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Abstract

Background

Emergency department (ED) crowding is associated with negative health outcomes, patient

dissatisfaction, and longer length of stay (LOS). The addition of advanced diagnostic imaging

(ADI), namely CT, ultrasound (U/S), and MRI to ED encounter work up is a predictor of longer

length of stay. Earlier and improved prediction of patients’ need for advanced imaging may

improve overall ED efficiency. The aim of the study was to detect the association between ADI

utilization and the structured and unstructured information immediately available during ED tri-

age, and to develop and validate models to predict utilization of ADI during an ED encounter.

Methods

We used the United States National Hospital Ambulatory Medical Care Survey data from

2009 to 2014 to examine which sociodemographic and clinical factors immediately available

at ED triage were associated with the utilization of CT, U/S, MRI, and multiple ADI during a

patient’s ED stay. We used natural language processing (NLP) topic modeling to incorpo-

rate free-text reason for visit data available at time of ED triage in addition to other structured

patient data to predict the use of ADI using multivariable logistic regression models.

Results

Among the 139,150 adult ED visits from a national probability sample of hospitals across the

U.S, 21.9% resulted in ADI use, including 16.8% who had a CT, 3.6% who had an ultra-

sound, 0.4% who had an MRI, and 1.2% of the population who had multiple types of ADI.
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The c-statistic of the predictive models was greater than or equal to 0.78 for all imaging out-

comes, and the addition of text-based reason for visit information improved the accuracy of

all predictive models.

Conclusions

Patient information immediately available during ED triage can accurately predict the even-

tual use of advanced diagnostic imaging during an ED visit. Such models have the potential

to be incorporated into the ED triage workflow in order to more rapidly identify patients who

may require advanced imaging during their ED stay and assist with medical decision-

making.

Introduction

Emergency department (ED) crowding is a well-recognized problem in the United States [1–

3]. Problems associated with ED crowding have been extensively documented: longer wait

time and length of stay (LOS) during ED visit; staff and patient dissatisfaction; higher hospital

costs; and negative patient outcomes [4–8]. As a result, many emergency departments are

moving toward physician triage models in which physicians perform rapid evaluations to

expedite work-ups and dispositions while patients are still in the waiting area. This method

has shown promise—with studies demonstrating decreased LOS and decreased number of

patients who leave without being seen [9–12]. Algorithmic clinical decision support, specifi-

cally predictive analytics, may be of benefit in this clinical setting[13]; however its use has not

been sufficiently described or tested.

The decision by an ED provider to pursue advanced diagnostic imaging (ADI) studies dur-

ing an ED visit is a major contributor to increased ED LOS [14, 15], and ADI use in the ED

has been increasing for more than a decade [16]. The median LOS for ED patients with ADI is

114 minutes longer than those without ADI [17]. This increased LOS can be attributed to clini-

cal factors—such as the amount of time it takes to obtain and interpret a CT scan—and diag-

nostic factors—such as the time it takes to clinically evaluate a patient and decide if they will

need ADI. Early prediction of eventual ADI use has the potential to shorten diagnostic time.

To date, research has not examined the role of a predictive model that can use information

immediately available to a triage provider upon patient arrival (e.g. patient demographics,

vitals, medical history, and the patient’s own descriptions of their reason for visit) to estimate

the probability that the patient will undergo ADI during their ED visit. Such a predictive

model—if implemented and tested in the clinical setting perhaps as an adjunct to the Elec-

tronic Health Record (EHR) or as a standalone program—could support clinicians in making

rapid, informed decisions regarding ADI. Furthermore, few studies have utilized the impor-

tant information that exists within the free-text reason for visit that patient’s give on arrival to

the ED to make predictions regarding processes and outcomes in the ED [18, 19]. This free-

text reason for visit information can be utilized via natural language processing (NLP), a

method through which text data can be extracted and processed for analysis and has been

shown to improve models related to health outcomes [20–23].

In a nationally representative sample, we examined patient information that would readily

be available during the ED triage process, including free-text reason for visit, to develop pre-

dictive models for ADI use including computed tomography (CT), ultrasound (US), and mag-

netic resonance imaging (MRI) during the ED encounter.
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Materials and methods

Study population

This study is a secondary analysis of data collected from the 2009–2014 National Hospital Ambu-

latory Medical Care Survey ED Subfile (NHAMCS-ED)[24–26], a multistage, stratified probability

sample of ED visits in the United States administered by the National Center for Health Statistics,

a branch of the Centers for Disease Control and Prevention. The NHAMCS-ED sample is col-

lected during a random 4-week period each year. Study staff visit approximately 300 hospital-

based EDs, which are randomly selected from approximately 1,900 geographically defined areas

covering all 50 States and the District of Columbia. A standardized form and protocol are utilized

to abstract data from approximately 100 patient charts per ED. Details of the survey methodology

are available from the National Center for Health Statistics [25, 26]. A total of 179,036 patient visits

were included in the survey datasets from 2009 to 2014. After excluding pediatric visits

(n = 39,886), 139,150 (77.7%) adult patients (�18 years old) visits remained for analysis.

Study variables

Outcome variables. The primary outcome variables for this study were the eventual use

of advanced diagnostic imaging during an ED visit. ADI categories were analyzed indepen-

dently and include any ADI, CT only, US only, MRI only, or multiple ADI use.

