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Abstract: Drug-induced immune thrombocytopenia (DITP) is a life-threatening clinical syndrome
that is under-recognized and difficult to diagnose. Many drugs can cause immune-mediated
thrombocytopenia, but the most commonly implicated are abciximab, carbamazepine, ceftriaxone,
eptifibatide, heparin, ibuprofen, mirtazapine, oxaliplatin, penicillin, quinine, quinidine, rifampicin,
suramin, tirofiban, trimethoprim-sulfamethoxazole, and vancomycin. Several different mechanisms
have been identified in typical DITP, which is most commonly characterized by severe
thrombocytopenia due to clearance and/or destruction of platelets sensitized by a drug-dependent
antibody. Patients with typical DITP usually bleed when symptomatic, and biological confirmation of
the diagnosis is often difficult because detection of drug-dependent antibodies (DDabs) in the patient’s
serum or plasma is frequently not possible. This is in contrast to heparin-induced thrombocytopenia
(HIT), which is a particular DITP caused in most cases by heparin-dependent antibodies specific for
platelet factor 4, which can strongly activate platelets in vitro and in vivo, explaining why affected
patients usually have thrombotic complications but do not bleed. In addition, laboratory tests are
readily available to diagnose HIT, unlike the methods used to detect DDabs associated with other
DITP that are mostly reserved for laboratories specialized in platelet immunology.

Keywords: platelets; thrombocytopenia; drugs; heparin-induced thrombocytopenia

1. Introduction

Many drugs and components including herbal remedies, food, and nutritional supplements
can cause thrombocytopenia by inhibiting platelet production and/or favoring their elimination
or destruction from the peripheral blood [1]. Cytotoxic chemotherapies frequently suppress
haematopoiesis overall, but some have a greater impact on megakaryocytopoiesis. On the other
hand, peripheral drug-induced thrombocytopenia, characterized by increased clearance of platelets
by mononuclear phagocytes, is most often mediated via an immunological mechanism implicating
drug-dependent antibodies, which may also induce direct platelet destruction [2–5]. This latter
entity called drug-induced immune thrombocytopenia (DITP) is not exceptional, but often is a real
diagnostic challenge. Indeed, most patients with DITP have multiple comorbidities and other potential
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causes of thrombocytopenia. The objective of this review is to present and summarize the different
pathophysiological mechanisms and drugs involved in DITP, and some practical key points useful for
their diagnosis are also discussed.

2. Drugs and Mechanisms Involved in Drug-Induced Immune Thrombocytopenia

Several studies in the past years have allowed identification of many drugs responsible in the
occurrence of DITP [6–9]. A reliable Web resource called “Platelets on the Web” (https://www.ouhsc.
edu/platelets/ditp.html) was developed by Dr James N. George for collecting patient reports of immune
mediated thrombocytopenia (last update in 2018), and currently lists more than 300 drugs with which
at least one confirmed or suspected case of DITP has been described.

Quinine was the first drug to be identified as causing immune-mediated thrombocytopenia
over 100 years ago, but the incidence of DITP with this drug is rare, only of 26 cases per million
patients treated [10]. Heparin-induced thrombocytopenia (HIT) is more frequent, affecting more than
1% of treated patients in certain clinical situations, and is distinguished from other DITP because
it is associated in nearly half of all cases with thrombotic complications, and rarely with severe
bleedings [11,12].

The pathophysiological mechanisms underlying DITP are quite variable (Table 1), differ according
to the molecules involved [1,4], and are discussed below.

Table 1. Mechanisms involved in different types of drug-induced immune thrombocytopenia (DITP).

Type Mechanism Examples References

Hapten-induced
antibody

Drug binds to platelet
membrane and promotes

antibody response

Penicillin and derivatives,
cephalosporins [13–16]

“Quinine-type”
antibody

Drug binds to antibody Fab
and/or membrane

glycoprotein (GP), thereby
enhancing antibody affinity
and binding to platelet GP

Quinidine, quinine, antibiotics
(vancomycin, rifampicin,

sulfamethoxazol),
anticonvulsants

[3–5,17,18]

Drug-specific
antibody

Antibody recognizes the
monoclonal antibody bound to

its target
abciximab [19–21]

Fibrinogen receptor
antagonist-dependent

antibody

Drug binds to GPIIb/IIIa
inducing conformational
changes, then recognized

by antibody

tirofiban, eptifibatide [22]

Autoantibody
induction

Drug induces formation of
autoantibody that binds alone

to platelet GP

procainamide, gold salts,
L-dopa, and likely several

therapeutic monoclonal
antibodies

[23–33]

Immune complexes
Drug binds to PF4 inducing

antibodies that activate
platelets via FcγRIIa receptors

heparin, protamine [11,12,34–36]

DITP: drug-induced immune thrombocytopenia; PF4: platelet factor 4; GPIIb/IIIa: glycoprotein IIb/IIIa.

