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Schistosomiasis, a neglected tropical disease caused by parasitic worms, poses a major
public health challenge in economically disadvantaged regions, especially in Sub-Saharan
Africa. Climate factors, such as temperature and rainfall patterns, play a crucial role in the
transmission dynamics of the disease. This study presents a deterministic model that aims
to evaluate the temporal and seasonal transmission dynamics of schistosomiasis by
examining the influence of temperature and rainfall over time. Equilibrium states are
examined to ascertain their existence and stability employing the center manifold theory,
while the basic reproduction number is calculated using the next-generation technique. To
validate the model's applicability, demographic and climatological data from Uganda,
Kenya, and Tanzania, which are endemic East African countries situated in the tropical
region, are utilized as a case study region. The findings of this study provide evidence that
the transmission of schistosomiasis in human populations is significantly influenced by
seasonal and monthly variations, with incidence rates varying across countries depending
on the frequency of temperature and rainfall. Consequently, the region is marked by both
schistosomiasis emergencies and re-emergences. Specifically, it is observed that monthly
mean temperatures within the range of 22e27 �C create favorable conditions for the
development of schistosomiasis and have a positive impact on the reproduction numbers.
On the other hand, monthly maximum temperatures ranging from 27 to 33 �C have an
adverse effect on transmission. Furthermore, through sensitivity analysis, it is projected
that by the year 2050, factors such as the recruitment rate of snails, the presence of
parasite egg-containing stools, and the rate of miracidia shedding per parasite egg will
contribute significantly to the occurrence and control of schistosomiasis infections. This
study highlights the significant influence of seasonal and monthly variations, driven by
temperature and rainfall patterns, on the transmission dynamics of schistosomiasis. These
findings underscore the importance of considering climate factors in the control and
prevention strategies of schistosomiasis. Additionally, the projected impact of various
factors on schistosomiasis infections by 2050 emphasizes the need for proactive measures
to mitigate the disease's impact on vulnerable populations. Overall, this research provides
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valuable insights to anticipate future challenges and devise adaptive measures to address
schistosomiasis transmission patterns.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Schistosomiasis, classified as a neglected tropical disease and an infectious disease of poverty, primarily affects poor and
marginalized communities with limited access to clean water and sanitation, exerting detrimental impacts on their health,
economy, and social well-being (Gryseels et al., 2006). Transmission of the parasitic trematode worms Schistosoma spp. to
humans relies on the presence of suitable freshwater intermediate hosts (IH) snails, where schistosomes undergo asexual
reproduction, and humans, serving as the final hosts, where schistosomes undergo sexual reproduction (Steinmann et al.,
2006). Globally, over 240 million individuals are infected with schistosomiasis, with approximately 90% of infections
concentrated in sub-Saharan Africa (Bergquist et al., 2017). African regions exhibit high prevalence of Schistosoma species,
such as Schistosoma mansoni transmitted by Biomphalaria snails, and Schistosoma haematobium transmitted by Bulinus snails
(Utzinger et al., 2009).

Climate variables, including temperature and precipitation, have been shown to influence the presence of IH snails and
schistosomiasis transmission (McCreesh & Booth, 2013; Stensgaard et al., 2016; Tabo et al., 2022). However, the impact of
current and future climate changes on schistosomiasis development remains uncertain and subject to debate (McCreesh &
Booth, 2013; Stensgaard et al., 2016; McCreesh et al., 2015; Kalinda et al., 2018). Temperature fluctuations and extreme
weather events have been highlighted as crucial factors (McCreesh & Booth, 2013), and deterministic models incorporating
temperature effects on IH snails' life history characteristics are recommended (Kalinda et al., 2018). Climate change also
introduces variations in regional precipitation levels (Solomon, 2007), potentially altering transmission patterns and schis-
tosomiasis onset (Codjoe & Larbi, 2016; Martens et al., 1995). In specific tropical regions, including Tanzania, Kenya, Uganda,
Rwanda, Burundi, and Eastern Zambia, climate changes may create favorable environments for IH snails (McCreesh et al.,
2015).

