
����������
�������

Citation: Jing, J.; Qian, X.; Si, Y.; Liu,

G.; Shi, C. Recent Advances in the

Synthesis and Application of

Three-Dimensional Graphene-Based

Aerogels. Molecules 2022, 27, 924.

https://doi.org/10.3390/molecules

27030924

Academic Editor: Giuseppe Cirillo

Received: 31 December 2021

Accepted: 24 January 2022

Published: 29 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Recent Advances in the Synthesis and Application of
Three-Dimensional Graphene-Based Aerogels
Jingyun Jing 1, Xiaodong Qian 1, Yan Si 2, Guolin Liu 1 and Congling Shi 1,*

1 Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety,
China Academy of Safety Science and Technology, Beijing 100012, China; bdqyjjy@163.com (J.J.);
wjxyqxd@hotmail.com (X.Q.); liugl@chinasafety.ac.cn (G.L.)

2 Postdoctoral Research Station of Beijing Institute of Technology, Zhongguancun Smart City Co., Ltd.
Substation of Zhongguancun Haidian Yuan Postdoctoral Centre, Beijing 100081, China; siyan_26@126.com

* Correspondence: shicl@chinasafety.ac.cn; Tel.: +86-010-8491-1317

Abstract: Three-dimensional graphene-based aerogels (3D GAs), combining the intrinsic properties
of graphene and 3D porous structure, have attracted increasing research interest in varied fields
with potential application. Some related reviews focusing on applications in photoredox catalysis,
biomedicine, energy storage, supercapacitor or other single aspect have provided valuable insights
into the current status of Gas. However, systematic reviews concentrating on the diverse applications
of 3D GAs are still scarce. Herein, we intend to afford a comprehensive summary to the recent
progress in the preparation method (template-free and template-directed method) summarized in
Preparation Strategies and the application fields (absorbent, anode material, mechanical device,
fire-warning material and catalyst) illustrated in Application of 3D GAs with varied morphologies,
structures, and properties. Meanwhile, some unsettled issues, existing challenges, and potential
opportunities have also been proposed in Future Perspectives to spur further research interest into
synthesizing finer 3D GAs and exploring wider and closer practical applications.

Keywords: three-dimensional; graphene-based aerogels; synthetic strategy; application; prospect

1. Introduction

Aerogel, generated by the replacement of liquid inside a gel with gas by freeze-drying
or supercritical drying technique, was first presented by S. Kistler in the 1930s [1]. As
the lightest solid porous material in the world, it has attracted wide attention owing to
its three-dimensional (3D) network structure, high specific surface area, extremely low-
density, and thermal conductivity [2–4]. The precursor of aerogel can be selected among
organic polymers [5], inorganic materials [6], and polymeric hybrid materials [7]. At
the beginning, it underwent a long slow-development-stage because of the difficulty in
synthesis and the lack of application. However, aerogels with richer types and application
fields have been flourishing in the past decade. Such a porous material can be an enticing
prospect for its application in the fields of aerospace, chemical engineering, construction,
electrical equipment, water purification, and biomedicine [8–11]. Among them, graphene
aerogels [12,13], carbon aerogels [14,15], and carbon nanotube (CNT) aerogels [16] are the
most investigated topics, comprising more than 60% of the literature studies, as shown in
Figure 1.

As the most important component of two-dimensional (2D) carbon-based material,
graphene possesses superior thermal conductivity (~5000 W/m·K), high specific surface
area (2630 m2/g), chemical stability, and high electron mobility, as well as excellent me-
chanical and optical properties, which has great application potential in many fields [17].
However, their direct application as excellent adsorbents, anode materials, and mechanical
devices suffers from limitation, as a serious loss in surface area occurs due to the re-stacking
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problem resulting from π-π interaction between graphene layers and the Van der Waals
force [18].
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The past several years has witnessed explosive interest in constructing a series of
composites based on the versatile platform of graphene. In order to overcome the problem
and make full use of the characteristics of graphene sheets, the conversion of 2D sheet
to 3D porous aerogel via self-assembling by various methods, including hydrothermal
reduction, chemical reduction, crosslinking, and sol-gel processes, is an ideal choice [19].
Due to integration intrinsic properties, including high porosity, conductivity, and feasibility
of manufacturing in an industrial scale of graphene and aerogel, 3D GAs have emerged
as one of the most exciting and promising materials. The past almost two decades have
witnessed a rapid development process in exploring the performance and application of
GAs, as reflected in the increasing number of publications collected in the Web of Science
database for the search criteria “graphene AND aerogel” (Figure 2).

Although there have been some reviews focusing on synthesis methods, properties,
and applications in photoredox catalysis, biomedicine, energy storage, supercapacitor, or
other single aspects [17,20] of GA, systematic reviews concentrating on the diverse applica-
tions of 3D GAs are relatively scarce. Therefore, it is desired to present a comprehensive
review that summarizes the current situation, recent advances, and future prospects in
the synthesis and application of 3D GAs to inspire intelligent ideas. This review aims to
deliver a comprehensive explanation of the recent advances in the preparation methods
and application fields of 3D GAs with varied morphologies, structures, and properties.
Meanwhile, some unsettled issues, challenges, and potential opportunities have also been
proposed. We hope this review will provide valuable insights into the current status of 3D
GAs and be a reliable reference for further research, promoting the practical application of
the materials in wide fields.
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2. Preparation Strategies

With the further development of 3D GAs, expanded preparation approaches such as
hydrothermal reduction [21], chemical reduction [22,23], electrochemical synthesis [24,25],
self-assembly [26,27], emulsion technique [28], breath-figure method [29], chemical vapor
deposition [30], and ink-printing technique [31] have been adopted to fabricate varied and
unique microstructures. Among these, hydrothermal or chemical reduction is the most
attractive one based on its low-cost and scalable production. Here, we have classified these
methods into two major categories: template-free method and template-directed method.

