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Necroptosis mediators RIPK3 and MLKL suppress
intracellular Listeria replication independently of
host cell killing
Kazuhito Sai1, Cameron Parsons2, John S. House3,4, Sophia Kathariou2, and Jun Ninomiya-Tsuji1

RIPK3, a key mediator of necroptosis, has been implicated in the host defense against viral infection primary in immune cells.
However, gene expression analysis revealed that RIPK3 is abundantly expressed not only in immune organs but also in the
gastrointestinal tract, particularly in the small intestine. We found that orally inoculated Listeria monocytogenes, a bacterial
foodborne pathogen, efficiently spread and caused systemic infection in Ripk3-deficient mice while almost no dissemination
was observed in wild-type mice. Listeria infection activated the RIPK3-MLKL pathway in cultured cells, which resulted in
suppression of intracellular replication of Listeria. Surprisingly, Listeria infection–induced phosphorylation of MLKL did not
result in host cell killing. We found that MLKL directly binds to Listeria and inhibits their replication in the cytosol. Our
findings have revealed a novel functional role of the RIPK3-MLKL pathway in nonimmune cell-derived host defense against
Listeria invasion, which is mediated through cell death–independent mechanisms.

Introduction
Receptor-interacting protein kinase 3 (RIPK3) is a serine/thre-
onine protein kinase that mediates necroptosis, a programmed
form of necrotic cell death. Upon induction of necroptosis, RIPK3
phosphorylates its downstream effector mixed lineage kinase
domain-like (MLKL), which promotes oligomerization of MLKL
on the plasma membrane, where it forms membrane pores to
execute lytic cell death (Wang et al., 2014; Rodriguez et al., 2016).
In cultured cells, combined stimulation with TNF, SMAC mi-
metic (an inhibitor of ubiquitin ligase cIAPs), and a pan-caspase
inhibitor Z-VAD-FMK elicits necroptotic cell death through
formation of a protein complex consisting of RIPK1, RIPK3, and
MLKL (Linkermann and Green, 2014; Pasparakis and Vandenabeele,
2015). However, the physiological conditions that mimic such
intricate stimulations are not yet clear. As neither Ripk3- nor Mlkl-
deficient mice display overt abnormalities, the RIPK3-MLKL path-
way is dispensable for physiological processes in tissue development
and homeostasis (Newton et al., 2004; Wu et al., 2013). On the other
hand, under a pathophysiological condition during virus infection,
the RIPK3-MLKL pathway has been found to play an important role.
Protein DNA-dependent activator of interferon regulatory factors
(DAI, also known as ZBP-1) senses viral RNAs of influenza A virus
and murine cytomegalovirus, which in turn interacts with RIPK3

through a unique protein–protein interaction motif called RIP ho-
motypic interaction motifs domain to trigger necroptosis signaling
(Upton et al., 2010; Thapa et al., 2016; Downey et al., 2017; Hartmann
et al., 2017; Upton and Kaiser, 2017). This process mainly occurs in
the front line of immune defense and limits virus spread by killing
host immune cells.

The level of RIPK3 expression varies among cell types, making
it a crucial determinant of whether the cells are capable of un-
dergoing necroptosis. Multiple immune cells including monocytic
leukemia and lymphocyte cell lines such as THP-1, Jurkat, and
normal myeloid and lymphoid cells express high levels of RIPK3,
which might reflect the role of RIPK3 in protection against virus
invasion (Koo et al., 2015). Interestingly, colorectal cancer–derived
cell lines such as HT-29 and Caco-2 cells also highly express RIPK3
despite the fact that most solid tumor–derived cells, e.g., HeLa,
HepG2, and A549, completely lack its expression (Cai et al., 2014;
Moriwaki et al., 2015; Su et al., 2016). Recent RNA-sequencing
(RNA-seq) analyses as well as immunohistochemical staining in
mice have also shown higher expression of Ripk3 in the small
intestine compared with other nonimmune organs (Newton et al.,
2016; Wang et al., 2016). These facts suggest that RIPK3 possesses
an important role in the gastrointestinal (GI) tract.
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Enteropathogenic bacteria, such as Listeria monocytogenes
(hereafter referred to as Listeria), Salmonella enterica, and Shi-
gella species., initially invade into intestinal epithelial cells to
colonize and spread in the intestinal epithelium (Thiagarajah
et al., 2015; Perez-Lopez et al., 2016). Multi-layered defense
systems before and after cell invasion, including secretory IgA,
antimicrobial peptides, pattern recognition receptors, and xen-
ophagy, prevent their colonization within the intestinal epi-
thelium and transmission to other organs (Ganz, 2003; Holmgren
and Czerkinsky, 2005; Kawai and Akira, 2010; Sorbara and
Girardin, 2015; Jo et al., 2016). In this study, we initially defined
the expression levels of RIPK3 and MLKL in several organs. Their
pronounced high-level expression in the intestinal epithelium led
us to examine a potential role of RIPK3 and MLKL in the non-
immune cell defense system against enteropathogenic bacteria.

