a prefixed sweep number, level averaging was instructed based on the outcomes of cross-correlation

analysis during ongoing sweep acquisition. Near-threshold stimuli feature a sharp increase in the end

sweep number upon the detection of time-locked response. We further explored the potential of using

this feature for the threshold determination in human subjects, and the algorithm outcomes were validated

by the human readouts of the same ABR level representations.

RESULTS

Termination of on-going averaging by cross-correlation analysis

ABRs registered by surface electrodes are embedded in high-level background activities and system noise.

Smooth baseline and clear waveform, if present, are obtained after averaging over hundreds of sweeps.

The number for averaging, however, depends on the amplitude of the evoked response, which varies be-

tween test subjects due to variations in, for instance, skull sizes, electrode impedances, and placement that

determine the distance from the peak generator and the vector projection to the electrodes. Within one

recording session, these experimental parameters are usually fixed and the baseline activities at different

stimulus levels are comparable, allowing signal-to-noise ratio (SNR) quantification. It is expected that

strong responses from high-level stimuli quickly reach confident SNR level, whereas weak response evoked

by low level stimulus requires more averaging and for subthreshold recordings the SNR cannot be

improved by level averaging (Figure 1A).

Based on the above notions, we designed a procedure to test whether the change in sweep number is

required for the average response at different stimulus levels to reach a certain SNR level. Such change

can produce unbiased confident threshold reading. In detail, at a given stimulus level recorded sweeps are

loaded into three memory buffers (Figure 1B, yellow boxes) and cross-correlation coefficients (CCs) are

computed between two of three group averages (green boxes, see Figure S1 for examples). If a time-locked

response, irrespective of wave latencies and shapes, is present, two group averages overlap without certain

time shift, and thereby the obtained CC peak will be found within a small range of signal lag from zero

(L, magenta boxes). Three parallel runs (red box) can effectively reject false positives caused by overlapped

random noise with similar peak latencies. Next, the correlation analysis is iterated with increasing sweep

numbers (the inner loop). When the measured signal lags in all three runs are smaller than L, the response

was then considered as time locked by the algorithm and indexed with the end sweep number. Upon the

absence of a time-locked response, the upper limit for iteration count (N) is used to terminate nonproductive

attempts. Finally, the outer loop is implemented to scan the threshold response with decreasing stimulus

levels and the stop command is triggered upon two consecutive levels that reached the iteration limit.

ABR threshold determination in mouse

To test whether the proposed algorithm could determine the ABR threshold reliably, we recorded from ten

mice (three wild-type adult C57BL/6 mice of normal hearing, two wild-type adult CBA mice experienced

noise exposure and five telomerase knock-out mice with early-onset age-related hearing loss; data are

pooled in this study) dual-sweep ABR sets (minimum level averaging allowed by the BigSig software) start-

ing from 90 dB (sound pressure level, SPL) to 0 dB with a step size of 5 dB. The raw data were corrected for

baseline fluctuations through a smoothing spline fit before being processed by the algorithm.

Figure 2 presents awalkthroughof the procedure. First, an example of level series is plotted (Figure 2A) and the

visually identified threshold denoted at 30 dB SPL with an asterisk. In the algorithm, three level averages (Fig-

ure 2B) were used to compute the correlation coefficient (CC). The changes in CC peak amplitude (Figure 2C)

and the corresponding signal lag (Figure 2D) upon different stimulus levels were then obtained to further
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explore whether the two derivatives can predict the threshold. Upon reducing the stimulus strength, a mono-

tonic decrease was observed in the CC peak amplitudes, whereas near-threshold levels feature a sudden jump

from small absolute lags (%2 data points or less thanG0.082ms for suprathreshold levels) to big absolute lags

with large variation at subthreshold levels. This result suggested that the signal lag is a better response detec-

tor at near-threshold levels, thus justified its use in the algorithm to demarcate the threshold boundary.