The interfacial interaction and chemical composition of as-prepared functional GO
and/or RGO-based aerogel can be characterized by various means. XPS analysis is per-
formed to characterize both the chemical state and atomic ratio of every element in the GO
and the graphene aerogels. For the C 1s XPS spectrum of GA, the peaks attributed to carbon
atoms connecting with oxygenated groups, such as C–O and O–C=O, have disappeared as
the oxygenated species are substantially removed on the reduction of GO to graphene [32].
It is also evidence for the deoxygenation process and successful preparation of GAs. The
significant structural changes are also reflected in the Raman spectra. The G band, which
resonates at a lower frequency and an increased D/G intensity ratio compared to that of
GO, suggests a reduction of the exfoliated GO. The FT-IR spectra gives the information of
various functional groups, proving the change from graphene oxide into a graphite-like
structure due to the chemical reduction.

The graphene-based aerogels are mainly prepared from a GO precursor via the reduc-
tion process. The dispersion of graphene in substrate is always particularly important for
improving the performance of aerogel. In order to avoid aggregation induced by strong a
van der Waals force, many preparation methods involving covalent and/or non-covalent
modification between GO and polymer matrix and appropriate ultrasonic dispersion are
employed [33]. The dispersion of graphene can be reflected on the morphology of aerogel
characterized by SEM, SEM-EDS and TEM, and the XRD pattern. Furthermore, it is feasible
to study the dispersion state of graphene by characterizing the typical properties of aerogels
based on the obvious effect of dispersion on performance.

2.1. Template-Free Approach

A template-free method is preferred in practical application due to the relatively
simple synthesis procedures, low cost, and easy scaling up [34]. A series of template-free
methods have been put forward for synthesizing 3D GA, in which the most typical and
dominant is the self-assembly method. Taking advantage of inherent orderly stacking
behavior via π-π interaction of graphene and GO nanosheets under appropriate conditions
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can produce various 3D structures [35–37] without the need and limitation of a template,
making it novel and appealing. However, it is still important to develop suitable approaches
to achieve the assembly and avoid the precipitation of graphene in a parallel arrangement
while declining the repulsion forces of GO solution.

2.1.1. Reduction-Induced Self-Assembly

Amphiphilic GO consists of an abundant aromatic nucleus and oxygen-containing
groups [38], in which the oxygen-containing groups decorated on the basal planes and
edges are responsible for hydrophilicity and uniform dispersion in water [37,39]. As the
reduction process goes on, local phase separation will occur, caused by the removal of
hydrophilic groups, which further generates the deformation to prepare for self-assembly.
Furthermore, the hydrogen bonding reaction between residual hydrophilic regions of the
reduced GO and water causes adsorption of some water drops on the surface, serving as a
spacer to prevent parallel aggregation of nanosheets [40].

Chemical reduction is the most widely used method to realize the transformation from
GO to graphene. The common reducing agents include ethylenediamine (EDA), hydrazine
vapor, Fe (II), sodium hydrogen sulfite (NaHSO3), sodium sulfide (Na2S), and vitamin C
and hydrogen iodide (HI) [23,41]. The traditional chemical reduction method to prepare
graphene aerogels involves three processes: (i) reduction of graphene oxide aqueous
solution, (ii) self-assembly of graphene sheets to form hydrogel, and (iii) lyophilization of
hydrogel. Inspired by a mild method to synthesize 3D architectures of graphene [23,42],
Yan et al. [43] prepared the magnetic 3D graphene/Fe3O4 aerogel via in situ self-assembly
of graphene with NaHSO3 as the reducing agent in the presence of Fe3O4 nanoparticles.
The capture of nanoparticles was similar to a fishing process, wherein nanoparticles acted
as the fish and graphene/GO nanosheets served as the fishing net that was formed through
the self-assembly of GO during reduction. Similarly, Li et al. [44] proposed a simple method,
which referred to a one-step reduction by EDA and the self-assembly of graphene oxide,
and then freeze-drying to prepare porous graphene aerogel, as shown in Figure 3a. In
order to eliminate residual functional groups to obtain ultralight aerogel, Qiu et al. [45],
moving one step further, designed a two-stage process. GO was controllably functionalized
and assembled into monolithic graphene hydrogel by introducing ethylenediamine. After
freeze-drying, the obtained aerogel was subjected to microwave irradiation treatment
to eliminate functional groups. Furthermore, Gao et al. [46] developed a novel sol-cryo
method to fabricate ultra-flyweight carbon aerogels (Figure 3b). Compared to the traditional
approach prepared from hydrogels, they cryodesiccated the aqueous CNTs and giant GO
sheets rather than the hydrogels, followed by chemical reduction with hydrazine vapor.
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where the GO is reacted with EDA for 24 h at 80 ◦C and then freeze-dried. Reprinted with permission
from Ref. [44]. Copyright 2014, The Royal Society of Chemistry. (b) Images of the fabrication
process of the graphene aerogel using the sol-cryo method. Reprinted with permission from Ref. [46].
Copyright 2013, Wiley-VCH.