Structured variables. Structured covariates included only those that would be immedi-

ately available at the time of ED triage: sex, age category, race/ethnicity, type of residence (pri-

vate residence, nursing home, homeless, or other), source of payment (using the NHAMCS

algorithm to classify multiple payers), whether the patient arrived via ambulance, arrival day

and time, initial vital signs (body temperature, heart rate, respiratory rate, blood pressure,

pulse oximetry), pain scale, whether the patient arrived on oxygen, whether the patient had

used the ED within the past 72 hours, the episode of care (initial vs. follow-up visit to the ED

for the presenting problem), past medical history (cancer, cerebrovascular disease, chronic

obstructive pulmonary disease, condition requiring dialysis, congestive heart failure, dementia,

diabetes, myocardial infarction, pulmonary embolism, and HIV), whether the visit was related

to an injury, poisoning, or adverse effect of medical treatment (and if related to injury/poison-

ing, whether it was self-inflicted, related to assault, unintentional, or unknown), and visit acu-

ity at triage (triage level which by convention is changed to a 5 point system by NHAMCS

researchers when EDs use a 3-point or 4-point acuity scale). Five past medical history diagno-

ses (cancer, chronic obstructive pulmonary disease, dementia, myocardial infarction, and pul-

monary embolism) were collected starting from 2012; therefore, these were missing in the

2009–2011 survey years. Information on whether the patient arrived on oxygen was not col-

lected in the 2014 survey year.

Reason for visit. Reason for visit information, extracted using NLP, included up to three

reasons for visit or cause of injury recorded by the providers for each patient in the ED triage

notes. The survey methodology used in classifying patient reasons for visit has been described

previously and is designed to approximate the patient’s own words [27]. The reason for visit

classification system derived by the National Center for Health Statistics is a modular frame-

work into which the reason for visit is broadly categorized as a type of complaint (e.g., symp-

toms, diseases, injury) and a methodology for systematically recording these complaints

within a specific organ system or body area. The system then records the complaint in a pre-

specified fashion according to an alphabetical index of complaints (for example, “eye pain” is

changed to “pain, eye”) while maintaining the emphasis on the patient’s lay terminology rather

than a clinician’s translation of the patient’s reason for visit.

Prediction of emergency department imaging use during triage
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Missing data. Missing values for age, sex, race, and ethnicity, approximately 0.1%, 0.9%,

16.8%, and 30.3% respectively, were imputed by the NHAMCS investigators in the dataset

prior to public release. According to the NHAMCS, the investigators imputed age and sex

using a hot deck based on 3-digit ICD-9-CM code for primary diagnosis, triage level, ED vol-

ume, and geographic region, while they imputed patient ethnicity using a model-based single,

sequential regression method [26]. We imputed missing values for all other variables with the

median of the corresponding variable before establishing the statistical models for this study;

these variables include vital signs, mode of arrival, patient’s residence type, source of payment,

episode of care, whether the visit was related to injury/poisoning, triage level, and pain scale

(Table 1).

Statistical analyses

Topic modeling. NLP is a branch of computational linguistic techniques that extract and

analyze information from unstructured and semi-structured text or speech data. Topic model-

ing is a commonly used technique for NLP, which can identify patterns hidden in the free text

to evaluate an underlying theme or topic of the text [28]. The model based on the Latent

Dirichlet Allocation (LDA) algorithm[29, 30] was used to break all the free text into different

themes after preprocessing [31, 32].

The mathematical principles and algorithm of LDA have been described in prior research

[28, 29]. Briefly, the free-text reasons for visit from each patient is a mixture of several topics

composed of a set of words. For example, in a two-topic model, reasons for visit from patient 1

may contain 20% topic A (gastrointestinal problem) and 80% topic B (respiratory problems),

while patient 2’s reason for visit could be 90% topic A and 10% topic B. The most common

terms in the gastrointestinal topic might be “hematemesis” and “vomit”, while the respiratory

problems may be composed of words including “breath”, “asthma”, and “shortness”. The LDA

method can identify the mixture of topics, which describes each free-text reason for visit, while

determining the mixture of words that associated with each topic. The correlation coefficient

between each patient and each topic can be estimated. In this way, the free text reason for visit

were transformed into a structured matrix of correlation coefficients between the patients and

topics, which can be used for predicting the outcome. We employed the ldatatuning package

in R for this analysis as previously described [32].

Regression modelling. Logistic regression models were used to measure the association

between the outcome and the structured and unstructured predictors, and to predict the out-

comes. To determine the predictive performance in identifying patients with advanced imag-

ing use, we analyzed three models: (1) models with structured variables; (2) models with free-

text data using NLP; (3) models with both structured and free-text variables. This was done for

any ADI use, any CT use (including multiple cases), any U/S scan (including multiple cases),

any MRI (including multiple cases), and multiple types of ADI use.

Ten-fold cross-validation was used to validate the performance of each model. The dataset

was randomly divided into 10 sets; 9 of the 10 sets were used to train the models while the

one remaining was used as the testing set. The area under the receiver-operating curve

(ROC) was recorded for the testing set. The average ROC curve was derived by comparing

the prediction values from all 10 cross-validation testing set. The probabilities of ADI use for

each patient were calculated with this model. The best cutoff of the probabilities was deter-

mined by using the point on the ROC curve with the shortest distance to the upper left cor-

ner (where sensitivity = 1 and specificity = 1). The best cutoff of the probabilities for

prediction and the corresponding sensitivity, specificity, and overall accuracy were recorded

[33].
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Table 1. Baseline characteristics of U.S. patients presenting to the ED, stratified by advanced imaging techniques, NHAMCS 2009–2014.