Next, to test whether the algorithm could find the ABR threshold in real time, we grouped 60 repeats (120

sweeps) as a batch then increment the group averaging by iterations (multiply by 120 for end sweep num-

ber) until positive results, which were scored by triple cross-correlation analysis, were returned by the algo-

rithm. As shown in Figure 2E, the normalized count was small at the suprathreshold levels, whereas it

increased rapidly at near-threshold levels and reached its upper limit at subthreshold levels. Therefore,

the estimated threshold was defined above the stimulus level at which the iteration upper limit was reached

(the highest subthreshold level). Further attempt was made tomodel the change in iteration counts at near-

threshold levels. We acquired an ABR dataset with 1-dB step size (Figure S2A) and fitted with both expo-

nential and sigmoidal functions (Figure S2B). The visually identified threshold was found approximately at

the stimulus level, which yields 1.0 and 0.9 on the best-fitted exponential or sigmoidal function. In addition,

we found the algorithm outcome was not strongly influenced by either the allowed lag for response detec-

tion (Figure S3A) or the applied iteration upper limit (Figure S3B) in the cross-correlation analysis, suggest-

ing that the threshold determination is robust and does not require parameter fine tuning.

ABR threshold determination in human

To test whether the automated approach applied to human ABR, we acquired ABR datasets from eight

human participants. Because intermediate single sweeps are not available on the commercial device, alter-

natively we provided the algorithms with recorded average responses over different sweep numbers (see

method details). Example average responses (Figure 3A), as well as group averages (Figure 3B), are shown
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Figure 1. Principle and algorithm design for automated threshold determination

(A) Typical level representation of ABRs. To obtain stable waveform, one needs less level averaging of sweep recordings at strong stimulus (green) than that

of weak response (magenta), whereas level averaging cannot improve the SNR of subthreshold recordings containing no response (blue).

(B) Algorithm flowchart. The test starts with the highest stimulus level (e.g., 90 dB SPL for mouse ABR) and a reset iteration count. Recorded sweep batches

(e.g., 120 sweeps for mouse ABR) are cumulatively averaged in three data buffers (yellow boxes, E{A}, E{B} and E{C}). Cross-correlation operation (xcorr) is

carried out in each two of three group averages (green boxes), which yields three CC peaks and their corresponding signal lags. If the absolute lag is less than

the allowed value (L% 2 data points for mouse ABR), the outcome (magenta boxes, C1–C3) returns true, suggesting a positive response. In cases of all three

positive outcomes (red box), the procedure descends to lower stimulus level (red line, the outer loop), otherwise the same stimulus level will be repeated

with more sweeps (the inner loop, blue line). An iteration upper limit (blue box, e.g., N = 7 for mouse ABR) is implemented to jump out the inner loop upon

subthreshold stimulus and flag no response.
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at tested stimulus levels (60 dB SPL to 0 dB with a step size of 5 dB). The obtained CC peak amplitudes and

the signal lags are plotted as a function of the stimulus levels (Figures 3C and 3D). Note that a block of 500

sweeps was added per iteration; the upper limit of iteration count was set to seven (3,500 sweeps) and a

larger decision boundary of lag (%6 data points or less than G0.3 ms) for positive responses was imple-

mented due to broader waveforms in human ABR evoked by click sound. As shown in Figure 3E, the iter-

ation count increases quickly to reach the upper limit near the visually identified threshold level.

Comparison between expert and algorithm-determined thresholds

In order to evaluate the performance of our method, we recruited five human experts to assess the same

ABR level series independently and compared their readouts of the thresholds with the algorithm outcomes
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Figure 2. Cross-correlation analysis of mouse ABR

(A) Example level representation (averaging over 840 sweeps) of a mouse. The visually identified threshold level was 20 dB SPL (asterisk).

(B) Group averages generated for cross-correlation analysis. The threshold determined by the algorithm (asterisk) was 20 dB.

(C) Plot of the obtained CC peak amplitude versus the level series.

(D) Plot of signal lag at the CC peak versus the level series. At suprathreshold levels (dots, R 20 dB), small signal lags were consistent across three parallel

runs (0.33 G 0.56 data points, n = 15 levels), whereas at subthreshold levels (cycles, < 30 dB) large absolute values and variability were observed (54.92 G

39.36 data points, n = 4 levels, two-sample t test: ****p < 10�5).

