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Abstract: The use of metal nanoparticles is considered a good alternative to control phytopathogenic
fungi in agriculture. To date, numerous metal nanoparticles (e.g., Ag, Cu, Se, Ni, Mg, and Fe)
have been synthesized and used as potential antifungal agents. Therefore, this proposal presents a
critical and detailed review of the use of these nanoparticles to control phytopathogenic fungi. Ag
nanoparticles have been the most investigated nanoparticles due to their good antifungal activities,
followed by Cu nanoparticles. It was also found that other metal nanoparticles have been investigated
as antifungal agents, such as Se, Ni, Mg, Pd, and Fe, showing prominent results. Different synthesis
methods have been used to produce these nanoparticles with different shapes and sizes, which
have shown outstanding antifungal activities. This review shows the success of the use of metal
nanoparticles to control phytopathogenic fungi in agriculture.
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1. Introduction

Since the beginning of agriculture, the biggest challenge has been pests and diseases
produced by insects, bacteria, fungi, and other pathogens present in the environment [1–3].
This leads to large losses of crops, which are reflected in production with low profits, that is
to say, earnings are directly affected [4,5]. Among the different pathogens, phytopathogenic
fungi cause various diseases in agriculture [6]. Fungi have the versatility of adaptation
to any medium and are capable of colonizing different substrates or media in extreme or
precarious environmental conditions. They can affect different stages of the crop, from
sowing to growth and production to postharvest [7,8].

Today, phytopathogenic fungi have mostly been controlled with chemical products,
which are cheap and easy to obtain on the market [9,10]. However, due to their indiscrimi-
nate use, they have created several problems such as environmental pollution, diseases in
humans and animals, and ecological imbalances [11,12]. In addition, the usage of chem-
ical agents has resulted in fungi developing more resistance, becoming stronger against
chemical products [13,14].

Currently, friendly and efficient alternatives for the environment are being used to
control phytopathogen fungi, such as biological control [15,16], plant extracts [17], and
essential oils [18–20]. Such alternatives have been beneficial and are therefore considered
as a good choice. However, these alternatives have some challenges, such as the effect of
delays, high acquisition costs, and constant applications that make them vulnerable [21,22].

Otherwise, another recently explored and applied route in agriculture is the use
of nanomaterials, which have been successfully applied in other fields such as energy,
medicine, and electronics [23–27]. Nanomaterials have become very important because
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their physicochemical properties are very different compared to bulk materials [28–30].
Furthermore, the shape, size, and composition of nanomaterials determine their physic-
ochemical properties [28–30]. These peculiarities have made nanomaterials applicable
in different areas. Specifically, in the field of agriculture, there are several nanomaterial
applications, such as in the production, processing, storage, packaging, and transportation
of agricultural products [31,32]. In production, nanomaterials offer ecological, efficient,
and modern alternatives that can be very useful for the management of phytopathogenic
diseases that can be used as bio-manufacturing agents, due to their easy handling and
production [33,34].

Different nanomaterials have shown excellent antifungal activities; therefore, they are
considered a good alternative to control phytopathogenic fungi [35–38]. Specifically, metal
nanoparticles have been widely studied; consequently, they have been tested and led to
significant results due to their excellent antifungal properties [39]. So far, numerous metal
nanoparticles have been synthesized and used to control phytopathogenic fungi [40–47].
However, there is a current lack of critical and detailed reviews of current progress in the
use of metal nanoparticles to control phytopathogenic fungi, as the currently available
reviews only partially analyse the use of metal-based nanoparticles for controlling these
pathogens [48,49].

Therefore, this review presents a comprehensive and detailed analysis of the current
progress on the application of metal nanoparticles for controlling phytopathogenic fungi
in agriculture. In the first instance, the possible mechanisms of action of nanoparticles
on phytopathogenic fungi are reviewed. Afterwards, the progress on the use of metal
nanoparticles as potential antifungal agents is reviewed in detail. Finally, conclusions and
future directions are presented.