2.1. Thrombocytopenia Induced by Hapten-Dependent Antibodies

The first observations of DITP were initially attributed to hapten-dependent antibodies. Haptens
are molecules that are too small to be immunogenic alone, but after their covalent binding to
macromolecules such as proteins, drug-specific antibodies can be synthesized and target platelets.
This mechanism has been reported with cephalosporin drugs or penicillins, which may bind via their
β-lactam ring to the membrane of red blood cells and induce immune haemolytic anaemia. Penicillin
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or derivatives may also bind covalently platelet glycoproteins and induce antibody response with
subsequent immune thrombocytopenia [13–15]. However, this process is rare, and in patients treated by
penicillin derivatives, the antibodies are more frequently acting like those involved in “Quinine-type”
DITP (see Section 2.2).

Piperacillin has also been implicated in the occurrence of immune thrombocytopenia [37], but
with a link not fully demonstrated. Cephalosporins, more particularly ceftriaxone, were also reported
to be responsible for DITP, with antibodies recognizing GPIIb/IIIa or GPIb/IX, especially the GPIX
subunit [16].

2.2. “Quinine-Type” Drug-Induced Immune Thrombocytopenia

DITP induced by “drug-dependent” antibodies (DDabs) are classically due to antibodies inducing
platelet destruction by the reticuloendothelial system only in the presence of the drug. Quinine,
an anti-malarial drug also frequently prescribed for the treatment of leg cramps, is the first drug
that was recognized to be involved in this group of DITP. However, “quinine-type” drug-dependent
antibodies have also been identified in patients with thrombocytopenia induced by variable other
drugs such as non-steroidal anti-inflammatory drugs, antibiotics (ceftriaxone, piperacillin, vancomycin,
rifampicin, trimethoprim/sulfamethoxazole, and teicoplanin), and anticonvulsants (phenytoin and
carbamazepine). Actually, more than 100 different medications have been implicated in this group of
DITP [3,5,17,18], but vancomycin is today one of the most frequently involved in clinical practice [38].

”Quinine-type” antibodies typically recognize restricted binding sites expressed by GPIb/IX
and GPIIb/IIIa complexes of the platelet membrane [39–42]. Antibodies induced by antibiotics
such as vancomycin [41], sulfamethoxazole [43], or teicoplanin [44] preferentially bind GPIIb/IIIa.
Quinine-type” antibodies may interact either with GPIIb or GPIIIa alone, but also with the intact
integrin. This is also true for antibodies that bind to GPIb/IX complex. In this regard, the GPIX subunit
appears to be the preferred target of rifampicin-dependent antibodies [45]. Moreover, the Arg110
residue in the GPIX subunit has been identified as playing a critical role in the antigenic site [46].
Recently, it was demonstrated that quinine is retained specifically by human GPIX, with a binding site
involving residues 110–115 [47].

Unlike the hapten-dependent mechanism, there is no covalent interaction between the drug and
the antigenic target, and quinine-dependent antibodies have a low affinity for platelet glycoproteins
(GPs). However, importantly, the drug strongly increases antibody binding on platelets. How the
sensitized drug promotes the binding of quinine-type antibodies to the membrane has remained
unknown for many years. However, recent studies have proposed a mechanism that involves the
interaction of the drug with the complementary-determining region (CDR) of the antibody, whose
configuration is then modified with a subsequent increased antibody affinity for a specific epitope
expressed by a platelet glycoprotein. As illustrated in Figure 1, the drug is likely trapped at the
antigen–antibody interface in a resulting tri-molecular complex [4,48].
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Figure 1. Schematic representation of the binding of a “quinine-type” drug-dependent antibody to a 
platelet glycoprotein. CDR, complementary-determining region; DDab, drug-dependent antibody. 

Recent studies using different monoclonal antibodies that mimic antibodies of patients with 
“quinine-type” DITP then supported this model. Bougie et al. confirmed that the first step was the 
interaction of the drug with antibody, inducing structural changes, which then strongly increase its 
affinity and specificity for its target epitope [49]. In addition, Zhu et al. from the same team also 
showed how quinine could remodel the paratope of the fragment antigen-binding (Fab) antibody by 
changing the conformation of CDR loops [48]. These findings suggest that synthesis of “quinine-
type” antibodies is triggered, whatever the drug involved, by conformational changes of B-cell 
receptor (BCR), which allow it to acquire high specificity to an epitope expressed by a platelet 
glycoprotein. 

Antibody-sensitized platelets are usually rapidly eliminated but some quinine-type antibodies 
may also bind megakaryocytes and impair platelet production by decreasing the proplatelet 
production capacity, this effect possibly prolonging thrombocytopenia in some patients [50]. 

2.3. Immune Thrombocytopenia Induced by GPIIb/IIIa Inhibitors 

2.3.1. Thrombocytopenia Induced by Abciximab 

Abciximab is a chimeric (human/mouse) anti-GPIIb/IIIa Fab fragment that blocks the binding of 
fibrinogen to platelet GPIIb/IIIa [51], and it was mainly used to prevent ischemic cardiac 

Figure 1. Schematic representation of the binding of a “quinine-type” drug-dependent antibody to a
platelet glycoprotein. CDR, complementary-determining region; DDab, drug-dependent antibody.