(E) Result from a test run of the algorithm. The iteration counts were plotted as a function of the level series. Detection of time-locked responses (L% 2 data

points) required more iterations of averaging at suprathreshold (black dots, 1.40G 1.06, n = 15 levels) than subthreshold stimulus levels (cycles, N = 7). After

two consecutive hits at the iteration upper limit (N = 7, dash line), the algorithm flags no response for the applied stimulus level (cycles) and triggered a stop

command to avoid nonproductive attempts with weaker stimuli. The algorithm-determined threshold matches visual identification. Data are represented as

mean G SD.

ll
OPEN ACCESS

4 iScience 24, 103285, November 19, 2021

iScience
Article



(Table 1). Both approaches reached similar conclusions for bothmouse and human ABR (Figures 4A and 4B),

validating reliability of the algorithm. Moreover, averaging over varied sweep numbers as used in the algo-

rithm does not affect the threshold determination by either machine or human (Figures S4A and S4B). By

further quantifying the minimum sweep number required by the algorithm (comparing results from the fixed

number for all stimulus levels, 840 for mouse and 3,500 for human ABR), we concluded that the algorithm

avoided 66.72 G 4.98% and 43.19 G 12.48% of the total sweeps, respectively (Figures 4C and 4D).

DISCUSSION

Over decades several statistical approaches have been proposed to automatically detect ABR waveforms.

Cross-correlation is one of the most favorite methods, as it can detect temporally stable waveforms with

high sensitivity and robustness in a template-free fashion. This is crucial for recognizing ABRs, which
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Figure 3. Threshold determination of human ABR by cross-correlation analysis

(A) Example level representations (averaging over 3,500 sweeps) of a human participant with the visually identified threshold at 15 dB (asterisk).

(B) Group averages that used in the algorithm for computing the cross-correlation. Same threshold (15 dB, asterisk) was determined by the algorithm.

(C) Plot of the obtained CC peak amplitudes versus the level series.

(D) Plot of signal lag at the CC peak versus the level series. At suprathreshold levels (dots,R 15 dB), small mean value of the signal lags was obtained (1.30G

1.84 data points, n = 10 levels), whereas the subthreshold level (<15 dB, cycles) features a significantly large and variable lag value (23.00G 24.93 data points,

n = 3 levels; two-sample t test, ****p < 10�5).

(E) Result from an algorithm test run. The iteration counts were plotted as a function of the level series. Detection of the true responses by the cross-

correlation analysis (L % 6 data points) within the iteration upper limit (N = 7, dash line) flags the suprathreshold levels (dots), which is consistent with those

identified visually. Data are represented as mean G SD.
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oftentimes present large intersubject variability in terms of waveform shape and latency, from different

levels of background noise. However, prior attempts using this approach relied on arbitrary decision

boundary for response detection, for instance, minimum required CC (Berninger et al., 2014; Bershad

and Rockmore, 1974; Suthakar and Liberman, 2019;Weber and Fletcher, 1980) or maximum allowed latency

shift (Galbraith and Brown, 1990; Xu et al., 1995). Preselection of such criteria can be problematic in practice

because even for the same test subject, comparable SNR across recording sessions is not guaranteed

owing to variabilities in electrode impedance and placement, as well as level averaging settings preferred

by individual experimenter. Thus, it is unlikely that a universal response decision boundary can be applied

on all ABR sets without introducing detection error, barring its usage in cases like cross-institution collab-

oration efforts where data pooling is needed. Our approach achieves the ABR threshold determination by

monitoring the relative change in the sweep numbers that are required for detectable ABRs in cross-cor-

relation between grouped level averages. This is, in our opinion, fundamentally different from the existing

approachesmentioned above, because it does not rely on a static SNR requirement for threshold detection

but rather for a dynamic instruction of the level averaging, which in turn can be used to inform the ABR

threshold in a baseline-SNR-adaptive manner.