Results
The RIPK3-MLKL pathway prevents systemic spread of Listeria
in mice
To gain insight into the physiological role of RIPK3 signaling, we
first analyzed its expression levels in human and mouse tissues.
For expression analysis of RIPK3 in multiple human tissues, we
analyzed RNA-seq data obtained from the genotype-tissue ex-
pression (GTEx) databases (GTEx Consortium, 2013). As pre-
dicted by a higher abundance of RIPK3 in immune cells (Koo et al.,
2015), the immune organs/tissues, such as spleen and blood, ex-
hibit higher expression of RIPK3. Interestingly, we found that
organs constituting the GI tract, including the esophagus, the small
intestine, and the colon, also express RIPK3 at higher levels (Fig. 1
A and Fig. S1 A). Similarly, we observed abundant expression of
MLKL in the small intestine (Fig. S1 B). To further determine the
tissue-specific protein levels of RIPK3 and MLKL, we collected
mouse tissue extracts and performed Western blotting analysis.
Consistent with the human transcriptional analysis, levels of
RIPK3 protein were abundant in both the lymphoid tissue (spleen)
and the duodenal enterocytes, less so in the liver, and were almost
undetectable in the cerebral cortex (Fig. 1 B). We also found that
MLKL protein was highly expressed in the small intestine, im-
plying a potential importance of the RIPK3-MLKL pathway in
digestive organs (Fig. 1 B). Furthermore, RIPK3 andMLKL proteins
were abundant both in the duodenal- and ileal-enterocytes, sug-
gesting their functional role throughout the epithelium of the
small intestine (Fig. 1 C). Since the epithelium of the GI tract is the
primary target of enteropathogenic bacteria invasion, we inves-
tigated the role of the RIPK3-MLKL pathway in protection against
infection by foodborne bacteria. We used Listeria, a gram-positive
intracellular bacterium that causes listeriosis and is widely used as
a model pathogen for intracellular infection in the intestinal epi-
thelium (McLauchlin et al., 2004; Lecuit, 2007). Listeria enters into
enterocytes through internalins-mediated mechanisms (Schubert
et al., 2002; Niemann et al., 2007). When successfully colonizing
in the small intestine, Listeria travels to the liver through the portal
vein and colonizes within the liver, which is the most prominent
pathway of Listeria systemic infection (Lecuit et al., 2001; Melton-
Witt et al., 2012). To test whether RIPK3 has a role in the intestinal
barrier against Listeria infection, Ripk3-deficient and littermate

control mice were orally infected with Listeria, and Listeria burden
in the liver at 3 d after infection was measured. While almost no
liver colonization was observed in the control mice in our ex-
perimental settings, pronounced colonization of Listeria was ob-
served in the liver of Ripk3-deficient mice (Fig. 1, D and E),
indicating impairment of the innate immune barrier in these
mice. We found that Mlkl-deficient mice also exhibited increased
susceptibility to liver colonization of Listeria (Fig. 1 F). We note
that the Listeria burden in the liver ofMlkl-deficient mice was less
than that in the liver of Ripk3-deficient mice. These results imply
that, although the RIPK3-MLKL pathway is important for pre-
venting systemic spread of Listeria, RIPK3 has MLKL-independent
innate immune functions that also contribute to the protection
against Listeria infection. Recent studies have shown that RIPK3
promotes inflammatory cytokine production independently of
MLKL activation and necroptosis (Lawlor et al., 2015; Najjar et al.,
2016; Daniels et al., 2017), which is likely to cause the diminished
protection against Listeria in Ripk3-deficient mice compared with
Mlkl-deficient mice. Additionally, RIPK3-dependent autophagy,
which does not require MLKL, might help to reduce Listeria bur-
den in Mlkl-deficient mice (Harris et al., 2015).

The RIPK3-MLKL pathway inhibits intracellular replication
of Listeria
The hyper-susceptibility of Listeria invasion can be mediated by
a number of different mechanisms. Among them, we focused on
Listeria entry and replication in enterocytes, since RIPK3 and
MLKL are highly expressed in the intestinal epithelium. WT
HeLa cells, which are deficient for RIPK3 expression (Sun et al.,
2012), and HeLa cells that stably express FLAG-tagged RIPK3
were used as an in vitro model system of nonphagocytic epi-
thelial cells for testing the role of RIPK3 in Listeria invasion. We
first asked whether the RIPK3-MLKL pathway is activated by
intracellular invasion of Listeria. Phosphorylation of RIPK3, de-
termined by the migration shift of RIPK3 on SDS-PAGE, was
observed at 24 h post-infection (hpi), indicating its activation
subsequent to Listeria invasion (Fig. 2 A). MLKL is activated via
phosphorylation at Thr357 and Ser358 by RIPK3 (Wang et al.,
2014). We found that Listeria infection resulted in increased
phosphorylation of MLKL, and this increase was dependent on
RIPK3 (Fig. 2 A). Listeria-induced activation of MLKL was also
observed in colorectal cancer–derived HT-29 cells, which ex-
press endogenous RIPK3 (Fig. 2 B; Koo et al., 2015). These results
indicate that Listeria infection activates MLKL in nonphagocytic
epithelial cells through RIPK3. We then asked whether the
RIPK3-MLKL pathway modulates Listeria entry and/or replica-
tion in the cytosol. To restrict Listeria replication only in the
cytosol, gentamicin was added to cell culture medium, which
kills Listeria in medium or attached to the cell surface (Havell,
1986). The number of cytosolic Listeria at 2 hpi was not altered
by the presence of RIPK3, indicating that neither Listeria entry
process nor initial replication is targeted by the RIPK3 pathway
(Fig. S2 A). In contrast, intracellular replication of Listeria was
decreased in RIPK3-expressing cells at 6 hpi, and was signifi-
cantly suppressed by the presence of RIPK3 at 24 hpi (Fig. 2, C
and D). A RIPK3 kinase inhibitor GSK’872 increased Listeria
burden in RIPK3-expressing cells, indicating that growth
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suppression by RIPK3 requires its kinase activity (Fig. 2 E). To
determine whether MLKL participates in the Listeria growth
suppression, we treated the cells with necrosulfonamide (NSA),
a pharmacological inhibitor of MLKL (Sun et al., 2012). NSA

up-regulated Listeria growth in RIPK3 expressing HeLa cells
and HT-29 cells but not in RIPK3-deficient HeLa cells (Fig. 2, F
and G). Collectively, these results indicate that RIPK3 inhi-
bits intracellular Listeria replication through phosphorylating

Figure 1. RIPK3-MLKL pathway prevents systemic spread of Listeria in mice. (A) Human expression levels by tissue for RIPK3. Gene-level transcripts per
kilobasemillion (TPM) were downloaded from the GTEx portal and summarized across tissue type. Box and whisker plots are plotted in order of highest median
expression to lowest. The bottom border, middle line, and top border of the box represent the first quartile, second quartile (median), and third quartile,
respectively, while the lines represent 150% of the interquartile range. Outliers more than 150% of the interquartile range are represented as points. 17
representative tissues are shown (see Fig. S1 A for the full results). (B and C) Protein extracts of the indicated tissues from Ripk3+/+ (WT, #1–3) and Ripk3−/−