Hydrothermal reduction is another facile and effective strategy to prepare graphene
from GO. The reduction degree is determined by reaction temperature and time. Generally
speaking, the higher the temperature, the higher the reduction degree. However, there
is no consensus on the required time and temperature of the heat-treatment for complete
reduction of GO [47,48]. Most of the hydrothermal reduction induced self-assembly of 3D
graphene aerogel occurs in the range 80–150 ◦C [49]. Li and colleagues [50] proposed a facile
one-step method to prepare 3D macroscopic SnO2-graphene aerogel (SGA), which involved
the synchronous processes of hydrothermal-induced reduction of GO, self-assembly of
graphene sheets, and in suit growth of SnO2 nanoparticles, presented in Figure 4. Similarly,
Niu et al. [51] reported a universal strategy to incorporate various nanomaterials into 3D
aerogel: dispersion of GO and functional components under ultrasonication, followed by
heat-treatment at 180 ◦C and freeze-drying of the hydrogel.
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Ref. [50]. Copyright 2013, The Royal Society of Chemistry.

Electrochemical reduction is an appealing strategy used to form 3D GA. Unlike other
self-assembly methods that rely on the unique shape of graphene sheets and features of the
second components and whose materials are bulky monoliths and unsuitable for electrode
modification, electrochemical reduction-induced self-assembly approach is believed to
be the most promising means to fabricate a 3D structure applied in electrode material.
Chen et al. [24] proposed a method consisting of two consecutive electrochemical steps,
namely, electrochemical reduction of GO in aqueous dispersion followed by electrochemical
deposition of the second components to form 3D graphene-based composite materials, as
shown in Figure 5.
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2.1.2. Crosslinking Induced Self-Assembly

The abundant oxygen-containing functional groups on their basal planes and edges
make GO sheets sensitive to the experimental conditions, and only assemble into 3D mi-
crostructure under certain conditions [52]. The obtained 3D aerogels without reinforcement
usually have poor mechanical properties [53]. Therefore, adding cross-linking agents such
as polymers [54,55], small organic molecules [56], biomacromolecules [57], and multivalent
ions or nanoparticles [58] during synthesis procedures is an effective way to improve their
mechanical properties and ordered organization.

Physical cross-linking refers to linking GO sheets and a crosslinker mainly by hydro-
gen bonding, as illustrated in Figure 6. Qin and co-workers [58] fabricated a reinforced
composite graphene aerogel (CGA) by combining surface support through metallic-carbon
nanotubes (CNTs) networks and interfacial cross-linking of GO sheets with magnetic
nanoparticles (NPs) by a hydrogen-bond. The continuous network structure contributes
to mechanical stability and preferred adsorption sites of magnetic NPs. Polymers, such
as poly(vinyl alcohol) (PVA), chitosan (CS), cellulose, and poly(N-iso-propylacrylamide)
are also employed to act as a crosslinker. Tao et al. [55] crosslinked the functionalized GO
sheets with PVA under hydrothermal conditions to prepare reduced expanded porous
graphene macroform (r-EPGM) aerogel, whose pores range from micropores to mesopores
to macropores. Similarly, Asfaram and coworkers [59] successfully fabricated a novel 3D
magnetic GO composite aerogel depending on the hydrogen bond between the polymer
crosslinking agent (PVA) and other components (bacterial cellulose nanofibers, Fe3O4
nanoparticles and GO nano-sheets).
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Figure 6. Schematic diagram for the preparation procedure and mechanism of CGA; (a) GO flakes;
(b) metallic-CNT on GO flakes; (c) Fe3O4 NPs on the edge of GO flakes; (d) Fe3O4 NPs attracted with
each other; (e) Fe3O4 NPs enhanced the interlaminar connectivity of flakes; (f) the redundant NPs
on the pore of CGA. Reprinted with permission from Ref. [58]. Copyright 2019, American Chemical
Society. Schematic showing the procedure for the preparation of r-EPGM. Reprinted with permission
from Ref. [55]. Copyright 2013, Elsevier Ltd.

Chemical cross-linking refers to linking GO sheets and a crosslinker by covalent
bonding, which has the characteristics of high uniformity and stabilization. Ye et al. [56]
developed a facile two-step method consisting of freeze-drying and subsequent curing
process to generate inter-crosslinked GO-epoxy composite aerogels (GEAs) with epoxy as a
crosslinkable polymer and mainly through covalent bonding interaction (Figure 7). The
resulting GEAs exhibit excellent compressive strength, high elasticity, and thermal stability,
allowing them to be applied in energy absorption and durable insulation materials.
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During the synthesis process, hydrogen bonding and/or covalent bonding between
crosslinker and GO sheets accounts for forming the cross-linking sites, which contribute to
the generation of hydrogel with a 3D network. Such aerogels usually show significantly
improved mechanical properties. However, the introduction of cross-linkers inevitably
sacrifices the electrical conductivity of GAs to a certain extent. So, there is a fundamen-
tal tradeoff to grasp. Utilizing conductive polymer as a crosslinker to fabricate highly
compressible and electrically conductive 3DGAs might be a new attempt.
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2.2. Template-Directed Approach

The template-directed strategy, including the emulsion technique, breath figure method,
and ink-printing technique, is one of the mainstream approaches employed in the formation
of 3D GA with ordered and hierarchical structures [60]. It uses a pre-existing guide (hard
or soft template) to directly synthesize the target materials that are difficult to obtain by
other tools. Meanwhile, it also inevitably limits the scalability of resulting aerogels owing
to the hard accessibility of a well-organized and large-size template itself [46]. The general
route for a templated-directed method mainly involves the following steps: (1) template
preparation, (2) synthesis of target materials using the template, (3) template removal (if
necessary). The obtained aerogels were widely used in lithium-ion batteries and proved to
be excellent electrode materials with outstanding performance.

