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Abstract: Despite remarkable progress in cancer-drug discovery, the delivery of novel, safe, 

and sustainably effective products to the clinic has stalled. Using Src as a model, we examine 

key steps in drug development. The preclinical evidence on the relationship between Src and 

solid cancer is in sharp contrast with the modest anticancer effect noted in conventional clinical 

trials. Here, we consider Src inhibitors as an example of a promising drug class directed to 

invasion and metastasis and identify roadblocks in translation. We question the assumption that 

a drug-induced tumor shrinkage in preclinical and clinical studies predicts a successful outcome. 

Our analysis indicates that the key areas requiring attention are related, and include preclinical 

models (in vitro and mouse models), meaningful clinical trial end points, and an appreciation 

of the role of metastasis in morbidity and mortality. Current regulations do not reflect the 

natural history of the disease, and may be unrelated to the key complications: local invasion, 

metastasis, and the development of resistance. Alignment of preclinical and clinical studies 

and regulations based on mechanistic trial end points and platforms may help in overcoming 

these roadblocks. Viewed kaleidoscopically, most elements necessary and sufficient for a novel 

translational paradigm are in place.
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Introduction
The mismatch between science and translation is best illustrated by advances in cancer 

research,1,2 especially tumor virology,3 and the dearth of novel, safe, and sustainably 

effective drugs for solid cancer introduced to the clinic.4–6 This anomaly prompts the 

question: Where are we going wrong?7,8

Fifty years ago, Thomas Kuhn explained that science does not progress linearly, but 

through paradigmatic shifts; conventional and seemingly logical paradigms lose their 

utility when they cease to be fruitful.9 In this context, “fruitful” refers to translational 

potential, and anomalies between preclinical expectations and clinical reality are signs 

that all is not well. In solid cancer, an abysmally low approval rate, ineffective drug 

performance, market recalls, and unaffordable prices complicate the problem.8,10 In 

order to identify whether the cause lies in discovery, development, or in the approval 

process, which in a manner governs development, a rethink is in order.

Provocative questions11 are the best starting point for a collective rethink, and we 

address three issues in solid cancer: nonpredictive preclinical models, the Response 

Evaluation Criteria in Solid Tumors (RECIST) framework for evaluating tumor response 

to intervention, and an under appreciation of the role of metastasis in morbidity and 

mortality. We question the operational assumption that tumor shrinkage is an index 
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of overall survival/regression and a reduction in metastatic 

potential, especially since this assumption governs drug 

development and may direct attention away from local 

invasion and metastasis. Dissemination is the leading cause of 

mortality, and the most important improvements in morbidity 

and mortality will result from the prevention (or elimination) 

of metastasis.12–15 Accordingly, using the knowledge of 

Src inhibitors in solid cancer, we review the gaps between 

preclinical expectations and clinical reality in the evaluation of 

Src inhibitors, and indicate areas that may need emphasis.

Src and invadopodia in cancer cell 
invasion and metastasis
The year 2011  marks the centenary of Peyton Rous’s 

discovery of the chicken sarcoma virus.16,17 Six decades after 

this discovery, the agent was identified as the viral Src gene 

(v-Src) and it was established that a host gene (c-Src or Src) 

was captured by the virus.18 In 1966, at the age of 85 years, 

and 55 years after the publication of work on the tumor-

producing virus, Rous was awarded the Nobel Prize. In 1989, 

Harold Varmus and Michael Bishop were awarded the Nobel 

Prize for their discovery of the cellular origin of retroviral 

oncogenes as exemplified by Src.18 Martin chronicles events 

along the winding “road to Src” and the discovery of the 

first human protooncogene,19 while Becsei-Kilborn details 

the multiple reasons for the delayed recognition of this 

discovery.20 Today, Src is considered a key consideration in 

cancer cell invasion and metastasis.21–26

Src and related signaling mechanisms influence key 

elements in carcinogenesis, and invadopodia may represent 

the proximate mechanism related to local invasion and 

metastasis. But under current regulations, it is likely that 

Src inhibitors will recapitulate the experience of the matrix 

metalloproteinase inhibitors – failure. Today, mechanism-

based drugs that do not decrease tumor size are declared 

clinically ineffective.