(knockout [KO], #1) mice were analyzed by Western blotting with the indicated antibodies. Coomassie brilliant blue (CBB) staining of the whole membrane (B)
and β-actin (C) were used as loading controls. (D and E) Ripk3−/− (KO) and littermate Ripk3+/+ or Ripk3+/− (control) mice were orally infected with Listeria.
Immunofluorescence staining of liver-colonized Listeria (D) and CFU of Listeria in the liver (E) at 3 d after infection are shown. Arrowheads indicate Listeria in the
liver. Bar, 50 µm (mean ± SEM; 6–9-wk-old; control, n = 9; Ripk3 KO, n = 9; *, P < 0.05). (F)Mlkl−/− (KO) and littermateMlkl+/+ (control) mice were orally infected
with Listeria. CFU of Listeria in the liver at 3 d after infection is shown (mean ± SEM; 6–9-wk-old; control, n = 9; Mlkl KO, n = 4; *, P < 0.05).
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MLKL. To further test if this pathway generally prevents in-
tracellular bacteria growth, we infected WT and RIPK3-
expressing HeLa cells with gram-negative bacteria Salmonella
typhimurium (here after referred to as Salmonella). Although
intracellular invasion of Salmonella induced RIPK3-dependent
MLKL phosphorylation (Fig. S2 B), the presence of RIPK3 did
not effectively suppress Salmonella growth in the cytosol (Fig.
S2 C). These results suggest that the RIPK3-MLKL–mediated
blockade of cytosolic bacterial growth is preferentially effec-
tive against certain types of intracellular bacteria.

Listeria-induced activation of the RIPK3-MLKL pathway does
not kill host cells
Virus infection activates the RIPK3-MLKL pathway and kills
infected cells through necroptosis, which protects the host from
systemic virus spread (Upton et al., 2012; Thapa et al., 2016).
Thus, we initially expected that the growth inhibition of Listeria
by the RIPK3-MLKL pathway would be also mediated through a
cell death–dependent mechanism. We confirmed that Listeria
infection induces phosphorylation of MLKL at a level equivalent
to TNF, SMAC mimetic, and a pan-caspase inhibitor Q-VD-OPh
(TSQ) treatment (Fig. 3 A, top panel). Surprisingly, while TSQ

treatment killed a large population of the RIPK3-expressing
cells, Listeria infection had almost no effect on cell viability
(Fig. 3, B and C). To confirm that RIPK3-dependent cell lysis was
not occurring in Listeria-infected cells, we performed the
membrane permeability assay within the population of adherent
cells. Listeria infection marginally induced membrane per-
meabilization in both RIPK3-negative and -positive cells, which
is much less than that observed with TSQ treatment (Fig. 3 D).
Consistent with the results obtained from cultured cells, no
Listeria-invaded enterocytes showed signs of cell death in the
both WT and Ripk3-deficient mouse small intestine after oral
infection (Fig. S3). These results demonstrate that Listeria
infection–induced MLKL activation does not elicit necroptotic
cell death. To determine why Listeria-activated MLKL does not
induce plasma membrane permeabilization of host cells, we
tested two possibilities. One is that Listeria actively inhibits
necroptotic cell death, and the other is that Listeria infection–
induced activation of MLKL does not lead to its oligomerization,
which is known to be required for translocation to the plasma
membrane and permeabilization (Wang et al., 2014). To test the
former possibility, we asked if the presence of intracellular
Listeria suppresses necroptosis. We found that TSQ treatment

Figure 2. RIPK3-MLKL pathway suppresses
intracellular replication of Listeria. (A and B)
Control, FLAG-tagged RIPK3 stably expressing
(RIPK3+) HeLa cells (A), and HT-29 cells (B) were
infected with Listeria (MOI of 10) and cultured
for the indicated periods. Phosphorylation levels
of MLKL (pMLKL) and RIPK3 (pRIPK3) were an-
alyzed by Western blotting. Gentamicin was
added to the culture to eliminate extracellular
Listeria. (C and D) Control and RIPK3+ HeLa cells
were infected with Listeria (MOI of 10) and cul-
tured for the indicated periods. The cells were
stained with anti-Listeria antibody, phalloidin,
and DAPI at the indicated time point (C). Bar,
20 µm. Fold replication of Listeria (relative to the
number of bacteria at 2 hpi) was measured (D).
(E) Control and RIPK3+ HeLa cells were treated
with either vehicle (DMSO) or 1 µM GSK’872 for
30min. The cells were then infected with Listeria
(MOI of 10) and cultured for 24 h with either
DMSO or 1 µM GSK’872. Listeria CFU relative to
vehicle-treated control is shown. (F and G)
Control, RIPK3+ HeLa (F), and HT-29 cells (G)
were treated with either vehicle (DMSO) or 1 µM
NSA for 30 min. The cells were then infected
with Listeria (MOI of 10) and cultured for 24 h
with either DMSO or 1 µM NSA. Listeria CFU
relative to vehicle-treated control is shown
(mean ± SEM; n = 3; *, P < 0.05; **, P < 0.01;
***, P < 0.001).