2.2.1. Hard Template

Hard templating strategy, using solid nanoparticles, porous metal foams, and specific
movable nozzles as a guide is conceptually the simplest method to synthesize 3D graphene
aerogel with the desired microstructure and performance [61]. In general, the pore size
is highly determined by the template, and the templates usually need to be removed
completely by physical or chemical methods [62]. Huang et al. [63] prepared nano-porous
graphene foams by using methyl group modified silica spheres as the hard template. They
mixed the silica spheres and GOs in a neutral aqueous to form self-assembly, calcined the
obtained composite to reduce GOs into graphene, and etched silicas with HF to produce
nanopores. In addition, Guo and coworkers [31] utilized an intelligent 3D ink-printing
technique that involves three procedures: ink-printing aqueous of GO and multiwalled car-
bon nanotubes (MWNTs) with trace calcium ions as the gelator, followed by freeze-drying
and reduction under a confined state to fabricate highly stretchable graphene/MWNTs
composite aerogel (bCA) with four orders of hierarchical structures (Figure 8).
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2.2.2. Soft Template

Compared with the hard template approach, the soft template method with the emul-
sion droplet, vesicle/micelle, and gas bubble as templates is easier due to the unnecessity
of removing the templates [64]. Although it offers less control over the uniformity of
the obtained structures, it offers more possibilities in tuning and producing complicated
hierarchical structures [65], which has been widely used to prepare 3D graphene porous
architectures. Huang et al. [28] employed multiple microemulsions and micelles as a soft
template to synthesize 3D porous graphene foams with tunable pore structures. Sun and
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co-workers [66] proposed a breath-figure method to macro-porous graphene films, by
virtue of condensation and close packing driven by the evaporation of the volatile organic
solvent of humid air, which promotes the self-assembly of GO platelets. The subsequent
drying resulted in a porous film. However, there have been no reports on the fabrication of
real graphene aerogels using the soft template method.

The carbon aerogels (CNTs, GO, and graphene) prepared by various methods generally
have lower density than the graphene/GO-based hybrid (other nanoparticle or polymers)
aerogels. Moreover, for the same GO aerogels obtained by the two-stage preparation
procedure involving subsequent microwave irradiation (MWI) or thermal treatment, which
further eliminates functional groups after freeze-drying, are ultralight and their density
came down to a lower scale compared with those prepared via one-step. However, in any
case, all the as-prepared GA possess an interaction network and hierarchical pores ranging
from micropores to mesopores and macropores, which can be characterized by SEM and
the nitrogen adsorption/desorption isotherm [67]. The porosity is usually higher than
99.6%. The porous structure contributes to a high specific surface area and/or porosity
and provides a material transport channel and accessibility to the active surfaces, making
them a promising candidate as an adsorbent of organic liquids, anode material, and energy
adsorption and storage material. The porous features, surface aera, and density of typical
GAs prepared by various methods are summarized in Table 1.

Table 1. Porous features, surface aera, and density of typical GAs prepared by various methods.

Aerogel Synthesis
Methods

Reaction
Condition

Density
(mg/cm3)

Porous
Features

Surface
Aera/Porosity Application Ref.

Graphene
/Fe3O4

Chemical
reduction

95 ◦C/3 h
Nahso3One-

step
42 Macropores

Mesopores 95.22 m2/g Anode material 39

GO Chemical
reduction

95 ◦C/6 h
EDA

Two-stage
3 Macropores 99.7–99.8% Shock damping/

Energy absorption 41

GO Chemical
reduction

80 ◦C/24 h
EDA

One-step
4.4–7.9 Macropores 99.6% Organic absorbent 40

CNTs/GO Chemical
reduction

90 ◦C/24 h
N2H4

Sol-cryo
One-step

0.16–22.4 Macropores 99.9% Organic absorbent
Conductor 42

SnO2–
graphene

Hydrothermal
reduction

90 ◦C/1 h
One-step / Macropores / Anode material 46

GHAs Hydrothermal
reduction 180 ◦C/3 h / Macropores / Electrode material 47

ERGO Electrochemical
reduction / / Macropores 1000 m2/g Electrode material 22

CGA Cross-linking 140 ◦C/2 h
Two-stage 11.1 Macropores / Microwave absorption

material 54

r-EPGM Cross-linking 150 ◦C/6 h
Two-stage /

Micropores
mesopores
Macropores

>1000 m2/g
Adsorbent/

Energy storage material 51

GEA Cross-linking 100 ◦C/24 h
One-strp 90 Macropores / Energy absorbing/

Durable insulation material 52

CNTs/GO Template Two-stage 5.7 Macropores / Strain sensor 29

3. Application

Graphene aerogel, with characteristics of low density, high surface area and porosity,
and good electrical and thermal conductivity, has attracted the attention of researchers and
flourished in the recent decades [68]. They possesses potential application in diverse fields,
such as sorption in environmental protection [26,69] electrode materials [70,71], electronic
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devices [72], flame-retardant and fire-warning materials [73,74], catalysis [75], energy
storage [76], and microwave absorption [58]. Based on the adsorption, electrochemistry,
mechanical, catalytic, and fire-warning properties of GAs, here we mainly summarize its
application fields and classify it into five aspects (absorbent, anode material, mechanical
device, fire-warning materia,l and catalyst) sequentially.