Recent studies using different monoclonal antibodies that mimic antibodies of patients with
“quinine-type” DITP then supported this model. Bougie et al. confirmed that the first step was the
interaction of the drug with antibody, inducing structural changes, which then strongly increase its
affinity and specificity for its target epitope [49]. In addition, Zhu et al. from the same team also
showed how quinine could remodel the paratope of the fragment antigen-binding (Fab) antibody by
changing the conformation of CDR loops [48]. These findings suggest that synthesis of “quinine-type”
antibodies is triggered, whatever the drug involved, by conformational changes of B-cell receptor
(BCR), which allow it to acquire high specificity to an epitope expressed by a platelet glycoprotein.

Antibody-sensitized platelets are usually rapidly eliminated but some quinine-type antibodies
may also bind megakaryocytes and impair platelet production by decreasing the proplatelet production
capacity, this effect possibly prolonging thrombocytopenia in some patients [50].

2.3. Immune Thrombocytopenia Induced by GPIIb/IIIa Inhibitors

2.3.1. Thrombocytopenia Induced by Abciximab

Abciximab is a chimeric (human/mouse) anti-GPIIb/IIIa Fab fragment that blocks the binding of
fibrinogen to platelet GPIIb/IIIa [51], and it was mainly used to prevent ischemic cardiac complications
in acute coronary syndromes in patients undergoing percutaneous coronary intervention. The incidence
of thrombocytopenia after injection of abciximab is 1 to 2% at the first exposure [19], but it is more
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frequent when the drug is later administered. Approximately 10–15% of patients receiving abciximab
twice in 30 days may develop thrombocytopenia [20]. Acute thrombocytopenia occurs few hours after
starting treatment, with sometimes fever, dyspnea, hypotension, and rarely anaphylactic shock. Usually,
bleeding manifestations are transient and not severe, but life-threatening intracranial haemorrhages
have been reported. Thrombocytopenia is usually profound with platelet counts between 1 and 25
× 109/L, and due to IgG/IgM antibodies specific to the platelet-bound drug. Similar antibodies can
also be found in healthy subjects, but their specificity is likely different. Pathogenic antibodies, i.e.,
dangerous and potentially inducing acute thrombocytopenia, recognize murine sequences present in
the abciximab molecule and necessary for its binding to GPIIb/IIIa, whereas non-pathogenic antibodies
(not associated with low platelet counts) are specific for the papain-cleaving site of abciximab Fab
fragment [21]. In some patients, antibodies that bind to conformational epitopes induced in GPIIb/IIIa
by abciximab can also provoke thrombocytopenia [52].

Most patients recover within a few days (in general five days), but sometimes low platelet count
may persist several weeks [53]. On the other hand, delayed thrombocytopenia after abciximab may
also be observed in few patients, with a decrease in platelet count 5 to 10 days after treatment. This
is explained by the fact that abciximab remains present on circulating platelets for up to two weeks,
because the drug can move from one cell to another [54]. Therefore, abciximab-induced delayed
thrombocytopenia may be caused by newly synthesized antibodies to the drug remaining on the
platelet surface for an extended period of time. This form usually occurs after hospital discharge, may
be severe, with a diagnosis sometimes delayed, especially in patients treated by other antiplatelet
agents such as aspirin or P2Y12 inhibitors that may also favor the occurrence of severe bleeding. It is
therefore recommended that patients be sensitized to carefully look for petechiae or muco-cutaneous
bleedings after leaving the hospital [21].

2.3.2. Immune Thrombocytopenia Induced by Ligand-Mimetic Fibrinogen-Receptor Antagonists

Ligand mimetic fibrinogen-receptor antagonists are therapeutic agents mimicking the
arginine-glycine-aspartic acid (RGD) sequence recognized by specific sites of the platelet GPIIb/IIIa
complex. Therefore, they competitively inhibit fibrinogen-GPIIb/IIIa interactions and the formation of
platelet aggregates. The two compounds used to prevent thrombotic complications associated
with percutaneous transluminal coronary angioplasty are tirofiban and eptifibatide, a cyclic
hexapeptide. About 0.1 to 0.5% of patients treated for the first time with these drugs may develop
thrombocytopenia [22]. This adverse event typically occurs within the first 24 h of treatment, and fever,
chills, and hypotension can be observed in some cases. However, most patients recover without severe
bleeding and further problems in a few days.

Platelet destruction in affected patients is due to antibodies recognizing a neoepitope or a ligand
induced binding site (LIBS) expressed by GPIIb/IIIa whose conformation has been altered after drug
binding [55]. Eptifibatide-dependent antibodies do not bind to GPIIb/IIIa in the presence of tirofiban,
and vice versa, with some exceptions. These antibodies may also be natural, without prior exposure to
the drug, explaining the rare cases of thrombocytopenia observed on first exposure a few hours after
administration [56,57].