Invasion of adjacent tissue is an early step in the meta-

static cascade and the key determinant of the metastatic 

potential of tumor cells. The invasion process is complex, 

and is best understood in the context of the cancer cells’ 

interactions with their environment.27–30 This includes signal-

ing pathways involved in epithelial–mesenchymal transition 

(EMT),31,32 chemotaxis,33,34 and structural and biomechanical 

properties of the extracellular matrix (ECM) and surrounding 

cells.35–40 About 90% of cancers originate from epithelial 

tissue. EMT describes the morphological change in a normal 

cell to an invasive and possibly metastatic one. This transi-

tion results in a migratory phenotype that is responsible for 

penetrating the basement membrane and invading adjacent 

tissue. Focal degradation of the ECM as well as invasion 

through the basement membrane is affected by the formation 

and activity of invadopodia. Invadopodia are actin-based 

protrusions of tumor cells that mediate proteolysis of ECM 

constituents41–43 (Figure 1).

Cancer cells have been shown to generate sufficient 

actomyosin force to deform collagen fibers and push through 

the ECM. However, focal degradation of the ECM precedes 

invasion, and it is now established that the invasive and 

metastatic potential of the cancer cells is related to their 

ability to form invadopodia. Local invasion is driven by two 

invadopodial processes: EMT-facilitated motility and migra-

tion, and protease-mediated degradation of the ECM.44–46 The 

Src family kinases are critical for invadopodial formation 

and function.

Targeting Src/invadopodia for the 
development of anti-invasive drugs
Broad, coherent, and consistent preclinical evidence indicates 

that Src plays a role in the advancement and metastasis of 

solid cancer, and that invadopodia are an important and 

proximate driver of local invasion in metastasis.44–48

Src inhibitors: rationale and 
preclinical evidence justifying 
development in solid cancer
Rationale
The rapidly emerging interest in invadopodia in cancer 

invasion and metastasis has placed the Src proto-oncogene and 

related signaling pathways at the focal point of anticancer drug 

discovery. The rationale for development of Src inhibitors in 

solid cancer is distinctive and differentiated, since it is not 

directed primarily to cell proliferation but towards progression 

of the disease, namely invasion and metastasis. In the context 

of preclinical studies, Plé and colleagues at AstraZeneca49 

have outlined elements supporting this strategy:

•	 Src kinase is overexpressed and upregulated in several 

human tumor types.

•	 Increased Src activity in tumor cells reduces cell adhe-

sion, facilitates motility, and thereby promotes an inva-

sive phenotype. Src kinase plays a key role in EMT and 

the conversion of epithelial tumor cells to an invasive 

phenotype.

•	 Increased Src kinase activity is linked with disruption 

E-cadherin-mediated cell–cell adhesion and the function of 

focal adhesions, which are critical for cell migration.
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•	 Inhibition of Src kinase limits bone metastases.

�Three Src inhibitors are undergoing advanced clinical 

development in solid cancer:

•	 the thiazole carboxamide dasatinib (BMS-354825, 

SPRYCEL®, Bristol-Myers Squibb)

•	 the anilinoquinazoline saracatinib (AZD0530, 

AstraZeneca)

•	 the quinolinecarbonitrile bosutinib (SKI-606, Wyeth/

Pfizer).

All are orally active, small-molecule, adenosine triphos-

phate (ATP)-binding, competitive inhibitors of tyrosine 

phosphorylation (Table 1). Dasatinib (Sprycel BMS-354825; 

Bristol-Myers Squibb, Princeton, NJ, USA) is an orally 

active, small-molecule (molecular weight [MW]  =  488) 