While these studies suggest a potential for ecological changes and thus changes in the transmission of schistosomiasis,
they also increase the difficulties associated with characterizing the relationship between climate variability in terms of
temperature and precipitation with the transmission of schistosomiasis because the relationship is likely, not linear.
Therefore, modeling the impact of seasonal climate variations in temperature and precipitation is critical in determining how
climate change will influence schistosomiasis infections. In this context, a few mathematical models for the transmission
dynamics of schistosomes have been proposed (Chen et al., 2010; Feng et al., 2004; Kalinda et al., 2019; Li et al., 2017). For
instance, Li et al. (Li et al., 2017) formulate a periodic model that shows a seasonal transmission pattern of schistosomiasis
based on monthly human schistosomiasis cases in the lake and marsh areas of China while Schrader et al. (Schrader et al.,
2013) incorporate host snail genetic structure and land use changes in a schistosomiasis predictive model. On the other
hand, the results of Mangal et al. (Mangal et al., 2008) and Kalinda et al. (Kalinda et al., 2017a) [19] provide information on the
relationship between temperature and schistosomiasis transmission for Biomphalaria-S. mansoni and Bulinus-S. haematobium
systems. Although these models have been insightful in providing a framework for evaluating the impact of one climate
variable on schistosomiasis transmission, it is still challenging to simultaneously understand how temperature and precip-
itation affect schistosomiasis transmission dynamics as a result of a changing climate (Van der Wiel & Bintanja, 2021).

The objective of this study is two-fold. Firstly, it aims to develop a new mechanistic model for schistosomiasis trans-
mission, considering the coupled effects of temperature and rainfall. The model incorporates parameters accounting for
population growth, temperature, precipitation, and the release of parasite eggs by infected individuals. Secondly, the study
aims to assess the impact of temperature and rainfall variations on the frequency of schistosomiasis transmission in different
geographical areas, considering seasonal variations. Regional model systems are specifically built for Tanzania, Kenya, and
Uganda, countries where schistosomiasis is highly prevalent, and the climate supports the thriving of intermediate host
snails, leading to widespread infections among the population.

2. Material and methods

2.1. Model formulation

The model describes the transmission dynamics of Schistosoma infection in a population consisting of humans, Schisto-
soma parasite eggs in the environment and free-living parasites, and snails. The population is divided into various com-
partments representing the different stages of the Schistosoma life cycle: Susceptible human compartment, ShðtÞ, represents
individuals who are susceptible to the Schistosoma infection. These individuals have not been infected previously and can
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potentially become infected if they come into contact with the parasite. Infected human compartment IhðtÞ, represents in-
dividuals who are currently infected with Schistosoma. These individuals can release parasite eggs into the environment
through faces and urine and can contribute to the overall transmission dynamics. Parasite egg population compartment EhðtÞ,
represents the population of parasite eggs released into the environment by infected humans. These eggs can hatch into free-
living stages of the parasite (miracidia) and infect snails. Free-living miracidia parasite compartmentMf ðtÞ, are the first free-
living stage of the Schistosoma life cycle. Miracidia can infect snails and continue their development. Snails serve as inter-
mediate hosts for the parasite, facilitating its life cycle. Susceptible snail vector compartment SvðtÞ, represents snails that are
susceptible to becoming infected with schistosomiasis, while the infected snail vector compartment IvðtÞ, represents snails
that are currently infected with schistosomiasis. Infected snails release free-living cercaria Schistosoma parasite into the
environment, contributing to the transmission of the infection to human. Free-living cercaria parasite compartment Cf ðtÞ, this
compartment represents the population of cercaria parasites, which are the final free-living stage of the Schistosoma life cycle.
Cercariae can infect humans upon contact with contaminated water to complete the Schistosoma life cycle.

The model is developed based on the following assumptions and parameters, which govern the rates of transmission,
infection, and mortality for each compartment, as well as the interactions between different compartments:

(A1) The human is recruited at the rate L1e�y1x, where L1 signifies the maximum birth rate or immigration rate per indi-
vidual. The factor e�y1x takes into account that recruitment of individuals does not occur immediately at birth but rather
at the age when they are first susceptible to infection, denoted as x. This age corresponds to a time when individuals
have the opportunity to interact with contaminated water through activities such as swimming, fishing, farming,
washing, and collecting water for domestic use. It is worth noting that this age may occur much earlier, for example,
when babies below the age of two years are washed in infected freshwater. The parameter y1 represents the mortality
rate among humans, and the probability of a child surviving up to the age of susceptibility is given by 1= y1. As for the
recruitment of snails, the rate of maturation L2ðT; RÞ, is dependent on the prevailing temperature (T) and rainfall
amount (R). This rate also takes into account the three stages of the snail life cycle, the number of eggs laid by each adult
snail per day, and the survival rate of both the laid eggs and the juvenile (immature) snails until they reach adulthood.