2. Mechanisms Involved in Antifungal Activity of Nanoparticles

The use of nanoparticles is a novel route to control phytopathogenic fungi in agri-
culture because they have shown high antifungal activity across a wide diversity of phy-
topathogenic fungi [50,51]. Several factors have an influence over their antifungal activity,
such as the size distribution, shape, composition, crystallinity, agglomeration, and sur-
face chemistry of the nanoparticles [52,53]. For example, small nanoparticles favor the
surface area-to-volume ratio, which could promote their antifungal activity [54]. It is
well-known that these mentioned factors can be modified and controlled through synthesis
routes [55,56]. It has also been documented that the synthesis route can play an important
role in the antifungal activity, as sometimes metal precursors or surfactants are not easy
to remove from the nanoparticles. Therefore, the residues from the synthesis can modify
the surface chemistry of the nanoparticles and consequently influence their antifungal
activity [57]. Finally, another important factor is the species of phytopathogenic fungi, since
each specie has a different morphological structure.

As mentioned before, several factors influence the antifungal activity of the nanoparti-
cles. Therefore, it is necessary to know the interaction and action mechanism between the
metal nanoparticles and the phytopathogenic fungi. At present, various possible antifungal
action mechanisms of these nanoparticles have been proposed (see Figure 1).
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Figure 1. This is an illustration of the possible mechanisms of action of metal nanoparticles on
phytopathogenic fungi. These are as follows: (a) ions are released by nanoparticles and bind to
certain protein groups, which affect the function of essential membrane proteins and interfere with
cell permeability. (b) The nanoparticles inhibit the germination of the conidia and suppress their
development. (c) Nanoparticles and released ions disrupt electron transport, protein oxidation,
and alter membrane potential. (d) They also interfere with protein oxidative electron transport.
(e) They affect the potential of the mitochondrial membrane by increasing the levels of transcription
of genes in response to oxidative stress (ROS). (f) ROS induces the generation of reactive oxygen
species, triggering oxidation reactions catalyzed by the different metallic nanoparticles, causing
severe damage to proteins, membranes, and deoxyribonucleic acid (DNA), and interfering with
nutrient absorption. (g) The ions of the nanoparticles have a genotoxic effect that destroys DNA,
therefore causing cell death [58–62].

3. Antifungal Properties of Metal Nanoparticles

Metal nanoparticles have been successfully applied to control different pathogens [63–65].
In this same direction, there are numerous studies on the use of metal nanoparticles to
control phytopathogenic fungi in agriculture. Up to now, different nanoparticles have been
used to control phytopathogenic fungi. For instance, Ag, Cu, Fe, Zn, Se, Ni, and Pd have
shown outstanding antifungal properties. Therefore, a critical and detailed analysis of
current advances in the use of metal nanoparticles on phytopathogenic fungi is presented.

3.1. Ag Nanoparticles

Ag nanoparticles have been extensively investigated in different scientific fields due
to their antioxidant, antimicrobial, and anticancer properties as well as their character-
istics of biocompatibility, easy production, relatively low cost, and non-toxicity, among
others [66–72]. Due to these properties and their effective antifungal activities, Ag nanopar-
ticles have also been the most investigated nanoparticles to control phytopathogenic
fungi [73,74]. The main synthesis methods used to produce Ag nanoparticles to inhibit
the growth of phytopathogenic fungi are the chemical and biological routes because they
are easy to acquire and handle. In Figure 2, a generalized representation of the green or
biological synthesis of metallic nanoparticles is illustrated. It can be observed that several
factors can influence the synthesis of nanoparticles.
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Figure 2. A generalized representation of the green synthesis of metallic nanoparticles [75].

For biological systems, many extracts of plants and fungi have been used in the syn-
thesis of Ag nanoparticles [33,76–121]. In Table 1, the different extracts of plants and fungi
that have been used to produce Ag nanoparticles are reported. In the case of the chemical
route, several methods have been used to synthesize Ag nanoparticles, such as chemical
reduction, sol-gel, and microemulsion [122–130]. To a lesser extent, physical methods have
been used, such as high-voltage arc discharge and the irradiation method [131–133]. These
different methods have made it possible to synthesize Ag nanoparticles with outstanding
antifungal properties. Moreover, the biological syntheses present an additional benefit
because they are environmentally friendly. Finally, it is interesting to note that several
commercial Ag nanoparticles have been evaluated to inhibit the growth of phytopathogenic
fungi, and have shown outstanding antifungal properties.

Table 1. Characteristics and antifungal evaluations of Ag nanoparticles.

Nanoparticle Properties Antifungal Properties Ref.