Thrombocytopenia is usually severe between 1 and 25 × 109/L, requiring in some cases platelet
transfusions and intravenous (IV) immunoglobulins. Platelet count recovery most often occurs within
2–3 days, but can be delayed in case of direct inhibitory effect of antibodies on megakaryocytes [58].
Thrombocytopenia may rarely be associated with paradoxical thrombotic events [59–61], which may be
related to the ability of some antibodies to activate platelets after cross-linking FcγRIIa receptors [61],
in a way similar to the process involved in heparin-induced thrombocytopenia (see Section 2.4.2).
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2.4. Drug-Induced Immune Thrombocytopenia from Other Causes

2.4.1. Thrombocytopenia Induced by Platelet-Specific Auto-Antibodies

Some drugs are capable of inducing the production of autoantibodies that cause, in the absence
of the sensitizing molecule, platelet destruction in a way similar to that involved in immunological
thrombocytopenic purpura. This process has been found in 1% to 3% of patients treated for rheumatoid
arthritis with gold salts [23,24] that are no longer used in medical practice, and also been demonstrated
with procainamide [25] and L-dopa [26]. Auto-antibodies induced by gold salts were specific for
platelet glycoprotein V and not found in non-thrombocytopenic treated patients [62].

Several humanized monoclonal antibodies, approved these last years for the treatment of malignant
and non-malignant disorders, have also been identified as potentially inducing the formation of
autoantibodies targeting platelets. A moderately low platelet count is relatively common upon exposure
to these agents, but more severe thrombocytopenia has also been reported in a few patients. The drugs
involved are efalizumab (anti-CD11a) [63,64], adalimumab [65] and infliximab (anti-TNF, tumor
necrosis factor) [28,29], bevacizumab (anti-VEGF) [27,66], rituximab (anti-CD20) [30,31], natalizumab
(anti-α4β1-integrin) [32], and immune checkpoint antibodies to program cell death receptor-1 (PD-1) or
cytoxic T-lymphocyte antigen 4 (CTLA-4), such as nivolumab, pembrolizumab, or ipilimumab [33,67].
Although the clinical evolution in most cases suggests that antibodies are involved in platelet destruction,
their presence has never been firmly demonstrated. Platelet count usually falls within a few days
of treatment, sometimes with bleedings, and recover rapidly after the drug withdrawal. Moreover,
recurrence of thrombocytopenia is inconstant after re-exposure [28,64].

2.4.2. Thrombocytopenia Induced by Immune Complexes: Heparin-Induced Thrombocytopenia

In this group, the model disorder is heparin-induced thrombocytopenia (HIT), which clearly
differs from other DITP since it is associated with venous or arterial thrombotic complications (50% of
cases) and rarely haemorrhagic events [12] (Table 2).

Table 2. Main differences between heparin-induced thrombocytopenia (HIT) and other DITPs.

HIT Other DITPs

frequency frequent rare

main mechanism of
thrombocytopenia activation consumption/destruction

contribution of other
cell types yes: leukocytes, endothelial cells no

time to occurrence after
drug initiation mostly: 5–10 days few hours to few days

depth of thrombocytopenia moderate: nadir close to
50 × 109/L in most cases

severe: nadir < 10–20 × 109/L
in most cases

clinical manifestations
thrombosis in 30-50% of cases;

bleeding in < 10% of patients, in
case of DIC

bleeding

diagnosis

affordable: well-established
diagnostic approach, first-line

tests: immunoassays, confirmation
tests: functional assays

difficult: few assays available
(immunoassays or flow

cytometry-based assays) of unknown
sensitivity, and restricted to

specialized laboratories

recurrence on re-exposure
to the drug not systematically very likely

HIT: heparin-induced thrombocytopenia; DIC: disseminated intravascular coagulation; DITPs: drug-induced
immune thrombocytopenia.



J. Clin. Med. 2020, 9, 2212 7 of 19

HIT occurs in 1 to 3% of patients treated with unfractionated heparin (UFH), with a lower incidence
in patients receiving a low molecular weight heparin (LMWH), and is difficult to predict, depending on
the clinical context. The decrease in platelet count is classically greater than 40% and occurs typically
between 5 and 10 days after the start of treatment. This iatrogenic complication is due to an atypical
immune response leading to the synthesis of pathogenic antibodies of IgG isotype specifically directed
in most patients against platelet factor 4 (PF4) modified by heparin (PF4/H). Indeed, heparin and other
sulfated polyanions are capable of rendering PF4 highly immunogenic by promoting conformational
changes on its surface [68] and the aggregation of several tetramers to form ultra-large complexes
(ULC) [69]. The size of the polyanions and their degree of sulfation (number of negative charges per
sugar) are two parameters that strongly influence the formation of large antigenic complexes [70].

This explains why unfractionated heparin, which contains large amounts of chains of more than
12 sugars and has a high degree of sulfation, is particularly prone to induce these changes and the
development of an immune response against modified PF4.

This immune response is complex and atypical in several respects: HIT is very common compared
to other DITPs, it is transient with no immunological memory [71], and there is no isotype switch with
concomitant synthesis of IgG/IgA/IgM antibodies, which progressively disappear within three to six
months following heparin discontinuation [72].