(A2) Schistosomiasis is not passed down from an infected mother to her child through vertical transmission. In the model,
the incidences of infection are represented by b1ðTÞShCf for humans and b2ðTÞMf Sv for snails. Here, b1ðTÞ denotes the
temperature-dependent rate of cercaria infection in humans, reflecting how the infection rate varies with temperature.
Similarly, b2ðTÞ represents the temperature-dependent rate of miracidia infection on snails, indicating the infection
rate's dependence on temperature.

(A3) The natural mortality rates for various components in the schistosomiasis system are denoted as y1 for humans, y2 for
snails, dvðTÞ for parasite eggs, y3ðTÞ for miracidia, and y4 for cercaria. Disease-related mortality rates specific to humans
and snails are represented as d1 and d2ðTÞ, respectively. It is important to note that the rates dvðTÞ, y3ðTÞ; and d2ðTÞ are
temperature-dependent parameters, meaning they vary with changes in temperature. The model assumes that excreta
(urine and/or feces), which includes parasite eggs, are either directly released into the freshwater or find their way into
it. Infected humans, on average, excrete r stools per day, with each gram of stool containing an average number of eggs
denoted as qh. The occurrence of miracidia is a result of the fact that, on average, NE miracidia hatch from each egg, and
the rate at which the eggs hatch is represented as u1. Additionally, infected snails shed cercariae at a rate of u2. Fig. 1
illustrates the transmission diagram of Schistosomiasis.

The mathematical model equation (1) is developed based on Fig. 1.
Fig. 1. Schistosomiasis transmission diagram depicting the life cycle stages of Schistosoma, interactions with human hosts and IH snails. Disease transmission
parameters influenced by temperature and precipitation are highlighted in blue.
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dSh
dt

¼ L1e
�y1x � b1ðTÞShCf � y1Sh

dIh
dt

¼ b1ðTÞShCf � ðy1 þ d1ÞIh

dEh
dt

¼ qhrIh � ðu1 þ y2ÞEh

dMf

dt
¼ NEu1Eh � y3ðTÞMf

dSv
dt

¼ L2ðT;RÞ � b2ðTÞMf Sv � dvSv

dIv
dt

¼ b2ðTÞMf Sv � ðdvðTÞ þ d2ðTÞÞIv

dCf
dt

¼ u2ðTÞIv � y4Cf

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(1)

In this study, we adopt an autonomous dynamic model equation (1) to investigate the general dynamic effects of climate-
driven systems on schistosomiasis. The spatial characteristics of our autonomous model output are determined by param-
eterization using temperature and rainfall values dependent on temperature and/or rainfall-related parameters.

2.2. Steady states and reproduction number of the model

We show that model (1) has both disease-free and endemic equilibria. The disease-free equilibrium represents a state in
which the population remains free from the infection, indicating the absence of active transmission. In contrast, the endemic
equilibrium represents a persistent state of disease transmissionwithin the population, indicating an ongoing and stable level
of infection. The disease-free equilibrium is crucial as it serves as a benchmark to evaluate the effectiveness of control
measures. On the other hand, the endemic equilibrium provides insights into the persistence and stability of schistosomiasis
transmission. In our model, the basic reproduction number (R0) plays a fundamental role. It quantifies the average number of
new infections caused by a single infectious individual in a susceptible population (Diekmann et al., 1990). If R0 is greater than
1, it indicates that schistosomiasis has the potential to emerge, spread, and persist within the population. In contrast, if R0 is
less than 1, it suggests that, on average, less than one new case of schistosomiasis is generated during the infectious period,
making the disease-free equilibriummore likely. The interplay between these equilibrium conditions and their impact under
climate factors such as temperature and rainfall is crucial to forming public health strategies, as it gives insight into disease
potential, the effectiveness of control measures, and the likelihood of achieving disease elimination.