Synthesis Method Size (nm) Shape Specie of Fungi Evaluation Method

Biological
synthesis

(M. charantia and
P. guajava)

17 and 25.7 Spherical A. niger, A. flavus, and
F. oxysporum In vitro [76]

Biological
synthesis

(M. azedarach)
23 Spherical V. dahliae In vitro and in vivo [77]

Biological
synthesis
(A. indica)

10–50 Spherical
A. alternata, S. sclerotiorum,

M. phaseolina, R. solani,
B. cinerea, and C. lunata

In vitro [78]

Biological
synthesis

(A. officinalis,
T. vulgaris,

M. pulegium)

50 Spherical A. flavus and P. chrysogenum In vitro [79]



J. Fungi 2021, 7, 1033 5 of 20

Table 1. Cont.

Nanoparticle Properties Antifungal Properties Ref.

Synthesis Method Size (nm) Shape Specie of Fungi Evaluation Method

Biological
synthesis

(S. hortensis)
- - F. oxysporum In vitro [80]

Biological
synthesis

(O. fragrans)
20 Spherical B. maydis In vitro [81]

Biological
synthesis
(P. glabra)

29 Spherical R. nigricans In vitro [82]

Biological
synthesis

(W. somnifera)
10–21 Spherical F. solani In vitro and in vivo [83]

Biological
synthesis

(P. vulgaris)
12–16 Spherical

Colletotrichum sp.,
F. oxysporum, F. acuminatum,
F. tricinctum, F. graminearum,

F. incarnatum, R. solani,
S. sclerotiorum, and

A. alternata.

In vitro [84]

Biological
synthesis

(V. amygdalina)
- - F. oxysporum, F. solani, and

C. canescent In vitro [85]

Biological
synthesis

(Z. officinale)
75.3 Spherical A. alternata and C. lunata In vitro [86]

Biological
synthesis

(C. sinensis)
- - Irenopsis spp., Diaporthe spp.,

and Sphaerosporium spp. In vitro [87]

Biological
synthesis

(A. absinthium)
- -

P. parasitica, P. infestans,
P. palmivora, P. cinnamomi,
P. tropicalis, P. capsici, and

P. katsurae

In vitro and in vivo [88]

Biological
synthesis

(M. parviflora)
50.6 Spherical H. rostratum, F. solani,

F. oxysporum, and A. alternata In vitro [89]

Biological
synthesis

(Green and black
teas)

10–20 Spherical A. flavus and A. parasiticus In vitro [90]

Biological
synthesis
(P. shell)

10–50 Spherical and
oval P. infestans and P. capsici In vitro [91]

Biological
synthesis

(Ajwain and neem)
68 - C. musae In vitro and in vivo [92]

Biological
synthesis
(T. patula)

15–30 Spherical C. chlorophyti In vitro and in vivo [93]

Biological
synthesis

(A. retroflexus)
10–32 Spherical M. phaseolina, A. alternata, and

F. oxysporum In vitro [94]
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Table 1. Cont.

Nanoparticle Properties Antifungal Properties Ref.

Synthesis Method Size (nm) Shape Specie of Fungi Evaluation Method

Biological
synthesis
(T. majus)

35–55 Spherical A. niger, P. notatum, T. viridiae,
and Mucor sp. In vitro [95]

Biological
synthesis

(T. foenum-graecum)
20–25 Spherical A. alternata In vitro [96]

Biological
synthesis
(Rice leaf)

3.7–29.3 Spherical R. solani In vitro [97]

Biological
synthesis

(P. urinaria, P.
zeylanica, and S.

dulcis)

4–53 Various
morphologies

A. niger, A. flavus,
and F. oxysporum In vitro [98]

Biological
synthesis

(C. globosum)
11 and 14 Spherical F. oxysporum In vivo and in vitro [99]

Biological
synthesis

(T. longibrachiatum)
10 Spherical

F. verticillioides, F. moniliforme,
P. brevicompactum, H. oryzae,

and P. grisea
In vitro [100]

Biological
synthesis

(A. terreus)
5–30 Spherical A. flavus In vitro [101]

Biological
synthesis

(F. oxysporum)
10–30 Spherical P. aphanidermatum In vitro and in vivo [102]

Biological
synthesis
(T. viride)

12.7 Spherical A. solani In vitro [103]

Biological
synthesis
(F. solani)

5–30 Spherical

F. oxysporum, F. moniliform,
F. solani, F. verticillioides,
F. semitectum, A. flavus,

A. terreus, A. niger, A. ficuum,
P. citrinum, P. islandicum,

P. chrysogenum, R. stolonifer,
Phoma, A. alternata, and

A. chlamydospora

In vitro [104]