multikinase inhibitor of several Src family kinases as well as 

c-Kit, platelet-derived growth-factor receptor, Bcr-Abl, and 

ephrin-receptor kinases. It is an ATP-competitive inhibitor 

and inhibits Src tyrosine kinase (half-maximal inhibitory 

concentration [IC
50

]  =  0.55  nM). Dasatinib was approved 

by the US Food and Drug Administration and the European 

Medicines Agency for the treatment of adult patients with 

chronic myelogenous leukemia in the chronic phase resis-

tant or intolerant to prior therapy that included imatinib 

(June 2006), and for the treatment of newly diagnosed adult 

patients with Philadelphia chromosome-positive chronic 

myelogenous leukemia in the chronic phase (October 2010).50 

Saracatinib (AZD0530; AstraZeneca, Reims, France) is an 

orally active, small-molecule (MW = 542), highly selective, 

dual-specific inhibitor of Src/Abl kinase inhibitor. It is an 

ATP-competitive inhibitor and inhibits Src tyrosine kinase 
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Figure 1 (A–C) Invadopodia in invasion. (A) Steps of the invasion/metastasis process. In most carcinomas, cells from the primary tumor undergo an epithelial–mesenchymal 
transition and gain a migratory phenotype that allows for degradation of the ECM. These modified cells then penetrate the BM barrier, invade adjacent tissue, and supply 
a vasculature. (B and C) Invadopodia are dynamic cellular protrusions with an ability to invade surrounding tissue via degradation of the ECM. (B) Transmission electron 
microscopy image of sarcoma cell section with invadopodia penetrating a dermis-based matrix; scale bar 500 nm.43 (C) Schematic depicting the organization and key signaling 
components of invadopodia.
Abbreviations: BM, basal membrane; ECM, extracellular matrix; MMP, matrix metalloproteinase; GTPase, guanine nucleotide triphosphatase.
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(IC
50

 = 2.7 nM) and Abl kinase (IC
50

 = 30 nM).51 Bosutinib 

(SKI-606; Wyeth/Pfizer, Pearl River, NJ, USA) is an orally 

active, small-molecule (MW = 530) dual inhibitor of Src/

Abl kinase inhibitor. It is an ATP-competitive inhibitor and 

inhibits Src tyrosine kinase (IC
50

 = 1.2 nM) and Abl kinase 

(IC
50

 = 1 nM).52

Evidence
Overall, studies in in vitro and in vivo models of cancer have 

confirmed the ability of Src inhibitors to control tumor-cell 

motility and invasion. Cell proliferation and survival were 

unaffected at concentrations sufficient to block cell migration 

and invasion.53–55

Pichot and colleagues examined the effect of dasatinib 

in a drug-sensitive breast cancer cell line (MDA-MB-231), 

and demonstrated that dasatinib inhibited the forma-

tion of invadopodia and invasiveness in sensitive cells.56 

Furthermore, the combination of dasatinib and doxorubicin 

synergistically decreased proliferation and viability in the 

dasatinib insensitive MCF7 cell line, lowering the IC
50

 of 

doxorubicin by more than one log unit. Dong and colleagues 

examined the effect of saracatinib on the highly metastatic 

murine sarcoma cell line KHT. Saracatinib inhibited major 

elements in the metastatic cascade, including Src and focal 

adhesion kinase, and decreased cell migration and invasion. 

Pretreatment of KHT cells with saracatinib prior to injection 

markedly lowered lung colonies in mice in a dose-dependent 

manner, suggesting an antimetastatic effect.57 Schweppe and 

colleagues examined the effect of saracatinib on cell lines 

from papillary and anaplastic cancer. In addition to noting 

inhibition of growth and invasion, they demonstrated the 

involvement and sensitivity of an Src–focal adhesion kinase 

complex in this cancer type.58 They further examined the 

effect of dasatinib in an orthotopic metastasis mouse model 

of papillary thyroid cancer. Here, dasatinib blocked growth 

and metastasis.59 Rabbani and colleagues examined the 

effect of bosutinib on the highly invasive human prostate 

cancer cell lines PC-3 and DU-145. Bosutinib pretreatment 

of PC-3 cells prior to injection markedly lowered skeletal 

lesions in mice.60 Morton and colleagues demonstrated the 

effect of dasatinib in inhibiting the development of metastases 

in a mouse model of pancreatic ductal adenocarcinoma.61 In 

head-and-neck squamous cell carcinoma cell lines, Ammer 

and colleagues demonstrated the effect of saracatinib in 

inhibiting cell growth, cell-cycle progression, and tran-

swell Matrigel invasion.62 Dose-dependent decreases in Src 

activation and phosphorylation of the invasion-associated 

substrates focal adhesion kinase, p130CAS, and cortactin 

were also observed. Further, saracatinib treatment displayed 

a dose-dependent inhibitory effect on invadopodia formation, 

Table 1 Src inhibitors: specificity and clinical phase

Inhibitor/company Specificity Clinical phase

Dasatinib (Bristol-Myers Squibb) Broad: Src-family, c-Kit, PDGFR, Bcr-Abl,  
and ephrin receptors (IC50 cSrc = 0.6 nM)