A pre-immunization step related to previous bacterial infections may explain the rapid synthesis of
IgG, which begins after 4–5 days of exposure to heparin [73]. In addition, inflammation appears to play
an important role in the loss of immune tolerance to PF4/H complexes, as suggested by reduced levels
in patients with HIT of anti-inflammatory cytokines, such as interleukine 10 (IL-10) or transforming
growth factor β (TGF-β) [74]. Data from murine models have also indicated that marginal area B cells,
generally involved in T cell independent humoral responses, are essential in the synthesis of anti-PF4/H
antibodies [75], but several teams have also proposed a role for helper T cells in this process [76].
Recently, a role of complement and endogenous polyreactive IgM in the immune response leading to
HIT has also been demonstrated [77].

In addition to the use of heparin, other factors may promote the development of antibodies to
PF4, including clinical conditions associated with high platelet activation and increased PF4 release
(e.g., cardiac surgery with cardiopulmonary bypass, and orthopedic surgery) [78].

Antibodies specific to PF4 are very heterogeneous in terms of class, subclass, affinity, and specificity.
The majority of patients develop antibodies directed against conformational epitopes induced by the
interaction of PF4 with heparin or other glycosaminoglycans [79]. However, a few patients may also
develop atypical antibodies capable of binding PF4 alone [80]. In this respect, Nguyen et al. recently
showed that such antibodies were present in patients with atypical (so-called autoimmune) HIT,
characterized by an unusual clinical presentation such as spontaneous HIT, and delayed or persistent
HIT despite withdrawal of heparin [81]. Antibodies present in patients with autoimmune HIT activate
platelets without heparin, and although their role is not yet fully understood, they may promote
binding of anti-PF4/H antibodies to PF4 alone. All these characteristics explain why this particular
bio-clinical HIT is now considered as an autoimmune disease [82].

The pathogenicity of HIT antibodies is mainly due to IgG that activate platelets after binding
of their crystallizable fragment (Fc) to FcγRIIa receptors [83,84]. This activation induces the release
of PF4 from platelet alpha granules and generates microparticles rich in phosphatidylserine (PS),
this providing a procoagulant surface favoring the generation of thrombin [85,86]. HIT antibodies
also induce FcγRIIA-dependent monocyte activation that leads to synthesis of tissue factor (TF),
the main trigger of coagulation [87]. The release of procoagulant microparticles loaded with TF by
activated monocytes, allowing explosive thrombin generation, would also contribute to enhance platelet
activation and thrombus formation [88]. In addition, recent studies demonstrated that generation
of Neutrophil Extracellular Traps (NETs) from neutrophils induced by HIT antibodies was critical
for the development of thrombosis [89,90]. On the other hand, von Willebrand factor (vWF), a
multimeric protein released from activated endothelial cells, also contributes to antibody binding to
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the endothelium by forming antigenic complexes with PF4 [91]. These vWF/PF4/antibody complexes
would recruit the platelets via the Fc fragment of IgG, thus further contributing to the development
of thrombi.

HIT is relatively common in cardiac surgery patients who are exposed to high doses of UFH
during cardiopulmonary bypass (CPB). However, in this particular clinical setting, patients may also
develop specific antibodies to protamine [34–36], another positively charged protein, which like PF4
has a high affinity for heparin. Although these antibodies can form immune complexes and induce
thrombocytopenia in some patients, their pathogenic effect is weaker than that of typical HIT antibodies
to PF4/heparin complexes [92].

2.5. Unresolved Questions on the Pathogenesis of Drug-Induced Immune Thrombocytopenia

The decrease in platelet count is usually rapid and profound in typical DITP, while
thrombocytopenia is rather moderate in most patients with HIT, and associated with cell activation.
These differences likely result from the involvement in DITP of various mechanisms in the platelet
clearance process, with potential roles of complement and FcγRs, which are not fully identified,
especially in DITP. In addition, an effect of antibodies on the platelet production has also been showed
in a few cases.

2.5.1. Role of Complement in Drug-Induced Immune Thrombocytopenia

Complement activation may also contribute to platelet destruction in DITP, as initially suggested
in 1958 by Schulman who had detected quinidine-induced DDabs in patients with DITP using a
complement fixation assay [93]. Kiefel then showed that quinidine and rifampicin-dependent antibodies
induced the binding of large amounts of C3d and C5b-C9 components to the platelet surface [94].
Furthermore, the role of complement in DITP was also supported by the fact that antibodies induced
by vancomycin, quinine, or fluoroquinolones [41,95,96], are often IgM, a class of immunoglobulins
which is particularly prone to activate the complement pathway due to its pentameric organization.

2.5.2. Role of Fcγ Receptors in Drug-Induced Immune Thrombocytopenia

In humans, Fcγ receptors (FcγRs), i.e., FcγRI (CD64), FcγRIIA (CD32A), FcγRIIB (CD32B), FcγRIIC
(CD32C), FcγRIIIA (CD16A), and FcγRIIIB (CD16B), are mainly expressed by haematopoietic cells and
important for the promotion and regulation of immune and inflammatory responses [97]. Today, it is
well established that the pathogenicity of HIT antibodies mainly depends on cell activation resulting
from the interaction of anti-PF4/heparin IgG with Fcγ receptors, and particularly FcγRIIA [88,90,98].
In addition, two different teams have demonstrated that the H131R polymorphism located in the
IgG binding region of FcγRIIA influences the risk of thromboembolic complications in HIT [98,99],
and this association has recently been confirmed by analyzing a large prospective cohort of patients
with definite HIT [100].