We are able to calculate R0 using model equation (1) of the autonomous dynamic model, as long as we disregard the
temporal variations in temperature and rainfall (see e.g. Okuneye & Gumel, 2017; Parham & Michael, 2010). Thus, following
the approach by Driessche and Watmough, (Driessche & Watmough, 2002) and Diekmann et al. (Diekmann et al., 1990), the
next-generation technique is employed to determine the dominant eigenvalue, which represents the value of R0 in the model
(1). It can be expressed as:

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

b1ðTÞNEu1qhrL1e�y1x

y1y4ðdvðTÞ þ d2ðTÞÞðu1 þ y2Þ
�
:

�
b2ðTÞu2ðTÞL2ðT;RÞ
y3ðTÞdvðTÞ ðy1 þ d1Þ

�s
(2)
Furthermore, R0 can be represented as R0ðT ;RÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RSh0 RSv0

q
where RSh0 ðTÞ ¼ b1ðTÞNEu1qhrðTÞL1e�y1x

y1y4ðdvðTÞþd2ðTÞÞðu1þy2Þ and

RSv0 ðT ;RÞ ¼ b2ðTÞu2ðTÞL2ðT ;RÞ
y3ðTÞdvðTÞ ðy1þd1Þ under the square root, representing new cases of schistosomiasis infections in humans per infec-

tious snail and cases of schistosomiasis infections in snails per infectious human, respectively. Thus, we obtained the standard
expression of R0ðT;RÞ under static environmental conditions where temperature and rainfall are constant at a given time. To
determine the disease-free equilibrium E0, we can set the equations of the model (1) to zero and solve for the respective
variables when no infective compartments exist, i.e. Ih ¼ Eh ¼ Mf ¼ Iv ¼ Cf ¼ 0, defined as:

E0 ¼ ðS0h; I0h; E0h;M0
f ; S

0
v; I

0
v;C

0
cÞ ¼

�
L1e�y1x

y1
;0;0;0;L2ðT ;RÞ

dv
;0;0

�
, E0 always exists in a certain region U∊ R 7

þ0.
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2.2.1. Local stability of the disease-free steady state, E0
In this study, we analyze the local stability conditions of the disease-free equilibrium, E0, in the model (1) based on the

following theorem:

Theorem 3.1. The disease-free steady state, E0, in model (1) is locally asymptotically stable when R0 <1, and it is unstable when
R0 >1.

We present a proof for this theorem by demonstrating that all eigenvalues of the Jacobian matrix J(A) in (3), evaluated at
E0, are negative.

JðAÞ¼

0BBBBBBBBBBBBBBB@

�y1 0 0 0 0 0 �b1S
0
h

0 �ðy1 þ d1Þ 0 0 0 0 b1S
0
h

0 rqh �ðu1 þ y3Þ 0 0 0 0

0 0 NEu1 �y3 0 0 0

0 0 0 �b2S
0
v �dv 0 0

0 0 0 b2S
0
v 0 �ðdv þ d2Þ 0

0 0 0 0 0 u2 �y4

1CCCCCCCCCCCCCCCCCCA

(3)
The Jacobian matrix JðAÞ has seven eigenvalues, two of which by inspection in the first and fifth columns are�y1 and � dv.
We exclude columns one and five with the corresponding rows and the resultant matrix gives the characteristic equation (4)
whose roots are the remaining five eigenvalues of the Jacobian matrix

a0l
5 þ a1l

4 þ a2l
3 þ a3l

2 þ a4lþ a5 ¼ 0 (4)

where,
a0 ¼1; a1 ¼ðy1 þ d1Þþ ðu1 þ y3Þþ y3 þðdv þ d2Þ þ y4

a2 ¼ y3y4 þðdv þ d2Þðy3 þ y4Þþ ððy1 þ d1Þþ ðu1 þ y3ÞÞððdv þ d2Þþ ðy3 þ y4ÞÞ þ ðdv þ d2Þðy3 þ y4Þ;

a3 ¼ y3y4ðdv þ d2Þþ ðy3y4 þðdv þ d2Þðy3 þ y4ÞÞððy1 þ d1Þþ ðu1 þ y3ÞÞ þ ðy1 þ d1Þðu1 þ y3Þððdv þ d2Þþ ðy3 þ y4ÞÞ;
a4 ¼ y3y4ðdv þ d2Þððy1 þ d1Þþ ðu1 þ y3ÞÞ þ ðy1 þ d1Þðu1 þ y3Þðy3y4 þðdv þ d2Þðy3 þ y4ÞÞ;