Approved: chronic myelogenous leukemia 
by FDA and EMA 
Phase 2: breast, prostate cancer

Saracatinib (AstraZeneca) Dual-specific: Src/Abl (IC50 Src/Abl = 2.7/30 nM) Phase 2: pancreatic cancer

Bosutinib (Pfizer) Dual-specific: Src/Abl (IC50 Src/Abl = 1.2/1 nM)  Phase 2: metastatic breast cancer

Notes: Dasatinib, N-(2-chloro-6-methylphenyl)-2-([6-{4-(2-hydroxyethyl)-1-piperazinyl}-2-methyl-4-pyrimidinyl]amino)-5-thiazole-carboxamide; saracatinib, N-(5-chloro-
1,3-benzodioxol-4-yl)-7-(2-[4-methyl-1-piperazinyl[ethoxy]-5-([tetrahydro-2H-pyran-4-yl]oxy)-4-quinazolinamine; bosutinib, 7-alkoxy-4-([2,4-dichloro-5-methoxyphenyl]
amino)-3-quinolinecarbonitrile.
Abbreviations: PDGFR, platelet-derived growth-factor receptor; FDA, Food and Drug Administration; EMA, European Medicines Agency.
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ECM degradation and matrix metalloproteinase 9 activation. 

They concluded that inhibition of Src kinase by saracatinib 

impairs the proinvasive activity of head-and-neck squamous 

cell carcinoma by inhibiting Src substrate phosphorylation 

important for invadopodia formation and associated matrix 

metalloproteinase activity. Because metastatic bone colo-

nization consists of an initial latent phase mediated by an 

Src survival response and a later regrowth phase, there are 

opportunities to interrupt one or both phases of colonization. 

The relevance of Src activation in bone-specific metastasis 

in prostate and breast cancer is well established.63

Src inhibitors: success in the 
laboratory, and failure in the clinic
Despite the elegant case made for Src invadopodia in inva-

sion and metastasis,21–26,47–64 overall results of Src inhibitors 

as monotherapy and in conventional clinical trials in solid 

cancer have shown “little or modest activity.”65 We now 

review possible causes of this anomaly.

Preclinical models
Today, there is no ideal preclinical strategy that can predict 

the efficacy of agents in clinical trials. Preclinical mod-

els range from the simple, rapid, and convenient to the 

complex, delayed, and cumbersome (Table  2). In mouse 

xenograft models, size can be measured with calipers, 

but imaging is needed for genetically engineered mouse 

models (GEMMs). Although tumor cell lines and xenograft 

models are still in use today, the former do not address 

stromal interactions, while the latter are biased towards 

cytotoxic agents. In a superb perspective, Burchill con-

cludes that complementary strategies are best used, and the 

selection of models should be based on a clear definition 

of the desired information.66

Tumor xenografts, unlike conventional xenografts, use 

the patient’s tumor, not permanent cell lines. In an impres-

sive treatise, Decaudin described advances in the primary 

human tumor xenograft model (“tumorgrafts”) that appear 

quite promising but await validation.67 Tumor xenografts in 

immunodeficient mice have the advantages of convenience 

and visualization of tumor growth, and may have the ability 

to predict clinical efficacy of candidate drugs.68–71 GEMMs 

are created by allowing for overexpression of defined onco-

genes, knock-in of genetic point mutations, and knockout of 

tumor suppressors. GEMMs address certain deficiencies of 

the tumor xenograft model, especially immunodeficiency, but 

introduce new concerns. Since predictive utility in a high-

throughput system is a major roadblock in anticancer drug 

research, a clear demonstration of superiority over the tumor 

xenograft model may justify the effort and costs involved 

with GEMMs. The selection of models depends on the ques-

tions that need to be answered, and at this time tumorgrafts 

and GEMMs have the potential to provide prescriptive but 

limited information.72–75

Table 2 Preclinical cancer models – the quest for predictive utility and industrialization

Advantages Concerns

Cultured tumor cell line  
assays

Simple, rapid, convenient 
Inhibition of cell growth 
Similar drugs have similar inhibitory patterns 
High throughput

Selection pressure decreases dependence  
on defined oncogenic pathways 
Focused on cell stroma 
Immunodeficient state 
Poor predictability

Mouse-tumor xenograft  
models  
(subcutaneous/orthotopic)