Sai et al. Journal of Cell Biology 1997

The RIPK3-MLKL pathway attacks cytosolic Listeria https://doi.org/10.1083/jcb.201810014

https://doi.org/10.1083/jcb.201810014


killed both uninfected and Listeria-infected cells at the same rate
(Fig. S4, A and B). To further confirm this observation, we used
HeLa cells harboring doxycycline (Dox)-inducible NBB140-2xFV
fusion protein, an N-terminal fragment of MLKL conjugated

with 2xFV oligomerization cassette (N-terminal helix bundle
and brace domain, NBB140). This fusion protein forms oligomer
through 2xFV domain upon dimerizer (DIM) treatment and in-
duces necroptosis (Quarato et al., 2016). Listeria infection did not

Figure 3. Listeria invasion–induced phosphorylation of MLKL does not lead to necroptotic cell death. (A) FLAG-tagged RIPK3 stably expressing (RIPK3+)
HeLa cells were either treated with 50 ng/ml TNF, 100 nM SMACmimetic, 20 µMQ-VD-OPh (TSQ) for the indicated time periods, or infected with Listeria (MOI
of 10 and 100) for 24 h. Phosphorylation (top panel) and oligomerization (bottom panel) of MLKL were analyzed by Western blotting. *, Nonspecific bands. (B
and C) Control and RIPK3+ HeLa cells were either treated with TSQ for the indicated time periods, or infected with Listeria (MOI of 10 and 100) and cultured for
24 h. Phosphorylation level of MLKL (B, Western blotting), bright-field images of the cells (B, right panels), and cell viability measured by crystal violet staining
(C) are shown. Bar, 200 µm. (D) Control and FLAG-RIPK3 stably expressing (RIPK3+) HeLa cells were either treated with TSQ or infected with Listeria (MOI of
100) and cultured for the indicated time periods. Floating dead cells were washed out after the culture. Membrane permeability of the remaining adherent cells
was measured by incorporation of ethidium homodimer III (mean ± SEM; n = 3; ***, P < 0.001; ****, P < 0.0001).
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inhibit DIM-induced cell death in NBB140-2xFV–expressing cells
(Fig. S4, C and D). Thus, it is unlikely that Listeria has the ability
to block necroptotic cell death. We next asked whether Listeria
infection induces MLKL oligomerization. Interestingly, while
TSQ treatment induced MLKL oligomelization, no MLKL oligo-
mer formation was observed in Listeria-infected cells (Fig. 3 A,
bottom panel). These results indicate that Listeria infection ac-
tivates MLKL with a unique state that does not induce its olig-
omerization, which is still effective in suppressing cytosolic
Listeria replication.

MLKL directly binds to Listeria and inhibits their replication
RIPK3 phosphorylation ofMLKL releases the N-terminal domain
and promotes its binding to particular membrane phospholipids,
namely phosphatidylinositol phosphates, through a four-helical
bundle domain (Dondelinger et al., 2014). Interestingly, MLKL
also possesses a strong binding affinity for cardiolipin, a unique
phospholipid exclusively found on the mitochondrial inner
membrane as well as bacterial cell membrane (Schlame et al.,
2000; Zhang and Rock, 2008; Dondelinger et al., 2014; Wang
et al., 2014). A peptidoglycan layer that composes the cell wall
of gram-positive bacteria is accessible to molecules up to 57 kD
(Demchick and Koch, 1996; Lambert, 2002). Various mammalian
proteins, such as gasdermin D and septins, are known to be able
to penetrate gram-positive bacterial cell walls and bind to the
lipid membranes (Liu et al., 2016; Krokowski et al., 2018). Thus,
we examined whether MLKL inhibits Listeria replication by di-
rectly targeting their lipid membranes. We first conducted flu-
orescence confocal microscopy analysis using HT-29 cells
transiently expressing C-terminally FLAG-tagged MLKL. We
found that MLKL was colocalized with Listeria in the cytosol at
6 hpi (Fig. 4 A). Consistent with the result showing Listeria in-
fection does not trigger MLKL oligomerization, we did not ob-
serve localization of MLKL in the host plasma membrane during
Listeria infection, while it was seen in TSQ-treated cells (Fig. S5
A). To further determine whether MLKL directly binds to Lis-
teria, we performed an in vitro binding assay using NBB140-2xFV
protein, which does not require RIPK3 phosphorylation for its
lipid binding and can be oligomelized by DIM treatment. We
found that NBB140-2xFV-VENUS but not VENUS alone bound to
Listeria (Fig. 4 B). DIM treatment did not enhance the binding,
confirming that oligomerization is not required for MLKL to
target Listeria (Fig. 4 B). Contrary to gram-positive Listeria, we
could not detect interaction between NBB140-2xFV-VENUS and
gram-negative bacteria, Salmonella, and Escherichia coli (Fig. S5
B). The selective binding ability of MLKL to gram-positive bac-
teria might be due to the differential lipid composition in their
lipid membranes. Cardiolipin is less abundant in the gram-
negative bacterial outer membrane compared with their inner
membrane, which is not accessible for host proteins, or gram-
positive bacterial membrane (Epand and Epand, 2009; Dalebroux
et al., 2015). To ascertain whether MLKL directly inhibits repli-
cation of bacteria in a cell-free system, we incubated Listeria,
Salmonella, and E. coli with cell lysates containing either VENUS
alone or NBB140-2xFV-VENUS for 2 h. Incubation of Listeria in
NBB140-2xFV-VENUS–containing lysates significantly reduced
their number, and DIM treatment did not alter the efficiency of

growth inhibition (Fig. 4 C). These results demonstrate that
MLKLmonomer directly suppresses Listeria growth. As expected,
NBB140-2xFV-VENUS inhibits neither Salmonella nor E. coli growth
in the culture (Fig. 4 C). We observed vacuolization in the cytosol
of Listeria incubated with NBB140-2xFV-VENUS, which is a hall-
mark of plasma membrane disruption caused by antimicrobial
peptides (Fig. 4 D; Speert et al., 1979; do Nascimento et al., 2015).
Our data demonstrate that the RIPK3-MLKL pathway suppresses
intracellular Listeria growth through binding of MLKL to Listeria,
which likely to disrupt their plasma membranes.