Apart from being critical in cell activation induced by HIT IgG antibodies, FcγRs are also important
in the clearance of opsonised platelets by macrophages and dendritic cells. The involvement of FcγRIIA
in this process has been demonstrated in a murine model expressing human FcγRIIA [101], but the
role of FcγRIIIA is also likely critical. In this regard, one polymorphism (FcγRIIIA V158F) strongly
influences the affinity of human IgG1 and IgG3 to the receptor, i.e., this affinity is higher to the V
allotype [97]. Interestingly, IgG antibodies to PF4/heparin are predominantly IgG1 and IgG3 [80,102],
and we found that the risk of HIT was stronger in patients with high levels of antibodies and
homozygotes for the FcγRIIIA 158V allele [103], suggesting that FcγRIIIA-mediated platelet clearance
also contributes to decreasing the platelet number during HIT.

On the other hand, the role of FcγRs in other DITP has not been clearly established, although,
as for other immune thrombocytopenia, they should be involved in the clearance by macrophages
and dendritic cells of platelets opsonised by IgG DDabs, [101,104]. In support to this hypothesis,
studies performed in patients with DITP, or using a murine model, have demonstrated that intravenous
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immunoglobulins, which are interfering with FcγRs, are able to inhibit platelet clearance induced by
different DDabs, including quinine-dependent and HIT antibodies [105–107].

2.5.3. Effect of Drug-Dependent Antibodies on Platelet Production

The suppression of megacaryocytopoiesis is readily attributable to drugs that induce global
myelosuppression, such as chemotherapies, or other drugs that selectively affect platelet production
by megakaryocytes (colchicine, tolbutamide, and thiazidic diuretics) [108]. On the other hand, the
inhibitory effect of anti-platelet autoantibodies associated with immune thrombocytopenia (ITP) on
platelet production has also been clearly documented [109,110], explaining the benefits of treating
patients with chronic ITP with thrombopoietin receptor agonists.

On the other hand, the potential role of DDabs in suppressing platelet production has been
rarely discussed. In 1983, Murphy et al. reported a case of penicillin-induced neutropenia and
thrombocytopenia [14]. The hypocellularity of the bone marrow at the time of diagnosis, its
normalization after drug withdrawal, and the demonstration of complement-fixing IgG antibodies
reacting with patient’s neutrophils and platelets in the presence of the drug, supported the existence
for the authors of antibody-mediated suppression of penicillin-coated precursor cells, although no
studies have confirmed this hypothesis.

Megakaryocytes express glycoproteins and other platelet antigens, making them a potential target
of DDabs, as supported by data showing that monoclonal and human antibodies to GPIb and GPIIb/IIIa
are able of inhibiting megakaryocytopoïsesis in vitro [109]. Moreover, Greinacher et al. demonstrated
that eptifibatide, a GPIIbIIIa inhibitor, induced the development of auto-antibodies that bind to
megakaryocytes, decrease their viability, and can cause prolonged thrombocytopenia [58]. Persistent
thrombocytopenia in patients with quinine-induced DITP has also been attributed to anti-GPIb/IX
antibodies that bind megakaryocytes, induce their apoptosis, affect their differentiation, and markedly
decrease proplatelet production [50]. The mechanisms underlying alteration of megakaryocytes by
anti-platelet antibodies are not clearly understood, but Perdomo et al. suggested that anti-GPIb/IX
antibodies may induce the production of reactive oxygen species that activate caspase-3 and promote
cell apoptosis. These antibodies could also destabilize the interactions between GPIb and intra-cellular
cytoskeleton, which is crucial for thrombopoiesis [111].

Inhibition of platelet production by DDabs may also help to explain why laboratory confirmation
of the diagnosis of DITP may be difficult when trying to detect platelet-bound antibodies. For this
reason, the use of megakaryocytes as test cells has recently been suggested to study the impact of
DDabs on proplatelet production [112].

3. How to Diagnose Drug-Induced Immune Thrombocytopenia

DITP is a severe clinical syndrome often responsible for major thrombocytopenia, less than 20
× 109/L, and may be associated with severe bleeding. Most symptomatic patients develop mucosal
bleedings (purpura or epistaxis), but rarely, more serious clinical complications, such as intra cranial
or intra pulmonary haemorrhages, which can compromise the patient’s vital prognosis [113] can
also be observed. Thrombocytopenia usually occurs about 1 week after exposure, but in some cases
within hours of taking for drugs previously administered occasionally or repeatedly. In practice, the
diagnosis of DITP is difficult, mainly suspected on clinical criteria (Figure 2), and laboratory tests,
which demonstrate the presence of drug-dependent platelet antibodies, are the only methods that can
demonstrate, in some cases, the responsibility of specific drugs in the pathological process leading
to thrombocytopenia.
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3.1. Clinical Features