3.1. Aerogels for Absorption

Water contamination caused by harmful chemicals, particularly oils and soluble dyes
and phosphate, has become an issue of serious global concern. Various technologies includ-
ing chemical precipitation [77,78], biological treatment [79], membrane filtration [80,81],
adsorption [82], and ion exchange [83] have been employed to remove organic contami-
nants from wastewater. Among them, the adsorption method has been recognized as the
most promising candidate. Therefore, the preparation of novel absorbents with low density,
water pickup and cost, high absorption capacity, and good recyclability is in urgent need.

Due to the super-hydrophobicity of GA [84], it is commonly considered as a competi-
tive and efficient adsorbent for oil in water, with a higher adsorption capacity compared to
other kinds of adsorbents. Li et al. [44] prepared the porous graphene aerogel by one-step
reduction and self-assembly of GO. The aerogel is super-hydrophobic with a contact angle
of 155◦ and is an ideal candidate for oil absorption (Figure 9a–c). Taking n-decane adsorp-
tion as an example, 8.5 mg of aerogel can completely adsorb 1.4 g of oil within 6 s. The
average absorption rate (27 g/g·s) is much faster than that of pure graphene (0.57 g/g·s).
The capacity for absorption is up to 120–250 g/g, depending on the liquid densitY.S.milarly,
Gao et al. [46] fabricated the ultra-flyweight aerogels by virtue of sol-cryo methodology,
which shows excellent absorption capacity of extensive oil liquids (such as n-hexane, crude
oil, toluene, motor oil, vegetable oil, ionic liquid, and phenixin) (Figure 9d), falling into the
range of 215–913 times their own weight dependent on the oil density, which is 1–2 orders
of magnitude higher than traditional adsorbents.
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porous network structure. Reprinted with permission from Ref. [44]. Copyright 2014, The Royal
Society of Chemistry. (d) Absorption process of toluene (stained with Sudan Black B) on water by the
aerogel within 5 s. Reprinted with permission from Ref. [46]. Copyright 2013, Wiley-VCH.

Taking advantage of the abundant oxygen-containing groups and unique pore struc-
ture, GO aerogels also exhibit excellent adsorption capacity of water-soluble dye and
phosphate pollutants. Tao and co-workers [55] prepared expanded porous graphene
macroform (EPGM) aerogel by crosslinking the functionalized GO sheets with PVA under
hydrothermal conditions. It has superior adsorption capacity (1050 mg/g) for methylene
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blue (MB) dye, which is much higher than the typical microporous carbon (AC) (Figure 10d).
Asfaram and coworkers [59] successfully fabricated a novel 3D magnetic GO composite
aerogel via a gentle filler-loaded networks method. The aerogel is characterized by, e.g., an
interconnected porous structure, lightweight (6.8 mg/cm3), high surface area (214.75 m2/g),
paramagnetic property (26.59 emu/g), excellent adsorbent efficiency (93%) for cationic
malachite green (MG) dye through the Yoshida H-bonding, dipole-dipole H-bonding, π-π
interaction, n-π interaction, electrostatic attraction, and physical adsorption, as shown in
Figure 10a,c. The result showed that the aerogel preserved a maximum adsorption capacity
of 270.27 mg/g for MG. According to previous research, metal oxide with high surface
area and affinity for the phosphate, especially iron sulphate (FeSO4), once adhered to the
graphene or GO, will show great application potential in capturing phosphates in water,
Losic et al. [85] proposed a facile and green method to fabricate two types of 3D graphene
aerogels embedded αFeOOH and Fe3O4 nanoparticles, respectively. The prepared aerogels
showed superior capacity of 350 mg/g at an initial phosphate concentration of 200 mg/L
under acidic conditions and the adsorption process followed the second order model and
Freundlich isotherm (Figure 10e).
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ages of adsorption properties and magnetic separation of aerogel before and after the MG dye
adsorption process. Reprinted with permission from Ref. [59]. Copyright 2019, Elsevier B.V. (d) Ad-
sorption isotherms of r-EPGM, EPGM and AC toward MB at 303 K and pH = 11.5. Reprinted with
permission from Ref. [55]. Copyright 2013, Elsevier Ltd. (e) The effect of time on the amount
of phosphate adsorbed on the GN-αFeOOH and GN-Fe3O4 aerogels. Conditions: phosphate
concentration = 20 mg/L; pH = 6.0. Reprinted with permission from Ref. [85]. Copyright 2015,
The Royal Society of Chemistry.

GAs with unique microstructure act as an ideal guide, providing a new probability to
solve the serious water pollution problem faced by traditional adsorbents. The improved
adsorption performance, lower-cost, and expanded application in contaminant removal of
the GAs is expected to be achieved in the future.
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3.2. Aerogels for Anode Material of Rechargeable Lithium-Ion Batteries

Rechargeable lithium-ion batteries (LIBs) with high energy density and voltage, which
can store and supply electricity, have a wide range of applications with the development of
modern electronic devices. Currently, the biggest challenge is to develop durable, nontoxic,
and inexpensive materials for electrodes.