Discussion
To defend against invasion of enteropathogenic bacteria, or-
ganisms have evolved multi-layered defense systems. Toll-like
receptors (TLRs) expressed on the surface of enterocytes and
macrophages recognize pathogen-associated molecular patterns
such as lipoteichoic acid, lipoprotein (TLR2 ligands), and lipo-
polysaccharide (TLR4 ligands), which lead to inflammatory re-
sponses to recruit immune cells for pathogen clearance (Kumar
et al., 2009; Abreu, 2010). In phagocytic cells, bacteria-containing
phagosomes are subjected to lysosomal degradation through
multiple mechanisms including autophagy and LC3-associated
phagocytosis (Sanjuan et al., 2007; Huang et al., 2009; Cemma
and Brumell, 2012). In nonphagocytic enterocytes, bacteria enter
the cells through mechanisms mediated by invasion-associated
proteins such as internalins, and bacteria-containing vacuoles
are targeted by autophagy adopters including p62, NDP-52, and
optineurin, leading to lysosomal degradation (xenophagy; Thurston
et al., 2012; Deretic et al., 2013; Bauckman et al., 2015). If bacteria
successfully escape into the cytosol, they are recognized by nucle-
otide binding and oligomerization domain–like receptors, which
elicits inflammatory responses (Meylan et al., 2006; Mariathasan
and Monack, 2007). These defense systems are activated at the
relatively early time point during infection (∼4 hpi) and coordi-
nately block bacterial cytosolic colonization (Philpott et al., 2000;
McCaffrey et al., 2004; Travassos et al., 2010). In the present study,
we have revealed a novel layer of defense against Listeria invasion
by the RIPK3-MLKL pathway in epithelial cell types, which is ac-
tivated later in the intracellular invasion process. The RIPK3-MLKL
pathway modulated neither cell entry nor early colonization of
Listeria, but suppressed their replication at 6–24 hpi (Fig. S2 A and
Fig. 2, C and D). This implies that the RIPK3-MLKL–mediated de-
fense functions to inhibit replication of pathogens that evade initial
defense systems and have successfully started colonizing in the
cytosol.

Our results have shown that the RIPK3-MLKL pathway does
not induce necroptotic cell death but directly prevents replica-
tion of Listeria in epithelial cell types. However, Listeria infection
is known to induce rapid necroptotic cell death in macrophages
(Blériot et al., 2015; González-Juarbe et al., 2015). Macrophage
death should be beneficial to protect the host by recruiting im-
mune cells to effectively fight with pathogens. We speculate
that, since macrophages express a broad range of pattern rec-
ognition receptors, they might use multiple bacterial-sensing
systems that elicit necroptotic cell death. On the contrary, epi-
thelial cells’ ability to activate MLKL only for targeting cytosolic
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bacteria but not their own plasma membrane should prevent
disruption of the epithelial barrier in the intestine, which pro-
tects the host from highly problematic systemic invasion of
pathogens. These cell type–dependent differential consequences
of Listeria-induced activation of the RIPK3-MLKL pathway co-
operatively contribute to the effective host defense.

The molecular mechanism by which cells sense cytosolic in-
vasion of Listeria and activate the RIPK3-MLKL pathway remains
unclear. A protein complex consisting of RIPK1, RIPK3, and MLKL
has been reported to interact with autophagy machinery that is
recruited to bacteria-containing phagosomes (Goodall et al., 2016).
Thus, one possiblemechanism is that induction of autophagy upon
bacteria invasion also triggers the RIPK3-MLKL pathway to ensure
effective clearance of the pathogens. Alternatively, cytosolic pat-
tern recognition receptors that recognize bacterial moieties, such
as NOD1/2 and TLR9, may be able to activate the pathway. Im-
portantly, this MLKL activation does not kill host cells but does
effectively block Listeria replication. In necroptosis, MLKL phos-
phorylation by RIPK3 leads to two separate processes: releasing
the N-terminal domain for the translocation of MLKL in mem-
branes, and MLKL oligomerization in the membranes. Both are
essential for the formation ofmembrane pores that are reported to
be permeable to up to 10-kDmolecules (Xia et al., 2016). Given that

Listeria infection–activated MLKL suppresses Listeria growth
without forming oligomers (Fig. 3 A and Fig. 4 C), MLKL phos-
phorylation by RIPK3 during Listeria infection seemingly causes
only release of the N-terminal domain, which is sufficient for its
anti-Listeria activity. The mechanisms by whichMLKL is uniquely
activated and recruited to Listeria warrant further investigation.

MLKL belongs to a large family of pore-forming proteins that
include a complement (C9), cytotoxic granules (perforin and gran-
ulysin), a pyroptosis mediator (gasdermin D), and pro-apoptotic
BCL2s (BAX and BAK), as well as a wide variety of antimicrobial
peptides (Lieberman, 2003; Brogden, 2005; Youle and Strasser,
2008; Bischofberger et al., 2009; Wang et al., 2014; Ding et al.,
2016). LikeMLKL, granulysin and gasdermin D are associatedwith
host programmed cell death upon pathogen invasion (Trapani and
Smyth, 2002; Kayagaki et al., 2015). Interestingly, besides their
effects on host cells, it has been recently reported that granulysin
effectively kills intracellular pathogens, and that gasdermin D
complex directly inhibits bacteria growth (Ernst et al., 2000;
Walch et al., 2014; Liu et al., 2016). This raises the possibility that
host-derived pore-forming proteins may follow a common evo-
lutionary pathway to gain two different roles. One is direct in-
teraction with pathogens, and another is induction of host cell
killing, which effectively combat many types of pathogens.