Study Population Any ADI CT Only US Only MRI Only Multiple ADI

N = 139,150 N = 30,499(21.9%) N = 23,327(16.8%) N = 4,958(3.6%) N = 587(0.4%) N = 1,627(1.2%)

Age group�

18–29 years 36,275(26.1) 6,293(20.6) 3,895(16.7) 2,015(40.6) 78(13.3) 305(18.7)

30–44 years 35,969(25.8) 7,028(23.0) 5,068(21.7) 1,415(28.5) 149(25.4) 396(24.3)

45–64 years 39,640(28.5) 8,888(29.1) 7,256(31.1) 926(18.7) 217(37.0) 489(30.1)

65–74 years 11,605(8.3) 3,208(10.5) 2,707(11.6) 250(5.0) 67(11.4) 184(11.3)

�75 years 15,661(11.3) 5,082(16.7) 4,401(18.9) 352(7.1) 76(12.9) 253(15.6)

Sex (Male %) 60,103(43.2) 12,468(40.9) 10,519(45.1) 1,096(22.1) 245(41.7) 608(37.4)

Ethnicity (Hispanic %) 18,232(13.1) 4,103(13.5) 2,803(12.0) 985(19.9) 71(12.1) 244(15.0)

Race

White 101,534(73.0) 23,398(76.7) 18,161(77.9) 3,534(71.3) 441(75.1) 1,262(77.6)

Black 31,765(22.8) 5,751(18.9) 4,201(18.0) 1,165(23.5) 110(18.7) 275(16.9)

Others 5,851(4.2) 1,350(4.4) 965(4.1) 259(5.2) 36(6.1) 90(5.5)

Residence

Private residence 126,436(94.7) 27,505(93.9) 20,764(92.8) 4,688(97.7) 550(96.8) 1,503(96.0)

Nursing home 3,373(2.5) 1,109(3.8) 1,012(4.5) 53(1.1) 8(1.4) 36(2.3)

Homeless 1,514(1.1) 180(0.6) 153(0.7) 16(0.3) 4(0.7) 7(0.4)

Other 2,132(1.6) 510(1.7) 443(2.0) 41(0.9) 6(1.1) 20(1.3)

Source of Payment

Private insurance 39,823(30.8) 9,382(32.6) 7,109(32.4) 1,520(32.3) 209(37.3) 544(35.9)

Medicare 31,758(24.6) 8,741(30.4) 7,416(33.8) 729(15.5) 154(27.5) 442(29.2)

Medicaid or CHIP 28,875(22.3) 5,385(18.7) 3,407(15.5) 1,578(33.6) 103(18.4) 297(19.6)

Uninsured 22,990(17.8) 4,107(14.3) 3,144(14.3) 709(15.1) 65(11.6) 189(12.5)

Other 5,829(4.5) 1,128(3.9) 888(4.0) 167(3.6) 29(5.2) 44(2.9)

Day of Week

Sunday 19,142(13.8) 4,161(13.6) 3,276(14.0) 608(12.3) 65(11.1) 212(13.0)

Monday 21,982(15.8) 4,843(15.9) 3,661(15.7) 826(16.7) 95(16.2) 261(16.0)

Tuesday 20,299(14.6) 4,414(14.5) 3,316(14.2) 742(15.0) 87(14.8) 269(16.5)

Wednesday 19,985(14.4) 4,423(14.5) 3,387(14.5) 705(14.2) 104(17.7) 227(14.0)

Thursday 19,369(13.9) 4,290(14.1) 3,245(13.9) 717(14.5) 84(14.3) 244(15.0)

Friday 19,396(13.9) 4,273(14.0) 3,238(13.9) 727(14.7) 100(17.0) 208(12.8)

Saturday 18,977(13.6) 4,095(13.4) 3,204(13.7) 633(12.8) 52(8.9) 206(12.7)

Arrival time

Morning 53,088(38.9) 11,840(39.5) 8,864(38.7) 2,025(41.2) 269(46.9) 682(42.6)

Afternoon 59,518(43.6) 12,996(43.3) 9,961(43.4) 2,117(43.1) 243(42.3) 675(42.2)

Evening 23,993(17.6) 5,176(17.2) 4,102(17.9) 768(15.6) 62(10.8) 244(15.2)

Initial vital signs (mean±sd)

Body Temperature 36.73±0.52 36.72±0.53 36.71±0.54 36.75±0.45 36.74±0.48 36.74±0.56

Heart rate 85.94±17.61 85.36±17.80 85.15±18.09 86.21±16.33 84.31±16.78 86.28±18.20

Respiratory rate 18.55±4.54 18.63±4.33 18.68±4.43 18.47±4.07 18.31±4.99 18.65±3.39

SBP 135.98±23.32 137.92±25.10 139.26±25.46 131.09±21.62 138.99±24.25 139.01±26.61

DBP 79.28±14.55 79.21±15.14 79.59±15.38 77.14±13.83 79.98±14.23 79.73±15.29

Pulse oximetry 97.22±6.10 97.23±5.73 97.09±5.70 97.89±5.36 97.64±5.67 97.14±7.02

Receiving oxygen on arrival 5,739(5.8) 1,765(8.2) 1,477(9.0) 141(4.0) 21(5.5) 126(10.8)

Pain Scale(mean±sd) 5.16±3.67 5.57±3.59 5.51±3.63 5.85±3.25 5.79±3.74 5.50±3.78

Follow-up visit to the ED (vs initial visit) 9,260(7.3) 1,635(5.8) 1,045(4.9) 443(9.7) 56(10.4) 91(6.1)

Visited last 72 hours 6,041(5.0) 1,089(4.1) 779(3.8) 227(5.2) 38(7.2) 45(3.2)

Arrived by Ambulance 25,805(19.4) 8,531(29.1) 7,288(32.5) 650(13.7) 131(23.4) 462(29.5)

Triage level

Immediate 1,606(1.3) 452(1.7) 364(1.8) 47(1.1) 4(0.8) 37(2.6)

(Continued)
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To evaluate the effect of the missing values on the models, specifically for the five comorbid-

ities variables that were not part of the dataset prior to 2012 as well as one variable that was not

collected in one survey year, we performed a sensitivity analysis using cases without missing

values in any of the variables considered. Among a total of 139,150 cases, there were 14,009

(10.1%) cases without any missing values. Basic data organization was done in SAS 9.4. The

text analyses were performed in R 3.3.2. The modeling of logistic regression was performed in

Matlab R2016b.