In line with prior study (Xu et al., 1995), the resulted signal lag of CC peak has proven to be a reliable cri-

terion for detecting the time-locked responses with high sensitivity, but in principle, other quantifications

like CC peak amplitude (Figure 2C) or single-point F-distribution (data not shown) can also be used in the

algorithm. At near-threshold levels, a rapid increase in the end sweep number was observed (Figures 2E

and 3E). It is not surprising because in order to reach confidant SNR, small responses require increased

averaging for baseline noise reduction, which means that the end sweep numbers quantitatively noted

by the algorithm reflect the relative change in the SNR at different recording levels. Besides, this approach

does not heavily rely on the selection of detection parameters. First, sub- and supra-threshold level repre-

sentations feature large differences in the obtained signal lags (Figure 2D), which offers a wide range of

decision boundary selection of lag without affecting detection accuracy (Figure S3A). Second, raising

the upper limit of the end sweep number only leads to a small shift from the estimated threshold (Fig-

ure S3B) due to the exponential increase of averaging at near-threshold levels (Figure S2B), So far, the

Table 1. Comparison between algorithm outcome and human readout

Algorithm outcomes Human readouts
Threshold (by

execution judges) # sweepsThreshold # sweeps Judge1 Judge2 Judge3 Judge4 Judge5

Mouse ID

m01 (C57, wt) 20 4,080 20 20 15 20 25 20.0 14,280

m02 (C57, wt) 25 4,320 20 20 20 25 20 20.0 13,440

m03 (C57, wt) 20 4,560 15 20 15 15 20 16.7 14,280

m04 (terc�/�) 30 4,320 25 25 25 25 25 25.0 12,600

m05 (terc�/�) 25 3,600 25 20 15 25 25 23.3 13,440

m06 (terc�/�) 55 2,880 55 55 55 40 60 55.0 8,400

m07 (terc�/�) 25 4,440 55 25 25 25 25 25.0 13,440

m08 (terc�/�) 60 2,760 60 60 55 60 55 58.3 7,560

m09 (CBA, noise exposed) 50 2,040 50 50 50 50 55 50.0 6,720

m10 (CBA, noise exposed) 70 2,640 75 70 70 70 75 71.7 5,880

Human participant ID

h01(73 y.o.) 35 30,000 20 35 25 35 25 28.3 52,500

h02(56 y.o.) 40 54,000 30 35 35 35 25 33.3 73,500

h03(50 y.o.) 15 55,500 10 10 5 15 10 10.0 126,000

h04(58 y.o.) 20 69,000 20 15 20 25 10 18.3 115,500

h05(54 y.o.) 25 69,000 20 25 20 25 30 23.3 105,000

h06(23 y.o.) 5 40,500 5 5 5 5 0 5.0 115,500

h07(23 y.o.) 25 69,000 15 10 15 15 15 15.0 105,000

h08(30 y.o.) 35 45,000 30 30 35 30 20 30.0 84,000
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precision of threshold determination is constrained by the step size of level sampling. Modeling the ob-

tained end sweep number change (Figure S2) and interpolating the level representation may produce

higher precision. Further development of this approach is to combine with level sampling strategy

including progressively reduced step size (Cebulla and Sturzebecher, 2015) and increased batch size of

sweeps per iteration at near-threshold levels so that the model fitting can be improved by more effective

data points in the transition. Moreover, in this study the batch size for level averaging was determined

empirically (120 sweeps for mouse ABR and 500 sweeps for human ABR). The selection of this size could

become more interactive, e.g., based on the algorithm outcome at higher loudness level, as we know

weak responses lead to more level averaging. By doing so, cumulative system idling upon trigger of

each block recording would be minimized.

In mouse ABR, the proposed method was proven reliable in threshold determination with a mean differ-

ence of 1.84 dB (n = 10) and maximum discrepancy of G5 dB between the algorithm outcomes and human

readouts (Figure 4A). Although the detection accuracy is comparable with that of the most up-to-date

approach (Suthakar and Liberman, 2019), our algorithm has the advantage of not requiring a calibrated

preset criterion and has more robust outcome. Validation with human ABR resulted in only a slight

decrease in detection accuracy (mean and maximum difference, 4.58 and G10 dB; Figure 4C) than that
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Figure 4. Comparisons between the thresholds determined by machine and human

(A) For mouse datasets, a close match was found between the algorithm-determined thresholds and those averaged from

three of five independent human readouts (maximum and mean discrepancies, 5 dB and 1.83 G 2.45 dB, n = 10 animals).

Linear fit: adjust R2 = 0.99.

(B) Comparison between the total sweeps used in the conventional level averaging (840 sweeps at each level, left bar) and

in the algorithm (with varying numbers, right bar). The latter requires 66.72 G 4.98% fewer sweeps (n = 10 animals). Note

that the sweeps were counted from all suprathreshold and two successive subthreshold levels.