Figure 4. MLKL directly binds to Listeria and
inhibits their replication. (A) HT-29 cells
transiently expressing FLAG-tagged MLKL were
infected with Listeria (MOI of 30) and cultured
for 6 h. The cells were fixed and stained with
anti-FLAG antibody and anti-Listeria antibody,
and analyzed by confocal microscope. Arrow-
heads show the colocalization of MLKL with
Listeria. Bar, 10 µm. (B) HeLa cell lysates con-
taining either VENUS or NBB140-2xFV-VENUS
were treated with vehicle or DIM, and incubated
with Listeria for 1 h. Listeria-bound NBB140-2xFV-
VENUS was detected by Western blotting. To
determine the oligomerization state of NBB140-
2xFV in the presence and absence of DIM
treatment, cell lysates were treated with a
cross-linker disuccinimidyl suberate (+DSS). (C)
HeLa cell lysates containing either VENUS or
NBB140-2xFV-VENUS were treated with vehicle
(EtOH) or DIM, and incubated with the indicated
bacteria for 2 h. Bacterial CFU relative to vehicle-
treated, VENUS lysate sample is shown. (mean ±
SEM; n = 6; **, P < 0.01). (D) HeLa cell lysates
containing either VENUS or NBB140-2xFV-VE-
NUS were incubated with Listeria for 1 h. Listeria
was fixed and analyzed by transmission EM.
*, Vacuole-like structures formed by MLKL
treatment. Bar, 1 µm.
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Materials and methods
Antibodies, plasmids, and reagents
Anti–β-actin (AC15; Sigma-Aldrich), anti-Listeria (ab35132; Ab-
cam), anti-mouse RIPK3 (R4277; Sigma-Aldrich), anti-MLKL
(EPR17514; Abcam), anti-phospho-human MLKL (Thr357/Ser358;
EPR9514; Abcam), anti-FLAG (M2; Sigma-Aldrich), and anti-GFP
(GT859; GeneTex; 9F9.F9; Abcam) were used. FLAG-tagged hu-
man RIPK3 and C-terminally FLAG-tagged humanMLKL plasmids
were gifts from X. Wang (University of Texas Southwestern,
Dallas, TX). NBB140-2xFV-VENUS and control VENUS plasmids
were gifts from D. Green (St. Jude Research Hospital, Memphis,
TN). Plasmids were transfected using TransIT-X2 Reagent (Mirus
Bio LLC). Alexa Fluor 488 phalloidin (Thermo Fisher Scientific),
DAPI (Calbiochem), GSK’872 (Sigma-Aldrich), NSA (Calbiochem),
TNF (PeproTech), Q-VD-OPh (TONBO Biosciences), SMAC mi-
metic (Brinapant; LC Laboratories), ethidium homodimer III
(Biotium), Hoechst 33342 (Thermo Fisher Scientific), DIM
(AP20187, Clontech), and disuccinimidyl suberate (Thermo Fisher
Scientific) were used.

Mice and cell culture
Ripk3-deficient mice (C57BL/6) were obtained from V. Dixit
(Genentech, San Francisco, CA; Newton et al., 2004). Since the
protein levels of RIPK3 in the intestinal epithelium were not
significantly different between Ripk3 WT (+/+) and heterozy-
gous (+/−) mice (Fig. S1 C), littermate and age-matched Ripk3+/+

and Ripk3+/− mice were used as controls. Mlkl-deficient mice
(C57BL/6) were obtained from J.M. Murphy (Walter and Eliza
Hall Institute of Medical Research, Parkville, Australia; Murphy
et al., 2013). Littermate and age-matched Mlkl+/+ mice were
used as controls. Inducible intestinal epithelium-specific Tak1
knockout mice (Villin-CreERT2, Tak1flox/flox) were used as positive
controls for TUNEL staining of the small intestine (Kajino-
Sakamoto et al., 2010). All animal experiments were con-
ducted with the approval of the North Carolina State University
Institutional Animal Care and Use Committee.

HeLa (ATCC CCL-2) cells and HT-29 (ATCC HTB-38) cells were
cultured in DMEM supplemented with 10% bovine growth serum
(Hyclone) and 50 IU/ml penicillin-streptomycin at 37°C in 5% CO2.

Bacterial strain and growth condition
L. monocytogenes serotype 1/2b strain 2011L-2858, implicated in a
major outbreak of listeriosis via contaminated cantaloupe in
2011 (McCollum et al., 2013), S. typhimurium strain LT-2, and
E. coli strain DH5a were used in the study. For making Listeria
frozen stock cultures, Listeria was cultured in brain heart infu-
sion (BHI) broth (BD Biosciences) at 37°C until the culture
reached an OD600 of 0.8, and then 500-µl aliquots were stored at
−80°C. Prior to each experiment, 500 µl of Listeria frozen stock
culture was added to 9.5 ml of BHI broth and cultured at 37°C for
2 h. Prior to each experiment, Salmonella and E. coli were pre-
cultured in LB broth at 37°C overnight. Then 500 µl of preculture
was added to 9.5 ml of LB broth and cultured at 37°C for 2 h.

Establishing stable cell lines
FLAG-tagged human RIPK3 stably expressing HeLa cells were
generated by transfecting FLAG-tagged human RIPK3 (pCI-neo

plasmid) and selecting the cells with G418 (400 µg/ml). The cells
were seeded at low density, and individual clones were isolated.
Expression levels of FLAG-RIPK3 were examined by Western
blotting, and a clone with no detectable RIPK3 expression was
used as a negative control. Dox-inducible NBB140-2xFV-VENUS
or VENUS-expressing HeLa cells were generated by transfecting
NBB140-2xFV-VENUS or VENUS plasmids (pRetroX-TRE3G)
with a standard retroviral transduction protocol and selecting
the cells with G418 (500 µg/ml) and puromycin (2 µg/ml). The
cells were seeded at a low density, and individual clones were
isolated. Dox-induced expression of NBB140-2xFV-VENUS and
VENUS were confirmed by Western blotting.

Preparation of mouse tissue protein extracts
6- to 9-wk-old WT and Ripk3-deficient mice were euthanized by
CO2 inhalation followed by cervical dislocation. Liver, spleen,
and cerebral cortex were homogenized using glass dounce ho-
mogenizers in an extraction buffer containing 20mMHepes, pH
7.4, 150 mM NaCl, 12.5 mM β-glycerophosphate, 1.5 mM MgCl2,
2 mM EGTA, 10 mM NaF, 2 mM DTT, 1 mM Na3VO4, 1 mM
phenylmethylsulfonyl fluoride, 20 µM aprotinin, and 0.5% Tri-
ton X-100. For preparation of protein extracts from intestinal
enterocytes, duodenal (5 cm from the stomach) and ileal (5 cm
above the cecum) small intestines were dissected, cut open, and
washed with HBSS (Ca2+/Mg2+-free). The tissues were rinsed
with HBSS (Ca2+/Mg2+-free) containing 1 mM DTT to remove
mucosa. The tissues were transferred to 15 ml tubes with 10 ml
of dissociation buffer (0.5 mM DTT and 1.5 mM EDTA in HBSS)
and incubated for 30 min, at 4°C with rotation. After incubation,
the tubes were vortex-mixed vigorously for 30 s, and the re-
maining tissues were removed. The tubes were centrifuged at
1,000 × g at 4°C for 10 min to collect the enterocytes. The cell
pellets were resuspended in an extraction buffer described
above, and proteins were extracted by sonication.