a4 ¼ y3y4ðy1 þ d1Þðu1 þ y3Þðdv þ d2Þ:
The local stability of equilibrium point E0 is determined by satisfying the conditions that ai >0 (i ¼ 1, 2, 3, 4, 5), and
a1a2a3a4 þ a3a5 þ a4a5 > a1a2a5 þ a1a24 þ a23a5, based on the Routh-Hurwitz stability criteria for characteristic equation (4).

2.2.2. Global stability of the disease-free steady state, E0
In accordance with Castillo-Chavez et al. (Castillo-Chavez, Feng, & Huang, 2002), our investigation focuses on the global

stability of the disease-free steady state by reformulating model (1) into the following form:

8>><>>:
dX
dt

¼ FðX; ZÞ

dZ
dt

¼ GðX; ZÞ;GðX;0Þ ¼ 0

Here, X ¼ ðSh; SvÞ represents the susceptible population, while Z ¼ ðIh; Iv; Eh;Mf ;Cf Þ represents the infected population that is

not infectious ðIh; Iv; EhÞ and the infectious population ðMf ;Cf Þ. We set ;U0 ¼ ð~X;0Þ ¼ ðL1e�y1x =y1;0;0;0;L2ðT ;RÞ =dv;0;0Þ as
the disease-free equilibrium of the model (1) and Theorem 3.2 holds.

Theorem 3.2. The fixed point U0 ¼ ð~X;0Þ is globally asymptotically stable if R0 � 1, and if the two conditions (B1) and (B2) below
are fulfilled:

(B1) dX
dt ¼ FðX;0Þ; ~X is globally asymptotically stable

(B2) GðX; ZÞ ¼ AZ � bGðX; ZÞ and bGðX; ZÞ � 0 for (X, Z) ∊ R7þ.where A ¼ DzGð~X;0Þ is an M-matrix and R7þ is the region in which
model (1) makes biological sense.
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Proof: In our model (1), we have

FðX;0Þ¼
�
L1e

�y1x � y1Sh
L2ðT;RÞ � dvSv

�

A¼

0BBBBBBBB@

�ðy1 þ d1Þ 0 0 0 b1S
0
h

0 �ðdv þ d2Þ 0 b2S
0
v 0

qhr 0 �ðu1 þ y3Þ 0 0

0 0 NEu1 �y4 0

0 u2 0 0 �y5

1CCCCCCCCCCA
bGðX; ZÞ¼GðX; ZÞ � AZ¼ ½0 0 0 0 0 �T ¼0:

In the computation, we show that

ShðtÞ¼
L1e�y1x

y1
þ
�
Shð0Þ �

L1e�y1x

y1

�
e�y1t and SvðtÞ¼L2ðT ;RÞ

dv
þ
�
Svð0Þ � L2ðT;RÞ

dv

�
e�dvt

where ShðtÞ and SvðtÞ, approach L1e�y1x

y1
and L2ðT ;RÞ

dv
as t/∞, respectively. The convergence of the solutions is global in R7þ. Thus,

~X is globally asymptotically stable, satisfying condition (A1). Moreover, matrix A is an M-matrix satisfying (A2) and as a result,
Theorem 3.3 holds.

2.2.3. Existence and stability of the endemic steady state, E1
The endemic equilibrium point E1 can be found by setting the equations of model (1) to zero, considering all compart-

ments. The endemic equilibrium point exists when R0 >1 and the stability conditions for the disease-free equilibrium are not
satisfied. Thus, E1 ¼ ðS*h; I*h; E*h;M*

f ; S
*
v ; I

*
v ;C

*
f Þ and we express it in terms of I*v where

S*h
�
I*v
�¼ y4L1e�y1x

b1u2I*v þ y1y4

I*h
�
I*v
�¼ b1u2L1e�y1xI*v�

b1u2I*v þ y1y4
�ðy1 þ d1Þ

E*h
�
I*v
�¼ b1u2rqhL1e�y1xI*v

ðu1 þ y2Þ
�
b1u2I*v þ y1y4

�ðy1 þ d1Þ

M*
f
�
I*v
�¼ b1u1

u2rqhNEL1e�y1xI*v
y3ðu1 þ y2Þ

�
b1u2I*v þ y1y4

�ðy1 þ d1Þ

S*v
�
I*v
� �

b1u2I*v þ y1y4
�
L2

y1y4ðdv þ d2ÞR20I*v þ dv
�
b1u2I*v þ y1y4

�
Cf

*�I*v �¼ u2

y4
I*v

By setting dIv=dt to zero in equations of model (1) and substituting S*v and I*h, we obtain the following expression:�
p1I