(C) As for human datasets, similar thresholds were reported by both the algorithm and human readout (maximum and

mean discrepancies, 10 dB and 4.58 G 3.88 dB, n = 8 human subjects). Linear fit: adjust R2 = 0.93.

(D) The total number of sweeps used in the conventional level averaging (left bar) versus in the algorithm (right bar). The

latter requires 43.19 G 12.48% fewer sweeps (n = 8 human subjects). Data are represented as mean G SD.
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of mouse ABR. Moreover, the ABR sets with average responses over varying sweep numbers as in the al-

gorithm do not seem to introduce additional difficulty for visual threshold determination (Figures S4A

and S4B). This is not surprising because excessive level averaging at suprathreshold levels is not expected

to improve the threshold determination. This feature is extremely attractive for two reasons. First, it pro-

vides minimal quality control for unambiguous waveform recognition for both human and machine. Such

standardized data collection will benefit artificial-intelligence-based approaches by improving the quality

of training data (McKearney andMacKinnon, 2019). Second, when to terminate averaging without compro-

mising the quality of the recording is an important decision making during ABR recording (Don and Elberl-

ing, 1996; Madsen et al., 2018); this method has the potential to instruct the efficient test by avoiding

nonproductive recordings at supra-threshold levels.

Limitations of the study

This is a proof-of-principle study for detecting time-locked responses in cumulatively averaged level rep-

resentations using cross-correlation analysis. Nevertheless, solo use of this method is not recommended in

the clinical routines, as extremely poor recording quality may introduce unexpected errors. Under such cir-

cumstances raw recordings should be accessible to the audiologists for quality control and manual debug,

which in turn is crucial for further improvement of the approach. Besides, the algorithm is expected to

shorten test duration by earlier stop of averaging at supra-threshold levels. The exact saved time in a

real setting remains to be quantified on an ABR setup with integration of this algorithm in the control soft-

ware, which is currently under engineering. Also note that comparison of the test duration with other auto-

mated routines that have been already implemented in some laboratories was not performed. As some of

them also automatically reduce the sweep number when a high-amplitude response is detected, much less

difference in the test duration may be expected.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Animals

B Human subjects

d METHOD DETAILS

B ABR recording

B Cross-correlation analysis of mouse ABR

B Cross-correlation analysis of human ABR

B Threshold determination by human readout

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.103285.

ACKNOWLEDGMENTS

We thank Dr. Hao Wu for the support of this study. We thank Drs. Guangming Chen and Lin Liu for contrib-

uting terc�/- mice. We thank Eric Song for comments on the manuscript. This study was supported by

Shanghai Huangpu District Industry Support Fund (XK2019011 to Y.H.), the National Science Foundation

of China (81770995 to L.S., 81700903 to B.L., and 81800901 to Y.H.) and the Shanghai Key Laboratory of

Translational Medicine on Ear and Nose diseases (14DZ2260300).

AUTHOR CONTRIBUTIONS

Y.H. designed the study; Y.H. and L.S. supervised the study; B.L., K.H., X.W., and Z.H. contributed the hu-

man ABR datasets; Y.L. and Y.Q. performed the mouse ABR recording; H.W. and Y.H. wrote the algorithm

ll
OPEN ACCESS

8 iScience 24, 103285, November 19, 2021

iScience
Article

https://doi.org/10.1016/j.isci.2021.103285


and analyzed the data with the help of Y.L., Y.Q., H.S., J.Z., and L.S.; Y.H. wrote the manuscript with the help

of H.W. and L.S.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: May 7, 2021

Revised: August 25, 2021

Accepted: October 13, 2021

Published: November 19, 2021

REFERENCES
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact Yunfeng Hua (yunfeng.hua@shsmu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All recorded ABR datasets supporting the current study have been deposited at Mendeley Data and are

publicly available as of the date of publication. The DOI is listed in the key resources table.

d The codes were written in MATLAB scripts and shared on GitHub (https://github.com/SHIPM-HuaLab/

automatic-ABR-threshold-detection).

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were reviewed and approved by the Institutional Authority for Laboratory Animal Care

(HKDL2018503) and the Hospital Ethics Committee for Medical Research (SH9H-2019-T79-1).