Oral infection of Listeria in mice
Weused the previously reportedmethod for oral transmission of
Listeria (Bou Ghanem et al., 2012; D’Orazio, 2014). 6- to 9-wk-old
female mice were food deprived for 16 h and fed with a 3–5-mm
piece of white bread (Kroger) saturated with 5 µl of Listeria (108

colony-forming units [CFU]) in melted salted butter (Kroger).
After the infection process, the mice were placed in a cage with
raised wire flooring to prevent coprophagy, fed with regular
chow, and housed for 3 d. Themicewere then euthanized by CO2

inhalation followed by cervical dislocation, and the whole liver
was homogenized in 500 µl sterile H2O. The homogenates were
diluted and plated on BHI agar plates, which were incubated for
24–36 h at 37°C for enumeration of liver-colonizing Listeria.

Bacterial infection of cultured cells
Cells were seeded on 24-well plates at a concentration of 5 × 104

cells per well on the day of infection. 4 h after plating, bacteria
were added to the culture. For Listeria infection, the plates were
centrifuged at 1,000 × g for 10 min at room temperature. The
plates were incubated for 30 min at 37°C in 5% CO2. The cells
were then washed with sterile PBS and cultured in DMEM
supplemented with 10% bovine growth serum and gentamicin
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(100 µg/ml) for the indicated time periods. After the culture, the
cells were washed with sterile PBS and lysed in PBS containing
0.2% Triton X-100. Serial dilutions of the lysates were spotted
(10 µl/spot) on agar plates (BHI agar for Listeria and LB agar for
Salmonella and E. coli) for enumeration of intracellular bacteria.
For some experiments, GSK’872, NSA, or DMSO (vehicle) was
added to the culture 30 min before the infection.

Western blotting
Protein extracts from cultured cells were prepared using an ex-
traction buffer containing 20 mM Hepes, pH 7.4, 150 mM NaCl,
12.5 mM β-glycerophosphate, 1.5 mMMgCl2, 2 mM EGTA, 10 mM
NaF, 2 mM DTT, 1 mM Na3VO4, 1 mM phenylmethylsulfonyl
fluoride, 20 µM aprotinin, and 0.5% Triton X-100. The extracts
were boiled in SDS sample buffer containing 2-mercaptoethanol at
95°C for 5 min, resolved on SDS-PAGE, and transferred onto
Hypond-P membranes (GE Healthcare). The membranes were
immunoblotted with the indicated antibodies, and the bound an-
tibodies were visualized with horseradish peroxidase–conjugated
antibodies against rabbit or mouse IgG using the ECL Western
blotting system (GE Healthcare).

For testing oligomerization of endogenous MLKL, protein ex-
tracts from cultured cellswere boiled in 2-mercaptoethanol-free SDS
sample buffer at 85°C for 10 min, and then resolved on SDS-PAGE.

Immunofluorescence microscopy analysis
For immunofluorescence staining of the mice liver, the whole
liver was isolated and fixed with 4% paraformaldehyde. The
fixed liver was embedded in optimum cutting temperature
compound and frozen immediately. Cryosections (8 μm) were
blocked with PBS containing 3% bovine serum albumin (Santa
Cruz Biotechnology) for 30 min at room temperature and in-
cubated with primary antibodies followed by incubation with
anti-rabbit IgG conjugated with Alexa Fluor 594 and Alexa Fluor
488 phalloidin. For immunofluorescence staining of cultured
cells, the cells were fixed with 10% formalin in PBS for 10 min,
blocked with PBS containing 3% bovine serum albumin for
30 min at room temperature, and then incubated with primary
antibodies followed by incubation with anti-rabbit IgG conju-
gated with Alexa 594 and anti-mouse IgG conjugated with Alexa
Fluor 488 or Alexa Fluor 488 phalloidin. The samples were ex-
amined by a fluorescence microscope (model BX41; Olympus)
and camera (model XM10; Olympus) at room temperature.

For Fig. 4 A, confocal images were obtained with a confocal
microscope (LSM 880 with Airyscan; Carl Zeiss) using a 40×,
NA = 1.2, water immersion objective, and images were collected
with Zen Black 2.3 software (Carl Zeiss).

For Fig. S5 A, confocal images were obtained with a confocal
microscope (FV-3000; Olympus) using a 60×, NA = 1.35, oil
immersion objective, and images were collected with FV31S-DT
software (Olympus). The images were exported as a full reso-
lution TIF files and processed in Photoshop CC (Adobe) to adjust
brightness and contrast.

Crystal violet assay and membrane permeability assay
Cells were seeded on 24-well plates at a concentration of 5 × 104

cells per well. The cells were either treated with TSQ or infected

with Listeria for the indicated time periods. Floating dead cells
were washed out with PBS, and adherent cells were fixed with
10% formalin in PBS.

For crystal violet assay, the cells were stained with 0.1% crystal
violet. The dyewas eluted in 50% ethanol and 0.1M sodium citrate
and analyzed at 595 nm using SmartSpecTM 3000 (Bio-Rad).

For membrane permeability assay, the cells were stained with
ethidium homodimer III and Hoechst 33342. For quantification of
membrane permeabilized cells, randomly photographed pictures
for each sample were used. At smallest, <4,000 cells were analyzed
for each sample, and total number of cells (Hoechst-positive) and
number of membrane permeabilized cells (ethidium homodimer
III–positive)were quantified using the ImageJ software. To calculate
ratio of membrane permeabilized cells, the number of membrane-
permeabilized cells was divided by the total cell number.