Results

Characteristics of ED patients

Among 139,150 ED patient visits from December 2008 to December 2014, 21.9% of visits

resulted in ADI use, including 16.8% who had CTs, 3.6% with U/S, 0.4% with MRIs, and 1.2%

who had multiple types of ADI. The ADI use proportion increased in the older age groups.

Table 1. (Continued)

Study Population Any ADI CT Only US Only MRI Only Multiple ADI

N = 139,150 N = 30,499(21.9%) N = 23,327(16.8%) N = 4,958(3.6%) N = 587(0.4%) N = 1,627(1.2%)

Emergent 13,900(11.7) 4,148(15.6) 3,364(16.6) 452(10.4) 65(13.1) 267(19.0)

Urgent 57,246(48.1) 16,413(61.9) 12,352(61.0) 2,896(66.7) 280(56.6) 885(62.9)

Semi-urgent 38,247(32.1) 4,777(18.0) 3,646(18.0) 814(18.8) 126(25.5) 191(13.6)

Non-urgent 8,033(6.7) 717(2.7) 537(2.7) 132(3.0) 20(4.0) 28(2.0)

Visit related to an injury, poisoning, or adverse effect of medical treatment

Yes 46,834(34.3) 9,047(30.2) 8,013(34.9) 560(11.5) 178(31.0) 296(18.6)

Is injury/poisoning intentional

Not an injury visit 89,614(70.9) 20,911(73.5) 14,927(68.7) 4,290(92.5) 397(74.5) 1,297(83.9)

Yes, self-inflicted 1,508(1.2) 189(0.7) 174(0.8) 12(0.3) 1(0.2) 2(0.1)

Yes, assault 2,254(1.8) 842(3.0) 794(3.7) 30(0.6) 1(0.2) 17(1.1)

No, unintentional 33,026(26.1) 6,497(22.8) 5,827(26.8) 307(6.6) 134(25.1) 229(14.8)

Past medical diagnoses

Myocardial infarction 2,534(4.2) 686(5.1) 571(5.5) 53(2.4) 14(5.0) 48(6.6)

Cancer 2,411(4.0) 722(5.3) 617(6.0) 50(2.3) 15(5.3) 40(5.5)

Cerebrovascular Disease 4,666(3.4) 1,850(6.1) 1,533(6.6) 104(2.1) 40(6.8) 173(10.6)

Congestive heart failure 5,166(3.7) 1,300(4.3) 1,061(4.5) 134(2.7) 22(3.7) 83(5.1)

Chronic obstructive pulmonary disease 3,126(5.1) 711(5.2) 599(5.8) 58(2.6) 17(6.0) 37(5.1)

Dementia 971(1.6) 405(3.0) 360(3.5) 22(1.0) 4(1.4) 19(2.6)

Diabetes 15,569(11.2) 3,947(12.9) 3,161(13.6) 456(9.2) 83(14.1) 247(15.2)

Pulmonary embolism 588(1.0) 184(1.4) 135(1.3) 29(1.3) 7(2.5) 13(1.8)

Condition requiring dialysis 1,502(1.1) 375(1.2) 292(1.3) 46(0.9) 10(1.7) 27(1.7)

HIV 940(0.7) 163(0.5) 131(0.6) 17(0.3) 4(0.7) 11(0.7)

�All variables were statistically significant (p<0.05)

Note: Missing values for respiratory rate, systolic and diastolic blood pressure, arrival by ambulance, patient’s residence type, arrival time, and whether the visit is related to
injury/poisoning is lower than 5%. Missing values for body temperature, heart rate, pulse oximetry source of payment, episode of care, and whether this injury/poisoning is
intentional is between 5% and 10%, and the missing values for whether patient been seen in this ED within the last 72 hours and triage level are between 10% and 15%.

Missing values for pain scale is 22%. The analyses for cancer, chronic obstructive pulmonary disease, dementia, pulmonary embolism, myocardial infarction variables

were calculated based on 2012–2014 data only (n = 60,906), since these comorbidities were not included in the dataset prior to 2012. The analysis for the variable

receiving oxygen on arrival was done using 2009–2013 data only (n = 120,922), since this information was not collected in 2014.

https://doi.org/10.1371/journal.pone.0214905.t001
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Females presented higher ADI use (22.8%) than males (20.7%). Hispanic patients had higher

ADI use (22.5%) than non-Hispanics patients (21.8%) White had higher ADI use proportion

(23%) than African American patients (18.1%). Patients from nursing home (32.9%) and pri-

vate residence (21.8%) had higher proportion of ADI use than homeless patients (11.9%).

Medicare patients (27.5%) and private insurance patients (23.6%) have higher ADI use propor-

tions than Medicaid (18.6%) and of uninsured patients (17.9%). Patients who arrived by

ambulance (33.1%) presented higher proportion of ADI use than patients those who did not

(19.4%) (Table 1).