*2
v þp2I

*
v þp3

�
I*v ¼0 (5)

where p1 ¼ b1u2ðdv þ d2Þ, p2 ¼ p1y2ðy4ðdv þd2 � R20Þ � 2y2Þ and p3 ¼ y1u2ðdv þ d2Þ½y1u4ðdv þ d2Þð1� y1u2R20Þ þ y1u2�.
Equation (5) has a solution where I*v ¼ 0, corresponding to the disease-free equilibrium. Additionally, the existence of an

endemic equilibrium point is ensured if R0 >1 and I*v∊R þ0, where I*v is given by I*v ¼ p2±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2�4p1p3

p
2p1

.
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2.2.4. The local stability of the endemic steady state
The condition which determines the threshold for the local stability of the endemic equilibrium, taking into account the

respective parameters and values in the model is provided by the following theorem 3.3.

Theorem 3.3. The endemic equilibrium E1 is locally asymptotically stable if the basic reproduction number R0 > 1, and the

bifurcation parameter u1 ¼ u*
1 satisfies u1 ¼ u*

1 >
y1y2y3y4dvðdvþd2Þðy1þd1Þ

b1b2u2NEqhrL2L1e�y1x�y1y3y4dvðdvþd2Þðy1þd1Þ :

Proof.
We employ the manifold theorem described in Castillo-Chavez and Song, (Castillo-Chavez & Song, 2004), first, we define

the variables as follows: Sh ¼ x1, Ih ¼ x2, Eh ¼ x3,Mf ¼ x4, Sv ¼ x5, Iv ¼ x6, Cf ¼ x7 and themodel (1) is then transformed into

the form dxi
dt ¼ _xi ¼ ð _x1; _x2 _x3; _x4; _x5; _x6; _x7ÞT , where

_x1df1 ¼ L1e
�y1t � b1x1x7 � y1x1 ; _x2df2 ¼ b1x1x7 � ðy1 þ d1Þx2;

_x3df3 ¼ rqhx2 �
�
u*
1 þ y2

�
x3; _x4df4 ¼ NEu

*
1x3 � y3x4;

_x5df5 ¼ L2ðT;RÞ � b2x4x5 � dvx5; _x6df6 ¼ b2x4x5 � ðdv þ d2Þx6;
_x7df7 ¼ u2x6 � y4x7

9>>>>>>>=>>>>>>>;
(6)
The transformedmodel (6) has the same disease-free equilibrium and the reproduction number R0 as for model (1) above.

Let the critical miracidia shedding be u1 ¼ u*
1 ¼ y1y2y3y4dvðdvþd2Þðy1þd1Þ

b1b2u2NEqhrL2L1e�y1x�y1y3y4dvðdvþd2Þðy1þd1Þ as the bifurcation parameter at R0 ¼ 1.

The linearized model (6) evaluated at disease-free equilibrium
ðx1* ¼ L1e�y1x =y1; x2* ¼ 0; x3* ¼ 0; x4* ¼ 0; x5* ¼ L2ðT;RÞ =dv; x6* ¼ 0; x7* ¼ 0Þ with u1 ¼ u*