Biological
synthesis

(B. subtilis)
16–20 Spherical

A. alternate, A. niger,
A. nidulans, C. herbarum,

F. moniliforme, Fusarium spp.,
F. oxysporum, and T. harzianum.

In vitro [105]

Biological
synthesis

(B. pseudomycoides)
25–43 Spherical

A. flavus, A. niger, A. tereus,
P. notatum, R. olina, F. solani,

F. oxysporum, T. viride,
V. dahlia, and P. spinosum

In vitro [106]

Biological
synthesis

(T. harzianum)
F. moniliforme In vitro [107]

Biological
synthesis

(Alternaria sp.)
3–10 Spherical

Alternaria sp., F. oxysporum,
F. moniliforme, and

F. tricinctum.
In vitro [108]



J. Fungi 2021, 7, 1033 7 of 20

Table 1. Cont.

Nanoparticle Properties Antifungal Properties Ref.

Synthesis Method Size (nm) Shape Specie of Fungi Evaluation Method

Biological
synthesis

(Bacillus sp.)
22.33–41.95 Spherical C. falcatum In vitro [109]

Biological
synthesis

(C. laurentii and R.
glutinis)

15–400 Spherical B. cinerea, P. expansum, A. niger,
Alternaria sp., and Rhizopus sp. In vitro [110]

Biological
synthesis

(A. foetidus)
20–40 Spherical

A. niger, A. foetidus, A. flavus,
F. oxysporum, A. oryzae, and

A. parasiticus
In vitro [111]

Biological
synthesis

(P. verrucosum)
10–12 Spherical F. chlamydosporum and

A. flavus In vitro [112]

Biological
synthesis
(N. oryzae)

3–13 Spherical

F. sambucinum, F. semitectum,
F. sporotrichioides,

F. anthophilium, F. oxysporum,
F. moniliforme, F. fusarioids,

and F. solani

In vitro [113]

Biological
synthesis

(T. longibrachiatum)
1–20 Spherical F. oxysporium In vitro [114]

Biological
synthesis

(A. versicolor)
5–30 Spherical S. sclerotiorum and B. cinerea In vitro [115]

Biological
synthesis
(P. poae)

19.8–44.9 Spherical F. graminearum In vitro [116]

Biological
synthesis

(Alternaria spp.)
5–10 Spherical

F. oxysporum, F. maniliforme,
F. tricinctum, and

Alternaria sp.
In vitro [117]

Biological
synthesis

(I. hispidus)
69.24 - Pythium sp., A. niger, and

A. flavus In vitro [118]

Biological
synthesis

(S. griseoplanus)
19.5–20.9 Spherical M. phaseolina In vitro [119]

Biological
synthesis (Sodium

alginate)
6 and 40 Spherical C. gloeosporioides In vitro [120]

Biological
synthesis

(F. oxysporum)
93 ± 11 Spherical

A. flavus, A. nomius, A.
parasiticus, A. ochraceus, and

A. melleus
In vitro [121]

Biological
synthesis (Glucose) 5–24 Spherical C. gloesporioides In vitro [33]

Chemical synthesis 40–60 Spherical R. solani In vitro [122]

Chemical synthesis 21 ± 2 Spherical C. gloeosporioides In vitro [123]

Chemical synthesis 52 Spherical Phomopsis sp. In vitro [124]
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Table 1. Cont.

Nanoparticle Properties Antifungal Properties Ref.

Synthesis Method Size (nm) Shape Specie of Fungi Evaluation Method

Chemical synthesis 30 Spherical

F. graminearum, F. culmorum,
F. sporotrichioides, F. langsethiae,

F. poae, F. oxysporum,
F. proliferatum, and

F. verticillioides

In vitro [125]

Chemical synthesis 19–24 Spherical C. gloeosporioides In vitro [126]

Chemical synthesis 25–32 - B. sorokiniana and
A. brassicicola In vitro [127]

Chemical synthesis 20 Spherical A. parasiticus In vitro [128]

Chemical synthesis 100 Spherical M. phaseolina, S. sclerotiorum,
and D. longicolla. In vitro [129]

Chemical synthesis - - A. citri In vitro [130]

Chemical synthesis 47 Spherical C. gloeosporioides In vitro [134]