Factors associated with ADI use

The adjusted odds ratio of ED visits resulting in different types of ADI use (vs. no ADI use) for

each variable using multinomial logistic regression analyses are presented in Table 2 and S1

Table. Adjusted analyses showed male patients were 8% less likely to receive any ADI com-

pared to female patients (OR: 0.92 95% CI 0.90–0.95). African American patients were 21%

less likely to have ADI (OR: 0.79, 95% CI 0.76–0.82). Compared to those with private insur-

ance, patients with Medicare were 24% less likely have ADI (OR: 0.76, 95% CI 0.73–0.79),

while patients with Medicaid were 23% less likely (OR: 0.77, 95% CI 0.74–0.80) and uninsured

patients were 22% less likely to have ADI (OR: 0.78, 95% CI 0.74–0.81). Unadjusted analyses

are presented in S2 Table.

Age, triage level, arrival mode, place of residence, and certain comorbidities were also pre-

dictive of the eventual use of ADI. For example, the odds of ADI use increased progressively

with increasing age; compared to patients in the age 18–29 group, the adjusted odds of ADI

use was 1.97 times higher for patients� 75 years old (95% CI 1.86–2.08), 1.69 times higher for

patients in the 65–74 age group (95% CI 1.59–1.79), 1.25 times higher for patients in the 45–64

age group (95% CI 1.20–1.30), and 1.11 times higher for patients in the 30–44 age group (95%

CI 1.06–1.15) (Table 2). Those who arrived via ambulance were 1.87 times more likely to

receive ADI than those who did not (95% CI 1.80–1.93). Compared to those who lived in a pri-

vate residence, nursing home patients were 10% less likely (OR: 0.90, 95% CI 0.83–0.98), while

those who were homeless were 46% less likely to have any ADI use (OR: 0.54 95% CI 0.46–

0.64). Comorbidities had varying likelihood of any ADI use; patients with history of cerebro-

vascular disease were 1.74 times more likely (95% CI 1.63–1.85) and those with dementia were

1.56 times more likely (95% CI 1.35–1.80) than those who did not have respective comorbidi-

ties to have any ADI use (Table 2). Increasing pain scale was associated progressively with an

increased likelihood of any ADI use, as well as of CT use (S1 Fig). The trends in the likelihood

of CT use only and multiple types of ADI use (vs. no ADI use) closely mirrored that of any

ADI use with race, age, triage level, mode arrival, place of residence, source of payment, and

certain comorbidities (cerebrovascular disease and dementia) being most predictive based on

the odds ratios (Table 2).

Text variables extracted using topic modelling to predict ADI use

The top 10 terms in each topic for the first 20 topics are presented in S3 Table. Although these

topics cannot all be generalized into terms that are clinically meaningful, words that have been

grouped into topics may indicate a theme. For example, the first topic shows a theme related

to the extremities, the second gastrointestinal problems, the third respiratory problems, and

the fourth trauma. The first 20 topics all show significant odds in all types of ADI use; for

example, “topic 12” has an odds ratio of 0.07 (95% CI 0.04–0.11) for predicting any ADI use.
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Table 2. Adjusted odds ratio of selected characteristics associated with the use of advanced diagnostic imaging studies during the emergency department visit (vs.

no advanced imaging use), NHAMCS 2009–2014.

Any ADI CT Only US Only MRI Only Multiple ADIs

Age group

18–29 years Reference

30–44 years 1.11(1.06–1.15) 1.28(1.22–1.34) 0.76(0.71–0.82) 1.84(1.39–2.43) 1.23(1.05–1.43)

45–64 years 1.25(1.20–1.30) 1.61(1.54–1.69) 0.51(0.46–0.55) 2.35(1.79–3.08) 1.25(1.07–1.46)

65–74 years 1.69(1.59–1.79) 2.22(2.08–2.37) 0.57(0.49–0.66) 3.00(2.06–4.35) 1.63(1.31–2.03)

�75 years 1.97(1.86–2.08) 2.61(2.45–2.79) 0.65(0.56–0.75) 2.80(1.91–4.11) 1.64(1.32–2.04)

Sex (male vs female) 0.92(0.90–0.95) 1.06(1.02–1.09) 0.49(0.45–0.52) 0.95(0.80–1.12) 0.82(0.74–0.91)

Ethnicity, Hispanic (vs Non-Hispanic) 1.09(1.05–1.13) 0.99(0.95–1.04) 1.45(1.34–1.57) 0.98(0.76–1.26) 1.23(1.07–1.41)

Race

White Reference

African American 0.79(0.76–0.82) 0.77(0.74–0.80) 0.91(0.85–0.98) 0.80(0.64–0.99) 0.68(0.60–0.78)

Others 1.03(0.97–1.10) 0.96(0.89–1.04) 1.22(1.07–1.40) 1.44(1.02–2.03) 1.25(1.01–1.56)

Residence

Private residence Reference

Nursing home 0.90(0.83–0.98) 0.95(0.87–1.04) 0.67(0.50–0.90) 0.41(0.20–0.84) 0.49(0.34–0.69)

Homeless 0.54(0.46–0.64) 0.55(0.46–0.66) 0.44(0.27–0.73) 0.61(0.23–1.66) 0.49(0.23–1.03)

Other 1.03(0.93–1.15) 1.11(0.99–1.25) 0.73(0.53–1.00) 0.67(0.30–1.51) 0.79(0.51–1.24)

Arrived by Ambulance 1.87(1.80–1.93) 2.01(1.93–2.09) 1.13(1.03–1.24) 1.69(1.36–2.09) 2.00(1.77–2.27)

Source of payment

Private Insurance Reference

Medicare 0.76(0.73–0.79) 0.78(0.74–0.81) 0.70(0.64–0.77) 0.62(0.49–0.79) 0.69(0.60–0.80)