1, has a simple eigenvalue associ-

ated with a right eigenvector u ¼ ðu1;u2;u3;u4ÞT and a left eigenvector v ¼ ðy1; y2; y3; y4Þ satisfying u:v ¼ 1, where

u1 ¼
�b1x1*

y1
u7 ;u2 ¼

b1x1*

ðy1 þ d1Þ
u7 ;u3 ¼

b1rqhx1
*

ðy1 þ d1Þ
�
u*
1 þ y2

�u7 ;u4 ¼
b1u

*
1rqhNEx1*

ðy1 þ d1Þ
�
u*
1 þ y2

�u7 ;

b1b2u
*rqhNEx1*x5* b1b2u

*rqhNEx1*x5*
u5 ¼ 1
y3dvðy1 þ d1Þ

�
u*
1 þ y2

�u7 ;u6 ¼ 1
y3ðdv þ d2Þðy1 þ d1Þ

�
u*
1 þ y2

�u7 ;u7 >0

rq
�
u* þ y2

�
y3
�
u* þ y2

�

v1 ¼ � y1; v2 ¼ h

ðy1 þ d1Þ
v3 ; v3 > 0; v4 ¼ 1

NEu
*
1

v3 ; v5 ¼0; v6 ¼ 1
NEu

*
1b2x5

*
v3 ;

y3
�
u* þ y2

�ðdv þ d2Þ

v7 ¼ 1

u1u2b2NEx5*
v3 :
We compute the values of coefficients a and b according to Castillo-Chavez and Song, (Castillo-Chavez & Song, 2004), and
it is shown that at the disease-free equilibrium, the second-order non-zero partial derivatives associatedwithmodel (4) are as
follows:

v2f1
vx1vx7

¼ � b1;
v2f2

vx1vx7
¼ b1;

v2f5
vx4vx5

¼ �b2;
v2f6

vx4vx5
¼ b2;

v2f3
vx3vu*

1
¼ �1;

v2f4
vx3vu*

1
¼ NE
The computation results in

a¼ y3d1b
2
1ðdv þ d2Þ

�
u*
1 þ y2

�
x1*

u1u2b2NEðy1 þ d1Þx1*
u7 >0 (7)

b rq
�
N2u* � 1

�
x *
b¼ 1 h E 1 1

ðy1 þ d1Þ
�
u*
1 þ y2

� u7 v3 (8)
These results in equations (7) and (8) indicate the existence of an endemic equilibrium point that is locally asymptotically
stable (a>0;b>0) when N2

Eu
*
1 >1. Conversely, the equilibrium is unstable when N2

Eu
*
1 <1. The proof of Theorem 3.3 is thus

completed
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2.3. Model datasets and model applicability

To evaluate the suitability and applicability of the model, demographic and climatological data were collected from three
East African countries: Uganda, Kenya, and Tanzania (Home, 2023). These countries, located in the tropical region, are
recognized for their endemicity of schistosomiasis and display awide range of climatic conditions and parameters that have a
substantial impact on disease transmission. The population data for the three countries were obtained from the most recent
UN demographic estimates (https://worldpopulationreview.com/countries) and World Bank statistics (https://data.
worldbank.org/indicator/sp.dyn.le00.in?). These data sources provided valuable information for estimating certain non-
temperature and non-rainfall parameters in the model. For example, Uganda has a population of about 47,264,873 people
with a life expectancy of 58.5 years. Consequently, in a disease-free steady state, the susceptible population is represented by
S0h ¼ L1e�y1x

y1
¼ 47;264;873, where y1 ¼ 1=ðð58:5�365Þ Þ ¼ 0:0000468 per day, resulting in a daily recruitment rate of L1 ¼

2212 individuals. Similarly, Kenya has a population of 54,039,625 with a life expectancy of 64 years, yielding y1 ¼ 1=
ðð64�365Þ Þ ¼ 0:0000428 and L1 ¼ 2;313 new infections per day. Tanzania, with a population of 65,519,777 and a life ex-
pectancy of 62.6 years, has y1 ¼ 1=ðð62:6�365Þ Þ ¼ 0:0000444 and L1 ¼ 2;909 new infections per day. The other non-
temperature and non-rainfall parameters x, d1, and y2 of the model are derived from the literature. For instance, we as-
sume that schistosomiasis typically first infects a child at the age of two (2), corresponding to x ¼ 2� 365 ¼ 730 days. The
lifespan of an adult Schistosoma worm in a human host varies from 3 to 10.5 years according to Fulford et al. (Fulford et al.,
1995) and Colley et al. (Colley et al., 2014), resulting in a range of d1 values from 1=ð10:5�365Þz0:000268 to 1= ð3�365Þz
0:000913 per day. Additionally, the Schistosoma parasite egg remains viable for up to 7 days, hence y2 ¼ 1=7 ¼ 0:14286
represents the per capita death rate of the parasite eggs (Gryseels et al., 2006; Michaels & Prata, 1968).