Commercial 7–25 -

A. alternata, A. brassicicola,
A. solani, B. cinerea,

C. cucumerinum, C. cassiicola,
C. destructans, D. bryoniae,

F. oxysporum f. sp.
cucumerinum, F. oxysporum f.
sp. lycopersici, F. oxysporum,

F. solani, Fusarium sp.,
G. cingulata, M. cannonballus,

P. aphanidermatum P. spinosum,
and S. lycopersici

In vitro [135]

Commercial 20–30 - B. sorokiniana and M. grisea In vitro and in vivo [136]

Commercial - -
R. solani, M. phaseolina,

S. sclerotiorum, T. harzianum,
and P. aphanidermatum

In vitro and in vivo [137]

Commercial 20 - S. homoeocarpa In vitro [138]

Commercial <100 -

B. cinerea, A. alternata,
M. fructicola, C. gloeosporioides,

F. solani, F. oxysporum f. sp.
Radicis

Lycopersici, and V. dahliae

In vitro and in vivo [139]

Commercial - -

R. solani, F. oxysporum,
F. redolens, P. cactorum,
F. hepática, G. frondosa,

M. giganteus and S. crispa

In vitro [140]

Commercial 40–50 Spherical A. flavus In vitro [141]

Commercial 20–30 - S. carvi In vitro and in vivo [142]

Commercial <100 - M. fructicola In vitro and in vivo [143]

Commercial 4–8 - Colletotrichum In vitro and in vivo [144]

Commercial 38 Spherical A. alternata and B. cinerea In vitro [145]

Commercial 7–25 - S. cepivorum In vitro [146]

Commercial - - B. cinerea In vitro and in vivo [147]

Commercial 5–10 - R. solani In vitro and in vivo [148]

Physical synthesis 5–65 Spherical F. culmorum In vitro [131]

Physical synthesis 15–100 Spherical F. culmorum In vitro [132]

Physical synthesis 5–15 Spherical P. capcisi In vitro and in vivo [133]
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As aforementioned, the characteristics of Ag nanoparticles such as shape, structure,
and size play an important role in antifungal activity. According to Table 1, so far, most
Ag nanoparticles synthesized by the different methods have been spherical, which may be
because this kind of shape is easier to synthesize. In terms of size, they are polydisperse,
which does not allow analysis in detail of the effect of the size of the nanoparticles on
their antifungal activity. However, it is revealed that the smaller nanoparticles, between
10 and 30 nm, have greater antifungal effectiveness [76,77,90,94,99,104,108,126,133,148].
This is because the smaller nanoparticles penetrate or destroy the pathogen’s cell mem-
brane more quickly and thus unite the fungal hyphae and mycelium and deactivate
these pathogens [99,108]. Ag nanoparticles ranging between 40 and 70 nm also show an
inhibitory effect, destroying mycelium and spores and provoking the rupture of the mem-
brane significantly [78,92,95,118,122,131]. Nevertheless, while the larger size has a good
antifungal capacity, their penetration into the pathogen’s membrane is slower, causing
damage to mycelium and spores or the inhibition of fungal growth [110,121,129,132]. In
Figure 3, severely damaged cell walls and hyphae with abnormal structures are shown in
the presence of biosynthesized Ag NPs.
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Figure 3. Microscopic images of SEM and TEM of F. graminearum in the absence (A) and presence (B)
of the synthesized silver nanoparticle [116].

On the other hand, it has been reported that the concentration of nanoparticles can
play an important role in antifungal activity [130]. Therefore, different concentrations of
Ag nanoparticles have been evaluated. Several studies have shown that the concentration
of Ag nanoparticles has an important role in antifungal activity [83,113,129,130,137,146].
Interestingly, low concentrations showed effectiveness in the suppression of fungi. For
example, Ag nanoparticles synthesized with M. charantia and P. guajava extracts showed
good antifungal capacity in concentrations of 20 ppm, inhibiting the growth of mycelium
in fungi such as A. niger, A. flavus, and F. oxysporum [76]. A similar case occurred with Ag
nanoparticles synthesized with T. viride extracts, which completely inhibited the growth of
A. solani at low concentrations of 25 ppm [103]. In addition, excellent results were found in
medium concentrations. For example, Ag nanoparticles synthesized with green and black
tea were evaluated in four concentrations (i.e., 10, 25, 50, and 100 ppm) against A. flavus
and A. parasiticus. The best results were obtained with doses of 100 ppm. Ag nanoparticles
entered into the cell membrane, seriously affecting the respiratory chain, resulting in cell
death [90]. A peculiarity was observed at very high concentrations of Ag nanoparticles
(e.g., 500, 1000, 5000, and 10,000 ppm): with the increasing dose, the antifungal capacity
presented a saturation of the Ag nanoparticles. According to the literature, this caused
damage to the mycelium, such as oxidation, but not the complete inhibition of fungal
pathogens [80,99,107]. Interestingly, some studies compare the antifungal activities of Ag
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nanoparticles with respect to chemical fungicides [109,144]. Ag nanoparticles showed
similar results to chemical fungicides [109,144]. Therefore, the utilization of nanoparticles
is a viable alternative to the use of chemical fungicides.