Medicaid or CHIP 0.77(0.74–0.80) 0.68(0.65–0.71) 1.07(0.99–1.15) 0.70(0.55–0.89) 0.72(0.62–0.84)

Uninsured 0.78(0.74–0.81) 0.80(0.76–0.84) 0.74(0.67–0.81) 0.60(0.45–0.80) 0.65(0.55–0.77)

Other 0.83(0.77–0.89) 0.82(0.76–0.89) 0.95(0.81–1.13) 0.98(0.66–1.45) 0.65(0.47–0.88)

Receiving oxygen on arrival 0.93(0.88–1.00) 0.93(0.87–1.00) 0.87(0.73–1.05) 0.72(0.45–1.14) 1.20(0.97–1.47)

Follow up visit to the ED vs. initial visit 0.88(0.82–0.93) 0.73(0.68–0.79) 1.43(1.28–1.61) 1.36(0.99–1.86) 0.97(0.77–1.21)

Visited ED in last 72 hours 0.85(0.79–0.92) 0.87(0.80–0.95) 0.79(0.67–0.92) 1.24(0.85–1.80) 0.62(0.45–0.85)

Triage level

Non-urgent Reference

Immediate 3.21(2.80–3.68) 3.15(2.70–3.67) 2.83(2.01–4.00) 1.21(0.41–3.55) 6.30(3.82–10.41)

Emergent 3.48(3.19–3.80) 3.52(3.19–3.89) 2.98(2.44–3.64) 2.11(1.27–3.51) 5.15(3.47–7.64)

Urgent 3.11(2.87–3.37) 3.05(2.78–3.34) 3.28(2.75–3.91) 2.13(1.35–3.36) 4.05(2.78–5.91)

Semi-urgent 1.34(1.23–1.46) 1.33(1.21–1.46) 1.39(1.15–1.67) 1.32(0.82–2.12) 1.41(0.95–2.10)

Visit related to an injury, poisoning, or adverse effect of medical treatment

Yes (vs No) 0.61(0.57–0.65) 0.67(0.63–0.71) 0.48(0.42–0.56) 0.86(0.62–1.18) 0.32(0.24–0.43)

Is the injury/poisoning intentional

Not an injury/poisoning visit Reference

Yes, self-inflicted 0.74(0.63–0.87) 0.87(0.73–1.04) 0.35(0.19–0.63) 0.18(0.02–1.32) 0.23(0.06–0.96)

Yes, assault 3.85(3.46–4.28) 4.84(4.33–5.42) 0.80(0.54–1.19) 0.20(0.03–1.48) 2.66(1.52–4.66)

No, unintentional 1.36(1.28–1.45) 1.53(1.43–1.64) 0.47(0.39–0.56) 1.01(0.71–1.43) 1.57(1.15–2.15)

Pain Scale

0–2 Reference

3–6 1.40(1.35–1.45) 1.38(1.33–1.44) 1.54(1.41–1.68) 1.31(1.05–1.65) 1.21(1.06–1.39)

7–10 1.86(1.79–1.93) 1.89(1.81–1.97) 1.76(1.61–1.92) 1.91(1.51–2.41) 1.86(1.62–2.13)

Cerebrovascular Disease 1.74(1.63–1.85) 1.71(1.60–1.84) 1.08(0.88–1.33) 2.15(1.53–3.02) 3.20(2.68–3.81)

Congestive heart failure 0.74(0.69–0.80) 0.72(0.67–0.78) 0.98(0.81–1.18) 0.75(0.48–1.17) 0.78(0.62–0.99)

(Continued)

Prediction of emergency department imaging use during triage

PLOS ONE | https://doi.org/10.1371/journal.pone.0214905 April 9, 2019 8 / 16

https://doi.org/10.1371/journal.pone.0214905


Predictive performance of multivariable logistic regression models

Applying the three logistic regression models (model 1: structured variables only, model 2: text-

based reason for visit variables only, and model 3: both text-based and structured variables), we

found that the predictive accuracy for ADI use was higher for models with text-based reason for

visit variables only compared to models with structured variables only. The predictive accuracy

was the highest when both text-based reason for visit and structured variables were included

(Table 3 and Fig 1). For models that included both unstructured and unstructured variables, the

AUC was 0.78 (0.77–0.78) for any ADI use, 0.79 (0.79–0.79) for CT use, 0.83 (0.82–0.84) for U/

S use, 0.80 (0.79–0.80) for MRI use, and 0.78 (0.77–0.79) for multiple ADI use.

Estimated coefficients and standardized coefficients of the structured variables from logistic

regression between the outcome of ADI use and the predictors were presented as a modeling

example (S4 Table), which can be used for perspective study. Standardized coefficients can be

compared to present which variable have a greater effect on the ADI use prediction. The item

“whether the injury/poisoning intentional” and the immediate triage level presented highest

standardized coefficients among the structured variables.

We performed a sensitivity analysis for missing values. Among the 139,150 records, there

were 14,009 records without any missing values of which 3,409 (24.4%) resulted in ADI use,

including 2,560 (18.3%) CTs, 613 (4.38%) USs, 65 (0.46%) MRIs, and 171 (1.22%) multiple

AMIs. With 100 topic models from the unstructured data included, the AUC was 0.76 (95% CI

0.75–0.77). With the structured variables included only, the AUC was 0.70 (95% CI 0.68–0.72).

With both the structured variables and 80 topics from unstructured data included, the AUC

reached 0.79 (95% CI 0.78–0.81).

Discussion

Improving ED efficiency may help address the continued problem and negative consequences

of ED crowding in the U.S. [2, 6, 34]. One previously unexplored solution to address this prob-

lem may be to identify patients more likely to eventually obtain ADI earlier in their ED

encounter. Our study applied predictive analytics and natural language processing modeling

techniques with six years of nationally representative survey data to create a model to predict

ADI use during the ED triage process.