Rapid, synchronized tumor development 
Tumor size measurement by calipers 
Minimal variability in tumor progression 
High throughput

Cell lines may not represent original  
tumor-repeated passaging 
Not characterized at genetic, molecular and histologic level 
Appropriate tumor-host interactions questionable 
Immunodeficient state 
Evaluation of antimetastatic potential difficult 
Rapid growth sensitive to cytotoxics, not cytostatics

Genetically engineered  
mouse models

Based on alterations of defined genes  
Immunocompetent state 
Characterized at the genetic, molecular, and histologic level 
Can replicate tumor-host interactions 
Evaluation of antimetastatic potential possible 
Evaluation of chemopreventive agents possible  
Study on early stage oncogenesis possible  
Study on acquired resistance and relapse possible 
Study on mechanistic biomarkers possible 
Potential for improved predictability

Complicated and laborious development/breeding protocol 
Tumor development not predictable 
Tumor size measurement requires complex imaging 
Patent concerns 
High cost  
Low throughput – obstacle to industrialization
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According to Céspedes and colleagues, the ideal mouse 

model should show histopathologic features similar to 

the human tumor, progress through the same stages, and 

involve the same genes and biochemical pathways in its 

initiation and progression.71 Further, the tumor response 

may reflect the response of the human tumor to a specific 

therapy, and thereby predict efficacy in clinical trials. Singh 

and colleagues systematically studied tumor growth and 

responses to treatment in two GEMMs involving non-

small-cell lung cancer and a pancreatic adenocarcinoma, 

and compared the results to clinical trial data using erlotinib 

and bevacizumab.72 In this retrospective analysis, they found 

encouraging correlations between outcomes in GEMMs and 

clinical trials.

Importantly, a clinically relevant animal model should be 

metastatic. In this context, Francia and colleagues describe 

various models of aggressive multiorgan spontaneous 

metastasis after surgical resection of orthotopically trans-

planted human tumor xenografts.76 In solid cancer, the key 

differentiator is invasiveness, which depends on cell motility 

and the ability to cross tissue boundaries, and biomarkers 

and metastasis assays could direct the discovery of novel 

invasive agents. Although defined steps in the metastatic 

cascade can be studied in isolation and in vitro, a 3-D and 

lifelike in vitro model would be useful.38,77–82 Griffith and 

Swartz have outlined “design principles” for the creation of 

3-D in vitro models that can recreate the interwoven set of 

biochemical and mechanical cues in the cellular microenvi-

ronment that are relevant to invasion.82 3-D in vitro models, 

by mimicking features of the in vivo environment, span the 

gap between 2-D cell cultures and whole-animal systems, 

and can thereby further anticancer drug research.78

RECIST, and its limitations
In clinical trials, tumor shrinkage and prevention of new 

lesions is a standard measure of efficacy. According to the 

RECIST trial, the following definitions apply: complete 

response, the disappearance of all target lesions; partial 

response, at least a 30% decrease in the sum of the longest 

diameter of all target lesions; progressive disease, at least 

a 20% increase in the sum of the longest diameter of all 

target lesions or the appearance of new lesions; and stable 

disease, neither partial response nor progressive disease.83 

A key regulatory element for approval of a candidate agent 

in solid cancer is a RECIST-based response: tumor shrink-

age is accepted as a surrogate measure for a beneficial and 

sustained effect on local invasion and metastasis. With 

RECIST, intervention in solid cancer with novel drugs 

targeting invasiveness of cancer cells may be declared (or 

even predicted to be) clinically ineffective, since they rarely 

reduce tumor size.84–86

Further, in the RECIST scheme, the categories are 

arbitrary and wide. It gets more complex when one realizes 

that terms such as “tumor size” and “tumor shrinkage” refer 

to volume and therefore require measurements in three 

dimensions. Changes in tumor size are more sensitive to 

volumetric rather than linear measurements, thus allowing 

for a much earlier detection of response and progression.87

In the context of targeted agents in solid cancer, the 

assumption that a decrease in tumor size is a surrogate index 

of improvement has not been validated.88 Importantly, with 

cytostatic-induced necrosis and cavitation, evaluation based 

on tumor size alone, as is done in RECIST, is no longer an 

adequate method.85 Accordingly, attempts to validate “pre-

dictive” biomarkers within a regulatory construct (RECIST) 

based on tumor size, especially with targeted agents, will be 

difficult to interpret, and for a simple reason: a mismatch in 

terms between the natural history of the disease, and tumor 

size, and the questionable assumption that “tumor shrinkage” 

is a surrogate index of improvement.