3.2. Cu Nanoparticles

The first study of Cu nanoparticles against fungi was reported by Giannousi et al. [149].
Since then, Cu nanoparticles have been considered a viable option for the treatment of
fungal diseases [150,151]. Furthermore, Cu has several advantages: for instance, it is
cheap, it is highly available, and its production in terms of nanoparticles is economical.
Therefore, there are several studies on the use of Cu nanoparticles on phytopathogenic
fungi [42,79,90,92,152–165]. The main synthesis methods to obtain Cu nanoparticles for
the control of this pathogen are mentioned in Table 2. The chemical synthesis methods
include chemical reduction and hydrothermal [158–164], whereas biological synthesis with
different extracts of plants is widely used for its naturalness and its zero toxicity concerning
the environment [42,90,92,154–156]. Finally, commercial nanoparticles, which are effec-
tive and easily acquired, have also been evaluated for the inhibition of phytopathogenic
fungi [139,140,142,145,165].

Table 2. Characteristics and antifungal evaluations of Cu nanoparticles.

Nanoparticle Properties Antifungal Properties Ref.

Synthesis Method Size (nm) Shape Specie of Fungi Evaluation
Method

Biological synthesis
(Persea americana) 42–90 Spherical A. flavus, A. fumigates, and F.

oxysporum. In vitro [42]

Biological synthesis
(Ascorbic acid) - Spherical A. flavus and P. chrysogenum In vitro [79]

Biological synthesis
(Green and black teas) 26–40 Spherical A.flavus and A. parasiticus. In vitro [90]

Biological synthesis
(Ajwain and neem) 68 - C. musae In vitro [92]

Biological synthesis
(Ascorbic acid) 200–500 Faceted F. solani, Neofusicoccum sp.,

and F. oxysporum. In vitro [152]

Biological synthesis
(Ascorbic acid) 200–500 Faceted F. oxysporum f. sp. Lycopersici In vitro and

in vivo [153]

Biological synthesis
(C. paniculatus) 5 Spherical F. oxysporum In vitro [154]

Biological synthesis
(T. pinophilus) 10 Spherical A. niger, A terreus, and

A. fumigatus In vitro [155]

Biological synthesis
(S. capillispiralis) 3.6–59 Spherical

Alternaria spp., A. niger,
Pythium spp., and

Fusarium spp.
In vitro [156]

Biological synthesis
(Ascorbic acid) 53–174 Spherical F. oxysporum and P. capsici In vitro [157]

Chemical synthesis
(Chemistry reduction) 20–50 Spherical Fusarium sp. In vitro [158]

Chemical synthesis
(Chemistry reduction) - - A. niger In vitro [159]

Chemical synthesis
(Hydrothermal) 14 ± 2 Spherical A. niger and A. oryzae In vitro [160]

Chemical synthesis
(Hydrothermal) 30–300 Spherical

A. alternata, A solani,
F. expansum, and

Penicilliun sp.
In vitro [161]
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Table 2. Cont.

Nanoparticle Properties Antifungal Properties Ref.

Synthesis Method Size (nm) Shape Specie of Fungi Evaluation
Method

Chemical synthesis
(Chemistry reduction) 3–30 Spherical F. equiseti, F. oxysporum, and

F. culmorum In vitro [162]

Chemical synthesis
(Chemistry reduction) 25–35 Spherical B. cinerea In vitro and

in vivo [163]

Chemical synthesis
(Chemistry reduction) 14–37 Truncated

octahedrons F.oxysporum In vitro [164]

Commercial 25 -

B. cinerea, A. alternata,
M. fructicola, C.

gloeosporioides, F. solani,
F. oxysporum f. sp. Radicis
Lycopersici, and V. dahliae

In vitro and
in vivo [139]

Commercial - -

R. solani, F. oxysporum,
F. redolens, P. cactorum,
F. hepática, G. frondosa,

M. giganteus, and S. crispa

In vitro [140]