Animals

C57BL/6 and CBAmice were purchased from Sino-British SIPPR/BK Lab Animal Ltd. (Shanghai, China). The

telomerase-knock-out mice (terc-/-) were gifts from Prof. Lin Liu (Nankai University, China) and bred in

house.

Human subjects

Eight human participants of both genders (range from 23 to 73 years old, Table 1) were recruited by

Hearing and Speech Center, Shanghai Ninth People’s Hospital and consent forms were signed before

the experiment. This study was conducted at the Ear Institute and the Hospital Hearing and Speech

Center.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw ABR recordings This paper Mendeley Data (https://doi.org/10.17632/4yb9772dff.1)

Experimental models: Organisms/strains

Mouse: CBA/Ca Sino-British SIPPR/BK Lab.Animal

Ltd (Shanghai, China)

CBA/Ca/Bkl

Mouse: C57BL/6 Sino-British SIPPR/BK Lab.Animal

Ltd (Shanghai, China)

C57BL/6/Bkl

Mouse: terc-deficient (G2 and G3) Sung et al., 2014, Gifts from Prof. Liu

Lin (Nankai University, China)

Terc-/-

Software and algorithms

Automatic ABR Threshold Determination This paper https://github.com/SHIPM-HuaLab/automatic-

ABR-threshold-detection

MATLAB including Curve fitting and

Statistics Toolbox

MathWorks, Inc release 2017b
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METHOD DETAILS

ABR recording

Mouse ABRs were recorded via a TDT RZ6/BioSigRZ system (Tucker-Davis Tech. Inc., US) in a sound-proof

chamber as previously described (Lin et al., 2019). In brief, 7-week-old animals were anesthetized through

intraperitoneal injection of Chloral hydrate (500 mg/kg). During the recording, animal body temperature

was maintained at 37�C using a regulated heating pad (Harvard Apparatus, US) with a rectal thermal probe

placed under the body. Evoked potentials were registered via subdermal needle electrodes (Rochester

Electro-Med. Inc., US) placed at the animal’s vertex (active electrode), left infra-auricular mastoid (reference

electrode) and right shoulder region (ground electrode). Recorded signals were collected by Medusa pre-

amplifier then send to RZ6 station via fiber optics and amplified 50003. Sound stimuli were generated by

SigGen RP (Tucker-Davis Tech. Inc., US). 3-ms tone pips (with 1 ms rise and fall) at 16 kHz were delivered

free-field via an MF1 speaker (Tucker-Davis Tech. Inc., US) positioned in the front of the animal 10 cm

away from the vertex. Offline calibrations were performed by using software BioSigRZ with the microphone

placed 10 cm (�4 inches) away from the speaker. The system generated correction file were then used to

produce the calibration file. Acoustic stimuli with alternating polarity were presented 20 stimuli per second

and the evoked potentials were collected at 24 kHz sampling rate. Each recording was averaged from two

sweeps (minimum allowed by the BioSig software, No. Averages = 2 in the BioSig Acquisition Channel

Setup) and repeatedmanually at each loudness level. Artifact rejection level was set at 35% (mean rejection

voltage 20.5 mV). Sound level series started from 90 to 0 dB sound pressure level (SPL) with 5-dB step size.

For one animal, the stimulus level series were repeated from +10 to –10 dB SPL around the estimated

threshold with 1-dB step (Figure S2).

Human ABRs were recorded by a commercial ABR device (Intelligent Hearing Systems, US) with Smart EP

software from eight volunteers aged 23-73 years without the knowledge of their medical conditions. Sound

stimulation (100 ms duration, rectangular envelopes) was generated and presentedmonaurally through ER3

insert earphones with foam tips. Stimuli were presented at a rate of 37.1/sec with alternating polarity. Elec-

trode impedance was < 5 kU and inter-electrode impedance was withinG 1 kU. The artifact rejection level

was < 31% (rejection voltage 31 mV) to exclude contaminations from EEG and myogenic potentials. The

evoked potentials were collected with 20 kHz sampling rate and 3100,000 amplification. The bandpass fil-

ter was set at 100-3000 Hz. Average responses over 500, 1000, and 2000 sweeps were acquired and

repeated three times for the level series starting from 60 to 0 dB SPL with 5-dB step size.