Table 2. (Continued)

Any ADI CT Only US Only MRI Only Multiple ADIs

Diabetes 0.96(0.92–1.00) 0.95(0.91–1.00) 1.01(0.91–1.12) 1.03(0.81–1.32) 1.04(0.90–1.21)

Condition requiring dialysis 0.92(0.82–1.05) 0.88(0.77–1.01) 1.11(0.82–1.51) 1.38(0.73–2.62) 1.07(0.72–1.59)

HIV 0.82(0.69–0.98) 0.88(0.72–1.06) 0.56(0.34–0.90) 0.96(0.36–2.60) 1.03(0.57–1.89)

Cancer 1.13(1.03–1.24) 1.18(1.07–1.31) 0.79(0.59–1.06) 1.04(0.61–1.77) 1.09(0.78–1.52)

Chronic obstructive pulmonary disease 0.76(0.69–0.83) 0.78(0.71–0.87) 0.63(0.48–0.83) 0.86(0.52–1.44) 0.64(0.45–0.90)

Dementia 1.56(1.35–1.80) 1.58(1.36–1.83) 1.42(0.90–2.24) 1.00(0.36–2.79) 1.44(0.87–2.37)

Pulmonary embolism 1.21(1.01–1.46) 1.08(0.88–1.33) 1.89(1.28–2.79) 2.30(1.06–4.98) 1.40(0.79–2.47)

Myocardial infarction 0.88(0.80–0.97) 0.87(0.79–0.97) 0.88(0.66–1.18) 0.82(0.47–1.45) 0.98(0.71–1.35)

Note: The odds ratios for any ADI use were estimated with binary logistic regression. The odds ratios for other ADI uses were estimated with multivariable logistic

regression, and were adjusted for all other variables listed in the Table 1. The odds ratios for cancer, chronic obstructive pulmonary disease, dementia, pulmonary
embolism, myocardial infarction were calculated using 2012–2014 data only, since these comorbidities were not collected prior to 2012. The odds ratio of receiving
oxygen on arrival were based 2009–2013 data only, since this variable was not collected in 2014.

https://doi.org/10.1371/journal.pone.0214905.t002
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One of the novel aspects of this study was the use of not only structured variables (examples:

age, race, residence type), but also text-based information (reason for visit and cause of injury)

via natural language processing. Specifically, we chose LDA topic modelling, which balances

predictive performance and ease of information interpretation by grouping words into topics

[28]. With the inclusion of reason for visit information in the model, the AUC ranged from

0.78 to 0.83 for all outcomes. When choosing the best probability cut-off given in the study

(p = 0.05) as the threshold, the best overall accuracy of this model for ultrasound use, for exam-

ple, reached 78% (with sensitivity of 0.73 and specificity of 0.78), which means that with the

model given in the study, physicians can predict with an accuracy of 73% whether a patient

will eventually receive ultrasound during their ED stay, and offers a 78% discriminatory accu-

racy for those who will not receive ADI.

During our exploration and model development, we observed surprising and substantial

racial and socioeconomic disparities in the use of ADI in this sample. Similar to previous stud-

ies, African Americans were less likely to have ADI compared to white patients [35, 36]. There

are several potential explanations for these differences. For example, some evidence suggests

that injury severity varies by race, thus warranting differential use of ADI [35, 37]. In addition,

the extent of overcrowding in an ED has been shown to affect the thoroughness of patients’

evaluation, which disproportionately affects hospitals that serve higher number of African

Americans [37, 38]. Other potential explanations for racial differences in ADI use include pro-

vider implicit bias [35], and/or potential overuse of ADI in white patients rather than underuse

by African American patients [39].

Table 3. Predictive performance of logistic regression models with 10-fold classification in identifying patients with various advanced imaging use during emer-

gency department triage, NHAMCS 2009–2014.

Probability cut-off Sensitivity Specificity Accuracy AUC(95% CI)

Any ADI use

Unstructured variables 0.22 0.68 0.69 0.69 0.74(0.73–0.75)

Structured variables 0.22 0.66 0.62 0.63 0.69(0.68–0.69)

Unstructured + Structured variables 0.22 0.71 0.70 0.71 0.78(0.77–0.78)

CT Use

Unstructured variables 0.17 0.70 0.69 0.69 0.75(0.75–0.75)

Structured variables 0.18 0.66 0.65 0.65 0.70(0.70–0.71)

Unstructured + Structured variables 0.19 0.72 0.72 0.72 0.79(0.79–0.79)

Ultrasound Use

Unstructured variables 0.04 0.73 0.78 0.78 0.82(0.81–0.82)

Structured variables 0.05 0.66 0.69 0.69 0.74(0.73–0.74)

Unstructured + Structured variables 0.04 0.74 0.78 0.77 0.83(0.82–0.84)

MRI Use

Unstructured variables 0.01 0.70 0.72 0.72 0.77(0.76–0.78)

Structured variables 0.01 0.62 0.65 0.65 0.69(0.68–0.70)

Unstructured + Structured variables 0.01 0.72 0.74 0.74 0.80(0.79–0.80)

Multiple ADI Use

Unstructured variables 0.01 0.69 0.70 0.70 0.75(0.74–0.75)

Structured variables 0.01 0.67 0.63 0.63 0.70(0.69–0.71)

Unstructured + Structured variables 0.01 0.74 0.68 0.68 0.78(0.77–0.79)