Careful examination of affected patients is essential, looking for purpura-type bleedings,
mucocutaneous signs (petechiae, ecchymosis), and sometimes digestive, genital, urinary or intracranial
haemorrhages. The intake of foods, nutritional supplements, plants or beverages that may contain
quinine must also be part of the questionnaire. Patients may also present with fever or nausea, but these
are non-specific clinical signs since also found in sepsis, another possible cause of thrombocytopenia
making the diagnosis of DITP sometimes difficult [114]. In addition, no bleeding is associated with
thrombocytopenia in some patients. The diagnosis of DITP has to be suspected in all patients who
develop severe thrombocytopenia usually after 5 to 7 days of starting one of the drugs previously
defined as implying in DITP, or within hours of receiving other treatments such as abciximab, or
fibrinogen receptor antagonists.

In patients treated by several drugs including heparin, it is important to differentiate HIT from
other DITP. While bleeding symptoms are frequent in other drug-induced thrombocytopenias, HIT is
associated with a high risk of thrombosis and is therefore treated differently. Apart from these clinical
differences, thrombocytopenia usually remains moderate in HIT with median values at nadir of 60
× 109/L versus 10 × 109/L in DITP. Arnold et al. have proposed an approach in 2013 (Figure 2) that
allows assessing the possibility of DITP based on 4 criteria: (1) the severity of thrombocytopenia (2) the
clinical signs (3) the time to onset (4) the use of drugs already identified as responsible for DITP (with
clinical and laboratory tests) [5]. However, the diagnosis remains often tricky because many patients
have associated co-morbidities and other possible causes of thrombocytopenia. One of the arguments
in favour of the suspected drug may be the normalisation of the platelet count after stopping the drug
or relapsing on re-exposure. But, withdrawal of the suspected drug can be challenging, as well as
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re-introduction testing is risky to perform, exposing the patient to recurrent thrombocytopenia and
bleeding, and should therefore be conducted at a low dose, and under medical supervision.

Ideally, antibodies bound to platelets in the presence of the drug should be detected by laboratory
tests. However, the tests available today are only specialized techniques lacking standardization and
performed in a few laboratories.

3.2. Laboratory Assays for the Diagnosis of Drug Immune Thrombocytopenia Are Poorly Standardized

In order to confirm the diagnosis of DITP, laboratory assays must fulfill four criteria: (1) the drug
or one of its metabolites is required for the reaction observed in vitro; (2) a specific immunoglobulin
binding is demonstrated; (3) platelets are the target of this binding; and (4) at least two laboratories
must independently obtain the same biological results in favor of the diagnosis [115].

If all four criteria are fulfilled, the diagnosis of DITP is certain, but, if antibodies are found in
only one laboratory, it is still probable. In other cases, the diagnosis of DITP remains uncertain.
Based on this approach, from a list of 153 molecules, laboratory tests allowed for establishing
a definite causal relationship with immune thrombocytopenia for 16 drugs (quinine, quinidine,
trimethoprim/sulfamethoxazole, vancomycin, penicillin, rifampicin, carbamazepine, ceftriaxone,
ibuprofen, mirtazapine, oxaliplatin, suramin, abciximab, tirofiban, eptifibatide, heparin) [9]. For 20
other drugs, their involvement was only likely, with positive laboratory tests in a single laboratory.

Recommendations were formulated by the International Society on Thrombosis and Haemostasis
(ISTH) in 2015 [115] for the standardization of tests to be performed with the drugs most frequently involved
in DITP, namely quinine, vancomycin, trimethoprim-sulfamethoxazole, and piperacillin/tazobactam.
Among the possible techniques, two are considered preferable, flow cytometry and enzyme-immunoassays
(ELISA). These recommendations are summarized in Table 3. Whatever the method used, it is recommended
to test a drug concentration of 1 mg/mL in the patient’s serum or plasma and the washing or incubation
buffers. However, the use of too high of a concentration may result in false positive results. This supports
that therapeutic concentrations may be preferred for several drugs when performing the assay. However,
the solubility of some drugs can also be problematic.

Table 3. Laboratory testing for DITP: summary of recommendations from the SSC of the ISTH [115].

I. Sample Collection

Timing: - preferentially during the acute episode of thrombocytopenia
- at least on a sample collected up to 3 weeks after the acute event
Anticoagulant: - clotted serum or citrated plasma; avoid EDTA

II. Preparation of Test Platelets

Use fresh platelets from healthy donors or stored platelets (0.1% sodium azide).
- collect blood in citrate-containing tubes using a 21-gauge needle (avoid vacuum suction), from donors with
blood group O and known to express the HPA-1a antigen
- centrifuge whole blood for obtaining PRP (200× g, 10 min)
- wash platelets twice with phosphate-buffered saline containing BSA 0.1%.

III. Test Methods

Drug preparation: Dissolve each drug to be tested in adequate solution, according to its solubility.
The suspected drug should be tested at therapeutic concentration (i.e., 0.3 mg/mL for vancomycin)
Flow cytometry and Enzyme immunoassays (EIAs) can be used for detecting DDabs. In both assays, healthy
donor platelets are incubated with patient serum or plasma in the presence and absence of drug.
When required, the drug must be present in all buffers and during all steps, including washings.
After washings, platelet-associated DDabs will be detected using fluorescent-labeled anti-human IgG and IgM
(flow cytometry), or using an enzyme-labeled goat anti-Human IgG and IgM (EIA).