Cross-correlation analysis of mouse ABR

Sweeps were loaded in three memory buffers. Cross-correlation (MATLAB Central File Exchange Function

xcorr, MathWorks, US) was computed from two out of three group averages. This resulted in correlation

coefficients as a function of signal lag between two group averages. As the ABRs are time-locked to the

stimulus onset, they can be characterized by cross-correlation parameters including small latency delay

on the lag-time axis at the point of the maximal coefficient (Xu et al., 1995). In this study, maximum allowed

lag (L) for a true ABR signal was set toG 2 data points from time zero (equivalent toG 0.082 ms or 1% of the

analyzed temporal window). Three such tests were implemented in parallel in order to minimize false pos-

itives caused by coincidently overlapped background activities through rejecting inconsistent lag values.

Moreover, we monitored the change of correlation coefficient peak amplitude as an independent measure

of SNR (Figure 2C).

The test started with the loudest stimulus level (90 dB SPL) and was reduced by a step size of 5 dB. At each

given stimulus level, the sweep number used to produce the group average was increased by iterations and

the end sweep number was noted upon detected response determined by the cross-correlation analysis.

For each iteration, sweeps were added in batches (120 sweeps) and an upper limit was set (840 sweeps) to

avoid nonproductive attempts at subthreshold levels. Upon detected responses, the iteration was then

switched to lowered stimulus level, until the upper limit was reached for two consecutive nonproductive

trails. The estimated threshold was the lowest applied stimulus level at which the upper iteration limit

was not yet reached.

The transition of the end sweep numbers between supra- and subthreshold levels was modeled (Figure S2).

Both sigmoidal (1) and exponential functions (2) were employed to fit the relationship between the normal-

ized iteration count C’ (equivalent to the sweep number) and the stimulus level S using a nonlinear least
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square method in MATLAB (Curve Fitting Toolbox, MathWorks, US). In the functions, a1 = 0.6 and a2 = 0.2

were fixed for calibrated lag criterion (L = 2), whereas b1 and b2 were obtained by fitting.

Sigmoid model : C0ðSÞ = 1

1+ ea1ðS�b1Þ (Equation 1)

Exponential model : C0ðSÞ = e�a2ðS�b2Þ (Equation 2)

Cross-correlation analysis of human ABR

For human ABR, group average responses were recorded sequentially and used directly as inputs of the

algorithm. Group averages over 500, 1000 and 2000 sweeps were recorded, whereas averages over

1500, 2500, 3000 and 3500 sweeps could be obtained by linear combination (3) where E{m}, E{n} and

E{m + n} denote the time averages over m, n and m + n sweeps, respectively.

E{m + n} =
m,E{m}+ n,E{n}

m+ n
(Equation 3)

The maximum allowed lag for a true response was set to % 6 data points from time zero (equivalent to G

0.3 ms or 2% of the analyzed temporal window). The iteration upper limit was seven, corresponding to

3500 sweeps. The estimated threshold was the lowest stimulus level with a detectable response.

Threshold determination by human readout

To estimate the ground-truth thresholds of the recorded mouse and human ABRs, average responses of all

level series were provided to five clinicians to report the visually identified thresholds independently. The

test subject identities were blinded to the judges. Either the fixed sweep number (the conventional aver-

aging) or the varying numbers used in the algorithm (the algorithm averaging) was applied to compute the

level averaging. The thresholds were determined by three out of five execution judges (with the highest and

the lowest value excluded). The readouts were used to evaluate the accuracy of the algorithm outcomes

(Table 1).

QUANTIFICATION AND STATISTICAL ANALYSIS

All data analyses including statistical tests were performed using self-written scripts and built-in functions

in MATLAB (release 2017b) including the Curve Fitting and the Statistics Toolbox (MathWorks, Inc.). The

group comparisons were done using two-unpaired t-tests (ttest2): Figures 2C, 2D, 3C, and 3D as well as

paired t-tests (ttest): Figures 4B and 4D. The significance level of statistical tests was denoted as n.s. for

p-value > 0.05, * for p < 0.05, ** for p < 0.01, *** for p < 0.001 and **** for p < 0.0001. More statistical details

of experiments can be found in the figure legends.
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