Commercial 20–30 - S. carvi In vitro and
in vivo [142]

Commercial 20 Spherical A. alternata and B. cinerea. In vitro [145]

Commercial 25 - B. cinerea In vitro and
in vivo [165]

The studies carried out on Cu nanoparticles produced by the different synthesis meth-
ods have shown excellent antifungal activity in different species of phytopathogenic fungi.
However, as in the case of Ag nanoparticles, there is a great diversity of sizes, which makes
it difficult to analyze the size effect of Cu nanoparticles on antifungal activity (see Figure 4).
In general, small nanoparticles range from 10 to 30 nm and penetrate the cell membrane
more easily, causing a rupture and the leakage of cell contents [139,142,145,154,165]. Some-
thing similar occurs in medium-sized Cu nanoparticles (40 to 70 nm); however, by in-
creasing their size, their fluidity in the membrane makes the growth and development of
colonies of the pathogen impossible [90,92,158]. Finally, the large Cu nanoparticles (80 to
>100 nm) inhibit the growth of mycelium and spores, thus demonstrating their antifungal
capacity [152,153,161].
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Regarding the shape, the synthesized Cu nanoparticles are mainly spherical (see
Figure 4a). That kind of shape has shown outstanding antifungal activities. According to
several authors, spherical nanoparticles have the highest possibility of penetrating the mem-
brane (and thus accessing the enzymes to initiate the cellular inhibition) faster [145,162].
Other shapes were also found, such as faceted ones with sizes in the range of 200–500 nm,
which showed high effectiveness against F. solani, Neofusicoccum sp., and F. oxysporum (see
Figure 4b) [152]. Another shape is the truncated octahedron structure (14 to 37 nm), which
has been effective against F. oxysporum and caused its inhibition [164].

Another determining factor in inhibiting the growth of phytopathogenic fungi is the
concentration of the Cu nanoparticles. To date, different concentrations (e.g., low, medium,
and high) have been evaluated on phytopathogenic fungi. For example, low concentrations
of Cu nanoparticles were evaluated against F. oxysporum at 0.1, 0.25, and 0.5 ppm. While
the lowest concentration (0.1 ppm) promoted hard oxidative stress in the mycelium, the
highest concentration (0.5 ppm) showed an antifungal capacity against F. oxysporum [164].

In addition, they have antifungal activities at medium concentrations (e.g., 5, 10, and
20 ppm). Cu nanoparticles demonstrated significant antifungal activity against F. oxysporum
and P. capsici, which were inhibited by increasing the incubation time of the different con-
centrations. On the third day after their application, the inhibition increased slightly from
49% for 5 ppm to 63% for 20 ppm [157].

To cite another example, doses of 5, 15, 25, and 35 ppm were used against R. solani,
F. oxysporum, F. redolens, P. cactorum, F. hepática, G. frondosa, M. giganteus, and S. crispa,
demonstrating the antifungal capacity of Cu nanoparticles at a concentration of 35 ppm.
In such a case, there was neither the growth of mycelium, nor the development of
the pathogens studied [140]. Finally, for the highest concentrations of Cu nanoparti-
cles, three different doses (300, 380, and 450 ppm) were evaluated. They were applied
against Fusarium sp., demonstrating excellent antifungal capacity at the highest dose
of 450 ppm [158]. Another study was carried out at four different high doses (i.e., 50,
100, 500, and 1000 ppm) against B. cinerea, A. alternata, M. fructicola, C. gloeosporioides, F.
solani, F. oxysporum, and V. dahlia. In this study, Cu nanoparticles showed toxic activity
at all concentrations and at the highest concentration of 1000 ppm they inhibited all phy-
topathogens [139]. In general, the Cu nanoparticles show antifungal capacity, affecting the
phytopathogen intracellularly and extracellularly. Therefore, Cu nanoparticles are an excel-
lent option for the control and management of different diseases of agronomic importance.