IV. Patient Samples and Controls

Patient samples and negative/positive controls (usually serum) must always be tested.
Positive control: serum or plasma sample from one previous patient with DITP, or with anti-HPA1 antibody
(WHO standard 106/05 or patient sample), but test HPA1 positive platelets.
Negative control: serum or plasma sample from patient treated with the drug and normal platelet count, or
from healthy control.

BSA: bovine serum albumin, DDabs: drug-dependent antibodies, EDTA: Ethylenediaminetetraacetic acid, EIA:
enzyme immunoassay, HPA: human platelet antigen, ISTH: International Society on Thrombosis and Haemostasis,
PRP: platelet-rich plasma, SSC: Scientific and Standardization Committee, WHO: world health organization.
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For example, trimethoprim/sulfamethoxazole must be dissolved in aqueous solutions at neutral
pH, but the use of a buffer with 5% bovine serum albumin is helpful for increasing the solubility of
sulfamethoxazole [43].

Regardless of the technique used, it is essential to systematically include two controls, one positive
and one negative. The ideal positive control is a patient’s serum containing antibodies specific to the
incriminated drug, but in practice this is not often feasible and testing an anti HPA-1a is easier and
allows for ensuring that the technique can detect antibodies bound to platelets. The ideal negative
control is the serum of a patient who has received the drug but without developing thrombocytopenia.
However, in practice, the serum of a healthy subject, easier to collect, can also be used. In addition, it is
essential to test the patient’s serum in the absence of the drug to ensure that the antibody detected
is drug-dependent.

The test is considered as positive when significant antibody binding to platelets is demonstrated
with the patient sample only in the presence of the suspected drug. An example of the procedure
applied and results obtained with the serum of a patient with DITP while treated by vancomycin are
shown in Figure 3. Results are usually expressed as a ratio of fluorescence intensities or optical densities
measured with and without the drug and the ISTH subcommittee of standardisation recommended a
positive cut off value of 1.5 [115]. However, it is preferable that each laboratory tests serum samples
from 10 to 20 healthy subjects to define its own cut-off values. Importantly, the available laboratory
tests have good specificity but poor sensitivity and therefore a negative result does not rule out DITP
definitively. Several hypotheses can explain the poor sensitivity of the tests, but a common explanation
is that DITP may be related to a metabolite and not to the drug itself. On the other hand, low solubility
of the drug may interfere with testing. Finally, the antibody titer may be too low to be detectable in a
sample collected too late.

All these difficulties and uncertainties explain that only specialized laboratories in platelet
immunology should preferentially perform laboratory assays for searching drug-dependent antibodies,
other than those involved in heparin-induced thrombocytopenia.
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3.3. The Diagnosis of Heparin-Induced Thrombocytopenia Is Easier to Confirm

Since HIT is due in most patients to antibodies directed against PF4/heparin complexes, the
laboratory diagnosis of this particular DITP is easier, and discussed in detail in a specific article of this
journal [116].

Briefly, diagnosis of HIT involves several steps [11,117]. First of all, a clinical pre-test score (4Ts
score) is frequently used to guide laboratory assays and allows for defining three levels of probability
of HIT: low, intermediate and high, taking into account the severity of thrombocytopenia, the time to
onset, the existence of thrombosis and other causes of thrombocytopenia. When the probability of HIT
is intermediate or high, laboratory tests are then usually performed. Enzyme immunoassays are very
sensitive to detect anti-PF4/H antibodies and frequently performed as first-line tests. These assays
have a very good negative predictive value, close to 100%, but are not very specific [118]. Therefore, if
positive, they should be combined with a functional test to demonstrate the ability of antibodies to
induce heparin-dependent platelet activation [117,119]. Among the functional tests used in specialized
laboratories, radiolabelled serotonin release assay (SRA) and heparin induced platelet activation assay
(HIPA), which both use washed platelets from healthy subjects, are considered as the reference assays
with a sensitivity and specificity of more than 95%. However, platelet aggregation tests, which are less
sensitive, can also be performed. More recently, platelet activation assays performed with whole blood
i.e., heparin induced multiple electrode aggregometry (HIMEA) and flow cytometry-based assays,
have been proposed [120], but these methods have not yet been fully validated [121]. A decision
algorithm for the clinico-pathological approach in any case of suspected HIT has to be used, but with a
specific approach for patients after cardiac surgery for whom the 4T score is not easy to apply and less
reliable [122].

In conclusion, thrombocytopenia is a frequent adverse event associated with the use of many
different drugs, but the responsibility of antibodies in triggering platelet destruction and/or premature
elimination is often difficult to demonstrate in most patients with typical DITP. In contrast, HIT is more
frequent and easier to diagnose, since assays are widely available, and sensitive enough in detecting
heparin-dependent antibodies.
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