Graphene, the single layer of carbon atoms in a hexagonal lattice, is endowed with
high stability and unique electronic properties [86], such as conductivity and carrier mobil-
ity. Theoretically, transition metal oxide has high theoretical specific capacity, so transition
metal oxide/graphene composite aerogels are promising candidates for anode materials of
lithium-ion battery and have attracted the most attention of researchers. The monobasic
transition metals of Mn3O4 [87], Co3O4 [86], Fe3O4 [88,89], and SnO2 [50] and the binary
transition metal of ZnFe2O4 [90], combined with graphene or reduced GO, have been
studied for anode materials. Yan et al. [43] prepared a magnetic 3D graphene/Fe3O4
aerogel via in situ self-assembly of graphene in the presence of Fe3O4 nanoparticles. The
graphene/Fe3O4 composite aerogel showed a high capacity and cyclic stability (a remain-
ing capacity of 1100 mA h/g after 50 cycles of charge and discharge), meaning it can work
well as an anode for LIBs, as shown in Figure 11a,b. The excellent performance is attributed
to the efficient interaction between Fe3O4 nanoparticles working as spacer and graphene
nanosheets, as both sides can adsorb lithium ions [91]. Similarly, Li and colleagues [50]
proposed a facile one-step method to prepare 3D macroscopic SnO2-graphene aerogel (SGA),
which displays a well-defined and interconnected network porous microstructure and pos-
sesses higher capacity retention and discharge capacity (602 mA h/g after 60 cycles) compared
to other SG composites (Figure 11c). Moreover, it can also tolerate varied discharge current
densities and maintain a relatively high specific discharge capacity of 590 mA h/g (about 64%
of the initial reversible capacity). These research works have created a foundation for wide
applications of novel 3D graphene/nanoparticle aerogels in the future.
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nanoparticles. (b) Electrochemical characterizations of a half-cell composed of graphene/Fe3O4 and
Li: discharge/charge profiles. Reprinted with permission from Ref. [43]. Copyright 2011, Wiley-VCH.
(c) Rate performance of the SGA. Reprinted with permission from Ref. [50]. Copyright 2013, The
Royal Society of Chemistry.



Molecules 2022, 27, 924 13 of 21

Owing to the synergetic effect of the super-flexible coating provided by graphene
nanosheets and reversible Li+ storage capacity by metal oxide nanoparticles, the composite
aerogel has improved performance more suitable for the anode material of LIBs. The
high surface area and continuous porous structure of graphene aerogel is attributed to its
superior specific capacitance, making it attractive as advanced electrode materials.

3.3. Aerogels with Mechanical Stability for Novel Devices

Two-dimensional graphene/GO with outstanding tensile and compressive strength,
high flexibility, and elasticity [92,93] is commonly considered as the most promising build-
ing block to fabricate 3D aerogel with mechanical stability. Such an aerogel can be widely
employed in flexible electronics, sensors, wearable devices, and smart manufacturing [31].
However, monolithic graphene aerogels formed by random assembly of graphene sheets
directly via weak connection often exhibit obvious brittleness in compression as well as
stretch [94], and has difficulties meeting the application demands.

There are two main strategies to overcome the brittleness to pursue 3D aerogels with
mechanical robustness. The predominant approach is to introduce elastic polymers and
small molecules acting as cross-linkers or barriers into the matrix [45,58,95,96], which is
less stable in severe chemical or physical conditions [97]. On the basis of graphene aerogel
preparation regarding reduction, Qiu et al. [45] designed an integrated functionalization
and assembly with the following microwave irradiation treatment process to fabricate
ultralight aerogels with high compressibility. It can recover from strain as high as 90%
when squeezed into a flake without obvious variation in volume, as shown in Figure 12a.
Its properties are beneficial to potential applications in the fields of shock damping and
energy absorption. By combining the surface support through metallic-CNTs networks and
interfacial cross-linking of GO sheets with NPs, Li et al. [58] fabricated a reinforced com-
posite graphene aerogel (CGA) with excellent structural stability and elastic deformation
performance, which show that the stress−strain curves remain unchanged after 200 cycles
under the maximum strain of 30% and recover to the origin point at the strain up to 95%
(Figure 12b,c).
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Figure 12. (a) Digital photographs showing the compressibility of aerogels. Reprinted with permission
from Ref. [45]. Copyright 2013, Wiley-VCH. (b) Stress–strain curve of CGA at the maximum strain of
30% for 1–200 cycles; (c) stress–strain curve of CGA at different maximum strains of 30, 65, 80, and 95%
respectively. Reprinted with permission from Ref. [58]. Copyright 2019, American Chemical Society.
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Another approach is to enhance the interconnection of aerogels to produce a hierarchi-
cal structure by adopting freeze-shaping, 3D ink-printing, and other synergistic assembly
techniques [98,99]. Guo and coworkers [31] adopted an intelligent 3D ink-printing tech-
nique to fabricate highly stretchable graphene/multiwalled carbon nanotubes (MWNTs)
composite aerogel (bCA) with four orders of hierarchical structures, which makes a great
contribution to the superior mechanical performance of bCA, including low energy dis-
sipation (0.1, 100% strain), high fatigue resistance (more than 106 cycles), minor plastic
deformation (1%), and excellent environment stability (93–773 K), as shown in Figure 13.
The ultralight CAs (9.7 mg/cm3), with mechanical stability under dynamic tension and
compression deformations, can find potential applications in strain sensors, stretchable
components, and lightweight mechanical devices.
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Based on the major advances made in the design of flexible 3D graphene aerogels, the
trend is to push their structure towards a smarter and more well-controlled system [100],
in order to fully understand the nature of property degradation during two-dimensional
individual assemblies into bulk 3D structures, and to promote advances in more intelli-
gent design and extensive application in flexible electronic devices, sensors, and complex
mechanical structures.