With good reason, Weber has stated that tumor response 

is a fundamental concept in clinical oncology, but perhaps 

the least understood.89 Mozley and colleagues at Merck list 

the key concerns about RECIST-based response assessments: 

“tumors do not always expand or contract uniformly, changes 

in line lengths represent only a small fraction of the available 

information in the images, and the stable disease category is 

so broad that it is not always adequately sensitive to changes 

in tumor mass.” 90 Birchard and colleagues studied 99 con-

secutive patients with advanced non-small-cell lung cancer 

using RECIST. There was no relationship between early 

tumor response and patient survival, and patients who had 

an initial reduction in tumor size did not have an improved 

survival compared with patients with initial disease progres-

sion. In addition, there was no particular percentage reduction 

in tumor size that was found to correlate with survival.91 This 

study confirms the meta-analysis conducted by Sekine and 

colleagues in more than 50 trials in patients with non-small-

cell lung cancer; the correlation coefficient between response 

rate and median patient survival was 0.5.88,92

In this context, imaging technologies based on signaling 

pathways and metabolism, not just tumor size, have the 

potential to extract in vivo mechanistic information in 

real time, generate longitudinal data sets in intact host 

environments, and directly translate from preclinical cancer 

models to the clinic.93–97
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Src inhibitors: opportunities
Metastasis
The primary problem in drug research in solid cancer is that 

discovery studies, by definition, are mechanistic in nature, 

while clinical evaluation is empiric and is based on tumor 

shrinkage. Further, although the rationale and evidence for 

the use of Src inhibitors in metastasis is impressive, there is 

no clear regulatory route to demonstrate a clinical effect of 

a drug on tumor metastasis.15,98 Interpretation and decision-

making is limited to what we observe and measure. Since 

conventional preclinical development plans focus on the 

primary tumor, and not on metastasis, it is likely that the 

specific action of a candidate drug on metastasis – braking, 

acceleration, or a permissive effect – may be missed. 

A possible differential effect of a drug on the primary tumor 

and metastasis could be discordant on account of direct or 

indirect mechanisms. Pharmacologic-induced shrinkage of 

the primary tumor alone may not necessarily confer overall 

benefit, because deficient pericyte coverage of tumor vessels 

may facilitate metastasis via hypoxia-associated EMT and 

the MET signaling pathway.99,100 As an example, preclinical 

studies suggest the beneficial effects of inhibition of tumor 

angiogenesis may be linked to an increase in local invasion 

and metastasis.101–103 Accordingly, proposals to integrate 

preclinical and clinical programs on metastasis are self-

evident.12–15

Drug resistance and tumor heterogeneity
The continuing resistance of solid cancer to therapy, 

especially with selective kinase inhibition, is an important 

and urgent concern. This is a likely consequence of tumor 

heterogeneity that allows for the emergence of preexisting 

low-frequency cancer cells that harbor resistant mutations. 

The initial clinical response is not sustained.

In breast cancer cell lines, Zhang and colleagues demon-

strated that resistance to trastuzumab (Herceptin) was linked 

to hyperactivation of Src, and that this resistance could be 

reversed by Src inhibition using saracatinib.104 Their data sup-

ports the conclusion that Src is a critical signaling node that 

is hyperactivated in various trastuzumab-resistance models. 

This discovery, that Src is a druggable node that may pre-

vent resistance, has an important bearing on rational com-

bination therapy using cytostatic drugs: trastuzumab + Src 

inhibitors (saracatinib). Based on a review of the preclinical 

database on Src inhibitors, Zhang and Yu conclude that Src 

inhibitor-containing combinatorial regimens have potential in 

overcoming resistance to current anticancer therapies and in pre-

venting metastatic recurrence.22 These translational initiatives 

promise both resistance prevention (or reversal), a separate 

beneficial effect on disease progression and metastasis, and 

also a lower predicted toxicity profile.105 In this context, the 

repeated pattern of an initial response followed by a relapse 

and resistance consequent upon tumoral heterogeneity may 

be mitigated and/or delayed by the initial administration of 

defined combination therapy. The FDA has addressed these 

concerns and is now encouraging the development of com-

bination therapies in cancer,106 and has announced a pathway 

for the accelerated identification and regulatory approval of 

investigational cancer drugs.107

Why focus on regulations?
Regulations, not science, define and determine both the 