3.3. Other Metal Nanoparticles

As previously discussed, Ag and Cu nanoparticles are the most studied for the control
of the growth of phytopathogenic fungi. However, other metal nanoparticles have been
investigated as antifungal agents, such as Se [103,129,166], Ni [47,92], Mg [92], Pd [167], and
Fe [90], which have shown promising results. Recently, Se nanoparticles were evaluated
in vivo against S. graminicola in doses of 0 to 1000 ppm. To synthesize these nanoparti-
cles, six strains of Trichoderma spp. (T. asperellum, T. harzianum, T. atroviride, T. virens,
T. longibrachiatum, and T. brevicompactum) in the form of culture filtrate, cell lysate, and
crude cell wall were used. The best result was found with T. asperellum in culture filtrate,
demonstrating the antifungal capacity of Se nanoparticles [166]. In another report, Se
nanoparticles were synthesized by the biological method using T. viride and they were
evaluated at different concentrations (50, 100, 200, 300, 400, 500, 600, 700, and 800 ppm)
against A. solani using the in vitro method. It was demonstrated that Se nanoparticles
suppressed the growth of the fungus at 800 ppm [103]. Lastly, chemically synthesized
Se nanoparticles were evaluated against M. phaseolina, S. sclerotiorum, and D. longicolla
at different concentrations of 0.1, 0.5, 1, 5, 10, 50, and 100 ppm. The nanoparticles of Se
inhibited D. longicolla from 10 ppm and up, and from 50 and 100 ppm for M. phaseolina.
However, for S. sclerotiorum, the different concentrations of Se nanoparticles did not show
any inhibition, allowing the growth and development of the pathogen [129].
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Another metal that has been investigated for the control of phytopathogenic fungi
is Ni. However, as in the case of Se nanoparticles, there are few studies available on the
use of Ni nanoparticles aganist phytopathogenic fungi. In the first instance, commercial
Ni nanoparticles were evaluated using in vitro and in vivo methods against two species of
F. oxysporum at concentrations of 50 and 100 ppm. At a concentration of 100 ppm, the Ni
nanoparticles significantly inhibited mycelial reproduction and the sporulation activities of
the fungal pathogens under in vitro conditions. Meanwhile, under in vivo conditions, Ni
nanoparticles at a concentration of 50 ppm reduced the severity of the disease by 58.4%
and 57.0% in the cases of lettuce and tomato crops [47].

Finally, other nanoparticles investigated for the control of phytopathogenic fungi
are Fe nanoparticles, highlighting the application of Fe nanoparticles synthesized by an
ecological method using extracts of green and black tea leaves. Various concentrations (10,
25, 50, and 100 ppm) were evaluated against the fungi A. flavus and A. parasiticus in vitro.
The results demonstrated a 43.5% inhibition with green tea extract and a 51.6% inhibition
with black tea with doses of 100 ppm [90].

4. Conclusions and Future Directions

In this review, a critical and detailed analysis of the current progress on the appli-
cation of metal-based nanoparticles for controlling phytopathogenic fungi in agriculture
was presented. Based on this review, the following conclusions and future directions
are proposed.

The progress achieved in the use of metal nanoparticles for the control of phy-
topathogenic fungi is outstanding since the studies developed so far clearly show that
these nanoparticles can be an excellent alternative to chemical fungicides for the control of
phytopathogenic fungi in agriculture.

Among the metallic nanoparticles, Ag nanoparticles have been the most studied
as antifungal agents, followed by Cu nanoparticles. These nanoparticles have shown
promising activity aganist different species of phytopathogenic fungi. Different synthesis
methods have made it possible to produce nanoparticles with different shapes and sizes.
However, the nanoparticles have been mainly spherical and polydisperse in size. Therefore,
we consider it necessary to synthesize and evaluate nanoparticles of different shapes and
size (e.g., octahedrons, icosahedrons, and faceted ones) and homogeneous in, since it is
well known that these factors influence on antifungal activity.

For the rest of the metallic nanoparticles, such as Ni, Se, Mg, Pd, and Fe, there is little
research. Therefore, it can be inferred that their antifungal properties are not well known,
although the synthesis methods that have been tested for them have given good results.
Hence, it is important to continue researching these metallic nanoparticles since there is a
vast number of opportunities for researchers in this field.

Nowadays, the nanoparticles evaluated as antifungal agents have been mainly monometallic.
Therefore, we consider it important to synthesize and evaluate bimetallic or trimetallic
nanoparticles for the control of phytopathogenic fungi, since it has been documented that
these nanoparticles have very different properties than monometallic nanoparticles.

According to this review, most of the studies were evaluated in vitro. However, it
is important to apply the in vivo method to know the behavior of phytopathogens in
the field. Applying the nanoparticles directly to the pathogens is preferable since the
environments within the laboratory are different from those in the field. The lack of in vivo
studies create a significant opportunity for the application of metal nanoparticles in the
field of agriculture.
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