3.4. Aerogels for Fire-Warning Material

The existing commercial fire-warning equipment, including temperature, smoke, and
infrared flame detectors, is usually unsatisfactory [101], as they are commonly located at
a certain distance from the combustion source and are triggered only when the smoke
concentration or temperature reaches a critical value [102]. Consequently, the fire-warning
is insensitive, with a response time of more than 100 s [103], which is too late to curb the
fire spread and misses the best time for evacuation.

With the increase of temperature, the electrical resistance of GO decreases dramatically,
which endows it an attractive application prospect in fire-warning materials [101,104,105].
However, because of its unique porous network structure, aerogel inevitably encounters
difficulties in reducing electrical resistance during being burned, which remains a challenge
to fabricate sensitive fire-warning aerogels [106,107]. Yuan et al. [73] creatively prepared the
GO/ammonium polyphosphate/cellulose nanofiber composite aerogel with a fire-response
time of 2.6 s through freeze-drying for the first time. The aerogel exhibits excellent thermal-
isolating, flame-retardant, and timely fire-alarm properties. Furthermore, they [74] also
fabricated a GO/sodium montmorillonite/cellulose nanofiber multifunctional composite
aerogel that triggered a fire alarm in about 1.9 s when met with a fire. Owing to the thermal
reduction characteristic of GO, referring that quickly removes oxygen-containing groups,
and being reduced to graphene once encountering high temperature or fire, the aerogel
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possesses abilities of timely detection and early warning in the pre-combustion stage, as
illustrated in Figure 14.
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The GO modified aerogel with excellent flame retardancy, thermal isolation, and
intrinsic fire warning performance broadens its application territory to cover the draw-
backs in delayed response and restricted application scenarios of traditional fire detectors.
Therefore, the aerogel that can be triggered in the precombustion stage to offer favorable
opportunities for firefighting and emergency rescue is endowed with enticing prospects in
chemical industries, pipeline transportation, and high-rise buildings.

3.5. Aerogels for Catalysis

A 3D network structure provides multidimensional electron transport pathways and
large accessible surface area, which is conducive to improve the separation efficiency of
photogenerated electron-hole pairs and the adsorption of reactants. Such intrinsic hierar-
chical porous structure characteristics and properties make GAs endowed with potential
as promising and efficient photocatalysts for practical applications in solar energy conver-
sion [108], such as pollutant elimination [109], water splitting [110], CO2 reduction [111],
and chemical reaction progress [112].

The conventional photocatalysts in powder form used in photocatalytic pollutant
decomposition has difficulties in meeting the needs of the recycling process [113], as it
is essential to immobilize the photocatalyst on solid support. The monolithic 3D GAs is
undoubtedly a desirable photocatalyst carrier. Fan et al. [114] prepared a novel 3D AgX/GA
(X = Br, Cl) structure, in which the AgX NPs were uniformly distributed on the surface of
GA by in situ growth method (Figure 15a). The GAs exhibited high catalytic properties in
the oxidative degradation of methyl orange (MO) and the reduction of CrVI, showing that
after visible light irradiation for 8 min, the MO was completely degraded by AgBr/GAs
compared with the 65% of degradation rate by AgBr (Figure 15b); and the reduction ability
of CrVI was 1.5 times higher than that by bare AgBr at the same time interval (Figure 15c).



Molecules 2022, 27, 924 16 of 21Molecules 2022, 27, x FOR PEER REVIEW 17 of 23 
 

 

 

Figure 15. (a) SEM image of the AgBr/GAs. (b,c) The photocatalytic oxidative curves of MO and 

reductive curves of CrVI by AgBr/GAs and AgBr under visible light and the absorptive curve of 

AgBr/GAs in the dark, respectively. Reprinted with permission from Ref. [114]. Copyright 2016, 

Elsevier Inc. 

Generally, CO2 reduction usually undergoes two processes: oxidizing water to gen-

erate hydrogen ions (2H2O + 4h+→O2 + 4H+) and reducing CO2 to CH4 via acquiring 8-

electrons process (CO2 + 8H+ + 8e–→CH4 + 2H2O) [115]. The 3D GAs have also been proved 

to be an exciting photocatalyst for the reduction of main greenhouse gas CO2, with higher 

catalytic efficiency compared to other semiconductors. Tong and co-workers [75] de-

signed a 3D porous g-C3N4/GO aerogel (CNGA) by the hydrothermal induced self-assem-

bly method, in which g-C3N4 acted as the efficient photocatalyst, and GO was responsible 

for supporting the 3D framework. The as-prepared GAs could reduce CO2 into CO with 

a high yield of 23 mmol/g (within 6 h), which was about 2.3-fold increment compared to 

pure g-C3N4 (Figure 16). That is because the photogenerated electrons transfer to the net-

work of GO and react with the CO2 molecules under visible light irradiation. The holes 

that remained in the valence band of g-C3N4 can react with the surface adsorbed H2O. The 

separated electron-hole pairs fix the oxidative and reductive reactions mainly on the g-

C3N4 and GO surface, leading to highly efficient photocatalytic performance. 