process of drug development and the specifications of 

the commercial product. Clinical and regulatory thinking 

are the key determinants of the quality and rate of the 

translational throughput from science to medicines. And 

in cancer, it is now evident that the surrogate measure of 

efficacy, a reduction in tumor size (also termed “response”), 

does not extrapolate to sustained clinical benefit. With 

targeted therapy, the emergence of resistance should be 

anticipated, and candidate combinations evaluated earlier 

in phase II trials.

Justification for a rethink
The productivity crisis in pharmaceuticals is multifactorial, 

and a simple and single strategy is unlikely to be successful. 

The prevailing paradigm in cancer drug development – tumor 

shrinkage leads to improved survival – is based on the cen-

tral assumption that cellular proliferation (and mutations) is 

mechanistically related to invasive and metastatic capability. 

A failure in the productivity of this paradigm is the primary 

reason for a rethink.

Earlier, in 1962, Kuhn envisioned a thematic and sequen-

tial process to explain scientific progress,9 and the steps are 

well explained by Kaiser:108

1.	 A mature scientific program is characterized by para-

digms: guiding concepts, theories, and methods.

2.	 In experiments, anomalies sometime arise between results 

and expectations.

3.	 When accumulated anomalies cannot be co-opted into 

the existing paradigm, the field enters a state of crisis 

and productivity ceases.

4.	 Resolution comes only with the introduction of a new 

paradigm that addresses the anomalies.

�Ideally, a crisis in translational productivity should 

encourage paradigm rethinks.
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The century-old productivity stream of targeted drugs 

can be traced to the concepts of Paul Ehrlich (1854–1915), 

namely his translational strategy for the development of 

safe and effective “magic bullets” (Zauberkugel).109 Today, 

we face a translational roadblock; we have more attractive 

new drug classes for solid cancer in the laboratory than safe 

and effective medicines in the clinic,110 and the locus of 

this anomaly is clearly at the interface between rational sci-

ence and the empirical and outdated assessment of clinical 

efficacy. Drews has explained that it is risky to identify and 

develop drugs on the basis of incomplete and insufficiently 

validated hypotheses.111 Specifically in cancer, tumor size 

(burden) is a consequence of the accumulation of clonal 

cells,112 and this is unrelated to the mechanisms driving 

distant metastasis. Accordingly, tumor shrinkage, especially 

in trials with Src inhibitors, may not qualify as a surrogate 

measure of overall clinical efficacy.113

Interestingly, although science is driven by ideas and 

tools,114 the life sciences may have been more receptive to 

new tools (the science-industry complex) rather than new 

ideas. Whether the primacy of new tools or new ideas is 

responsible for the advancement of science is a false choice; 

both are necessary, but the latter needs more emphasis. New 

tools have supported prevailing paradigms, but have also 

identified anomalies. Here, a Kuhnian mindset is essential 

for the advancement and reception of alternative ideas that 

address these anomalies.

Today, anomalies have brought us to a decision node: 

should the development, clinical evaluation, and regulatory 

criteria for the approval of anticancer drugs be modified to 

reflect the shift from an antiproliferative strategy based on the 

experience of cytotoxic agents to one based on pathophysi-

ologic mechanisms? The reasoning, taken together, is that 

if the mechanisms determining cellular proliferation and 

local invasion and metastasis are separate and distinct, then 

a unitary and establishment mindset fixated on cellular 

proliferation and tumor size may be antithetical to clinical 

objectives.

Conclusion: homage to magister 
mundi
We have looked at Src and invadopodia, and have outlined 

integrative strategies to lift translational roadblocks in solid 

cancer. Looking back, we realize that a rethink would have been 

unnecessary had we followed the guidance of Ehrlich.110,115 

An Ehrlichian realignment between medicinal chemistry, cell 

biology, preclinical development, and clinical trials has the 

potential to redirect anticancer efforts towards anti-invasion 

and antimetastatic objectives, and operate towards the delivery 

of safe medicines with meaningful efficacy. If this approach 

is fruitful, the increase in productivity should also lead to 

affordable medicines for all.8,10
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