Note: The best cutoff of the probabilities was determined by using the point on the ROC curve with the shortest distance to the upper left corner (where sensitivity = 1

and specificity = 1). The unstructured variables refer to the correlation coefficients between the patient and topics from the free-text reasons for visit.

https://doi.org/10.1371/journal.pone.0214905.t003
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Fig 1. Receiver operating curves for the logistic regression models for different types of advanced diagnostic imaging use (Any

ADI, CT, MRI, US, Multiple ADI). The red point on the curve minimized the Euclidian distance between the ROC curve and the

upper left coordinate which defined the best cutoff for this study.

https://doi.org/10.1371/journal.pone.0214905.g001
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Patients with Medicaid and uninsured patients were also less likely to receive ADI com-

pared to patients with private insurance [40]. Compared to patients that live in private resi-

dences, patients from nursing homes and patients who were homeless had decreased

likelihood of any ADI use. Reasons for these disparities should be further explored in future

research to determine the appropriateness of including or excluding these variables in predic-

tion models [37] based on the clinical context, such as the one proposed in this study. This will

be important to determine whether such prediction models can serve as a more objective tool

to predict whether a patient will need ADI by excluding factors that may be influenced by cli-

nician bias, for example. It may also be of value to explore the relationship between measure-

ments of disparities, such as the role that insurance type plays in the racial differences we

observed in ADI, or the influence of the ED specific characteristics such as urbanicity, teaching

hospital designation, or safety net designation on ADI utilization. Further studies are needed

to determine the effect of predictive clinical decision support algorithms such as the one con-

structed for this study, on the clinical use of ADI in settings where it can potentially be

deployed to reduce racial and socioeconomic disparities in ADI use.

We also found that age, triage level, arrival mode, place of residence, and certain comorbid-

ities were predictive of the eventual use of ADI during ED visit. As expected, patients with

emergent and immediate triage levels had the highest likelihood of ADI use. These patients are

often immediately placed in an ED room for workup shortly after arrival and early identifica-

tion of their need for ADI would likely have less of an impact on ED LOS, and the decision

tree that can lead to ADI in these patients often bypasses the traditional triage processes. How-

ever, patients who were triaged as urgent (typically triage level 3) or semi-urgent (typical triage

level 4) also had increased odds of ADI use. These patients typically spend a longer portion of

their LOS in the waiting area prior to being placed in a room—after which a provider typically

makes the decision to pursue ADI. Urgent and semi-urgent patients comprise the majority of

all ED patients (80.2% in this sample) and stand to benefit the most from this form of predic-

tive modelling as they utilize the majority of ED ADI (79.8% of ADI in this sample).

When the use of each type of ADI (CT, MRI, U/S) was analyzed, we found that the general

trends closely mirrored that of any ADI use except for U/S. One explanation for this difference

is the increasing number of ultrasounds performed unofficially as a point of care test at bedside

or in a fashion that was not captured in the dataset. For example, the Focused Assessment with

Sonography in Trauma (FAST) ultrasound [41] is often not captured, which would result in

under-reporting in the current dataset. Despite having been shown in prior research to be a

poor predictor of health outcomes[42, 43], we found that patients indicating higher levels of

pain on the traditional ten-point pain scale had increased odds of receiving ADI (Table 2, S1

Fig). This may reflect the fact that physicians tend to do more for patients who complain of

severe pain[44].

The triage process in the ED represents the earliest in-person point of contact between a

patient and a medical provider, often a nurse, after arriving in the ED. This is an extremely

important encounter, but one that is often quite brief. A decision support system built on

models such as the ones proposed in this study may be valuable to triage personnel, charge

nurses, hospital leaders, hospital flow coordinators, and ED physicians. Further research will

be needed to test the effect of using such a system in the clinical setting. Because these models

were derived from nationally representative survey data, the clinical use of this type of model-

ling strategy may benefit from location-specific data and additional calibration of models for

specific regions of the county or patient populations.

The present study has several limitations. First, missing values in the datasets affect the pre-

dictive performance of the models; sensitivity analyses were performed to limit this potential

source of bias. Second, the interpretation of the topic models used for natural language
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processing in extracting data from unstructured information is not always straightforward as

these topics are computer generated and take into account multiple layers of variable interac-

tions. Third, the specific test ordered (example: CT of head) was not available in the dataset for

analysis; however, this may be important to explore in future studies. Fourth, the dataset does

not provide the results of ADI studies, the medical indication for those studies, who ordered

the study, or the time of ordering the study. Therefore, we lack the temporal information to

know if an ADI study was ordered for a patient immediately upon arrival by triage personnel

or if was ordered later by a different provider who was privy to additional clinical information

such as lab results or changes in clinical status. Additionally, we used the ED physicians’ deci-

sion to pursue ADI as the gold standard to establish the outcome for the predictive model—

not whether the imaging yielded or ruled out a diagnosis. As a result, the appropriateness of

these decisions cannot be assessed. To determine the utility of these models in supporting phy-

sicians’ ED triage decisions, these predictive models should be developed and prospectively

validated in the clinical setting. Because these predictive models were designed on national

data and focused on a specific time point (triage) during an ED encounter, it is not possible to

account for the impact of serial interactions in the ED that lead toward or away from ADI. Fur-

ther studies are needed to assess the impact of using this type of predictive model on the triage

behaviors, ordering patterns, clinical pathways, overall imaging utilization, and ED flow.

Conclusion

This investigation used six years of nationally representative ED data to construct statistical

models to predict the eventual use of advanced diagnostic imaging—using only the informa-

tion that would be available at the time of ED triage: vital signs, general medical information,

and the patient’s stated reason for visit. The overall discriminatory accuracy of these models

supports prospective testing for use as an adjunct clinical decision support tool.
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