 
Figure 16. Schematic diagram for illustrating the photodegradation (І) and photoreduction (П) 

processes over CNGA under visible light irradiation. Reprinted with permission from Ref. [75]. 

Copyright 2015, American Chemical Society. 

The 3D GAs also play an important role in catalyzing some chemical reactions, such 

as the selective oxidation of alcohol to carbonyl, the reduction of nitroaromatic compound 

to amino compound, and the synthesis of ammonia [65]. Yang et al. [111] prepared a 

metal-free 3D graphene-organic aerogel, in which the organic dyes acted as photosensi-

tizers. Such graphene-dye aerogels showed high photocatalytic activity for the hydro-

genation of nitro compounds to amines and the reduction of heavy metal ions, which was 

calculated to be 1.4 and 1.8 times as high as those of other semiconductor-organic dye 

materials, respectively. 

  

Figure 15. (a) SEM image of the AgBr/GAs. (b,c) The photocatalytic oxidative curves of MO and
reductive curves of CrVI by AgBr/GAs and AgBr under visible light and the absorptive curve of
AgBr/GAs in the dark, respectively. Reprinted with permission from Ref. [114]. Copyright 2016,
Elsevier Inc.

Generally, CO2 reduction usually undergoes two processes: oxidizing water to gen-
erate hydrogen ions (2H2O + 4h+→O2 + 4H+) and reducing CO2 to CH4 via acquiring
8-electrons process (CO2 + 8H+ + 8e–→CH4 + 2H2O) [115]. The 3D GAs have also been
proved to be an exciting photocatalyst for the reduction of main greenhouse gas CO2, with
higher catalytic efficiency compared to other semiconductors. Tong and co-workers [75]
designed a 3D porous g-C3N4/GO aerogel (CNGA) by the hydrothermal induced self-
assembly method, in which g-C3N4 acted as the efficient photocatalyst, and GO was
responsible for supporting the 3D framework. The as-prepared GAs could reduce CO2
into CO with a high yield of 23 mmol/g (within 6 h), which was about 2.3-fold increment
compared to pure g-C3N4 (Figure 16). That is because the photogenerated electrons transfer
to the network of GO and react with the CO2 molecules under visible light irradiation. The
holes that remained in the valence band of g-C3N4 can react with the surface adsorbed
H2O. The separated electron-hole pairs fix the oxidative and reductive reactions mainly on
the g-C3N4 and GO surface, leading to highly efficient photocatalytic performance.
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Figure 16. Schematic diagram for illustrating the photodegradation (I) and photoreduction (II)
processes over CNGA under visible light irradiation. Reprinted with permission from Ref. [75].
Copyright 2015, American Chemical Society.

The 3D GAs also play an important role in catalyzing some chemical reactions, such
as the selective oxidation of alcohol to carbonyl, the reduction of nitroaromatic compound
to amino compound, and the synthesis of ammonia [65]. Yang et al. [111] prepared a metal-
free 3D graphene-organic aerogel, in which the organic dyes acted as photosensitizers. Such
graphene-dye aerogels showed high photocatalytic activity for the hydrogenation of nitro
compounds to amines and the reduction of heavy metal ions, which was calculated to be 1.4
and 1.8 times as high as those of other semiconductor-organic dye materials, respectively.
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4. Future Perspectives

There is no doubt that considerable advances have been achieved in the fabrication of
3D GA materials in the past few decades. Various preparation methods involving a series
of template-free and template-guided methods are proposed to fabricate 3D GAs with
integrated properties of graphene and other unique characters. The excellent properties
make them attractive and promising in potential applications in varied fields, which brings
us closer to practical applications. In this review, we summarized the advancement of
literature, historical progress of synthesis of 3D GAs, and introduced the main application in
absorption, anode material, mechanical device, fire-warning material, and catalysis aspects.

Currently, although dramatic progress has been realized, the performance and appli-
cation filed of 3D GAs has not been fully exploited. There are still many challenges toward
the preparation and mechanism elaboration of highly efficient 3D GAs. Firstly, most of the
3D GAs are derived from the reduction of GO, so their electrical conductivity and charge
carrier mobility are remarkably decreased due to the disruption of p-conjugation compared
to pure graphene, which causes the improvement of electrical correlation performance of
3D GAs to often be restricted. Therefore, rational utilization of graphene with superior
electrical conductivity to advance the 3D GAs still needs continuous efforts. Secondly,
the widely used drying methods of preparation of aerogel are mainly freeze-drying and
supercritical drying [116]. Freeze-drying has the principal shortcomings of high energy
consumption, prolonged processing time, and microcrystals formation. Supercritical drying
gives aerogel a 3D-porous structure with small pores similar to wet gel, which faces limited
development due to a complex process and expensive equipment [117]. Therefore, the
advent of non-supercritical drying techniques may further expand the aerogels field in a
near future. Thirdly, the research of 3D GAs for fire-safety material is still in its elemen-
tary stage, and the mechanism and characterization means of fire-warning response need
further improvement [105]. Therefore, deeper systematic research on the mechanism from
theoretical and experimental aspects is highly desired.

With the output of constant efforts, we believe that substantial breakthroughs for the
finer structural control and practical applications of 3D GAs would be expected in the
near future.
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