TUNEL staining of Listeria-invaded mouse enterocytes
6- to 9-wk-old female mice were food-deprived for 16 h and fed
with a 3–5-mm piece of white bread (Kroger) saturated with 5 µl
of Listeria (5 × 108 CFU) in melted salted butter (Kroger). After
the infection process, the mice were placed in a cage with raised
wire flooring to prevent coprophagy, fed with regular chow, and
housed for 1 d. Themice were then euthanized by CO2 inhalation
followed by cervical dislocation, and ileum (5 cm above the ce-
cum) was isolated. Luminal contents were washed out with PBS,
and the tissues were fixed with 4% paraformaldehyde. The fixed
ileum was embedded in paraffin wax. TUNEL staining of the
tissue sections was conducted using the DeadEnd Fluorometric
TUNEL System (Promega), followed by immunofluorescence
staining of Listeria. For positive controls of TUNEL staining,
6-wk-old Villin-CreERT2, Tak1flox/flox mice were given intraperi-
toneal injections of tamoxifen (1 mg per mouse, ∼20 g body
weight, per day) for three consecutive days to induce Tak1 gene
deletion in the intestinal epithelial cells. The ileum was isolated
at day 4 after the initiation of tamoxifen treatment.

Expression analysis of human RIPK3 and MLKL
Human GTEx data were downloaded at the gene level from https://
gtexportal.org/home/datasets (GTEx_Analysis_2016-01-15_v7_RNA-
SeQCv1.1.8_gene_tpm.gct). These data consist of a matrix of tran-
scripts per kilobase million normalized RNA-seq counts (56,202
Ensembl IDs by 11,688 samples). The counts associated with RIPK3
and MLKL (no. ENSG00000129465 and ENSG00000168404, re-
spectively) were summarized across tissues and inversely ordered
by median expression levels for visualization purposes.

In vitro NBB140-2xFV-VENUS binding assay and growth
inhibition assay of bacteria
Dox-inducible VENUS and NBB140-2xFV-VENUS expressing
HeLa cells were treated with Dox (1 µg/ml) for 6 h. The cells
were resuspended in H2O containing protease inhibitor (Prote-
ase Arrest; Calbiochem), and proteins were extracted by soni-
cation. The extracts were incubated with either ethanol (vehicle)
or DIM (25 nM) at 4°C for 1 h. To confirm oligomerization of
NBB140-2xFV-VENUS upon DIM treatment, disuccinimidyl sub-
erate (5 mM) was added to aliquots of the extracts and analyzed
by Western blotting.
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For NBB140-2xFV-VENUS binding assay, 40 µl of 5× bacterial
growth medium and bacteria (108 CFU) were added to 160 µl of
the extracts, and the mixture was incubated for 1 h at 37°C. After
incubation, the bacteria were precipitated by centrifugation at
5,000 × g for 10 min, washed twice with PBS, and boiled in SDS
sample buffer. The extracts were resolved on SDS-PAGE, and
coprecipitated proteins were analyzed by Western blotting.

For growth inhibition assay, 40 µl of 5× bacterial growth me-
dium and bacteria (2 × 102 CFU) were added to 160 µl of the ex-
tracts, and the mixture was incubated for 2 h at 37°C. After
incubation, serial dilutions of the culture were spotted (10 µl/spot)
on agar plates (BHI agar for Listeria and LB agar for Salmonella and
E. coli) for enumeration of bacteria.

EM analysis of Listeria
Dox-inducible VENUS and NBB140-2xFV-VENUS expressing
HeLa cells were treated with Dox (1 µg/ml) for 6 h. The cells
were resuspended in H2O containing protease inhibitor, and
proteins were extracted by sonication. 60 µl of 5× BHI broth and
Listeria (108 CFU) were added to 540 µl of the extracts, and the
mixture was incubated for 1 h at 37°C. After incubation, the
Listeria was precipitated by centrifugation at 19,000 × g for
3min, washed twice with PBS, and fixed in Karnovsky’s fixative,
2% paraformaldehyde (EM grade; Electron Microscopy Sci-
ences), and 2.5% glutaraldehyde (EM grade; Electron Micros-
copy Sciences) in PBS overnight at 4°C. The Listeria was
centrifuged for 5 min and rinsed in three 30-min changes of cold
0.1 M cacodylate buffer, pH 7.4, and then post-fixed in 2% OsO4

in the same buffer for 1 h at 4°C in the dark, and rinsed three
times as above. The Listeria was preembedded in 2% agarose
prepared in 0.1 M cacodylate buffer, pH 7.4. Samples were de-
hydrated in a graded series of ethanol (30%, 50%, 70%, 95%, and
3× 100%) followed by infiltration with Spurr’s resin and em-
bedding in BEEM capsules at 70°C. Cured blocks were trimmed,
thin-sectioned at 80 nm, and collected on Formvar/carbon grids,
and all grids were stained with 4% aqueous uranyl acetate and
Reynold’s lead citrate before viewing on a JEM-1200EX TEM
(JEOL USA) fitted with a Gatan ES1000W digital camera.

Statistical analyses
Statistical analyses were performed using the one-way ANOVA
with Tukey’s multiple comparisons test, or the unpaired Student’s
t test (two-tailed) with equal distributions. *, P < 0.05; **, P < 0.01;
***, P < 0.001; ****, P < 0.0001; NS when P S 0.05.

Online supplemental material
Fig. S1 shows expression analysis of RIPK3 andMLKL in multiple
human tissues. Fig. S2 shows Listeria number in control and
RIPK3-expressing HeLa cells at 2 hpi, MLKL activation by Sal-
monella infection, and Salmonella replication in control and
RIPK3-expressing HeLa cells. Fig. S3 shows TUNEL staining of
Listeria-infected intestinal epithelium. Fig. S4 shows necroptosis
induction in Listeria-infected cells. Fig. S5 shows membrane
localization of MLKL in TSQ-treated and Listeria-infected HT-29
cells, and interaction between NBB140-2xFV and Listeria, Sal-
monella, and E. coli.
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