Furthermore, we determined temperature-dependent parameters using data from field and laboratory studies by Mangal
et al. (Mangal et al., 2008) (SI Table S1) and Kalinda et al. (Kalinda et al., 2017a) (SI Table S2). These studies have demonstrated
that the activity of both snails and Schistosoma parasites is optimized within the temperature range of 20e35 �C. We fitted
temperature regression curves up to five degrees to these data and selected the results with the highest adjusted R-squared
value, R-Sq (adj), along with the corresponding equations. Additionally, we developed functions for temperature- and
precipitation-dependent parameters that influence snail recruitment, following methodologies described in (Okuneye &
Gumel, 2017; Parham & Michael, 2010). These equations were applied to fit the climate data of the three countries. For
parameters not commonly reported, wemade informed assumptions based on expertise and general knowledge of vector and
disease dynamics. The remaining parameters were obtained from the literature (Table 1).

Seasonal climate data for each country were obtained from the most recent World Bank Climatology (Home, 2023, Table
2). The current temperature range and rainfall variation were 21e33 �C and 5e166 mm, respectively, based on the current
climate data presented in Table 2. However, it is projected that by 2050, East Africa will experience a temperature increase of
approximately 2 �C (Home, 2023) due to global warming, and monthly rainfall will vary between 180 and 188 mm (Home,
2023; Ngoma et al., 2021; Najjuma et al., 2021). Based on these projections, we extrapolated rainfall ranges from 4 to
200 mm and a temperature range of 27e35 �C to represent adverse conditions for schistosomiasis transmission in future
scenarios. We divided these ranges into intervals to account for future climate variability in different regions. By using the
partial rank correlation coefficient (PRCC) test, we identified critical parameters that are most sensitive to disease trans-
mission. This allowed us to analyze the relationship between climate change variables such as temperature and precipitation
and the transmission of schistosomiasis, enabling us to simulate infections under hypothetical future conditions.

The numerical analyses and simulations to determine and estimate parameters and expressions for temperature and
precipitation-dependent are carried out in the R statistical environment version 4.0.3 (Team, 2018), using the primary R
package ODE solver Version 1.10e4 for solving ordinary differential equations (Soetaert et al., 2010). The model parameters in
Table 1
Temperature in-variant parameters, their definitions, values per day, and sources. If a parameter is computed using the references listed in the parameter
estimation section, it is referenced as “Estimated”; otherwise, it is “Assumed” based on knowledge and expertise).

Symbol Definition Baseline value Values/day References

L1 Human reproduction rate 2561 2213e2909 Estimated
t Age at first infection in a child 730 730 Estimated
d1 Human mortality due to infection 0.000591 0.000268-0:000913 Estimated
y1 Human mortality rate 0.0000448 0.0000428e0.0000468 Estimated
r Portion of stool per person 115 70e160 g Liang et al. (2005)
qh Number of eggs per gram of stool 262 10-513 g-1 Liang et al. (2005)
u1 Miracidia shedding rate 0.00232 0.00232 Estimated
y2 Parasite egg mortality rate 0.14286 0.14286 Estimated
y4 Cercaria mortality rate 1 1 Mangal et al. (2008)
NE Number of miracidia per parasite egg 500 500 Mangal et al. (2008)
PE Maximum survival probability of egg 0.8 0.8 Assumed
Pj Maximum survival probability of juvenile 0.9 0.9 Assumed
Rm Rainfall threshold 250 250 mm Assumed
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Table 2
The monthly mean, maximum (max.) temperatures (�C) and rainfall (mm) for Uganda (UG), Kenya (KY) and Tanzania (TZ) from World Bank Climatology
Report (Home, 2023).

Countries Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

UG Mean 23.93 24.49 24.45 23.81 23.21 22.71 22.34 22.66 22.91 23.14 23.32 23.16
Max. 31.09 31.61 30.99 29.62 28.79 28.46 28.09 28.47 28.98 29.32 29.64 29.81
Rainfall 50.67 48.82 108.5 157.97 148.23 91.83 91.47 119.33 121.33 154.59 116.02 73.55

KY mean 25.5 26.28 26.74 26.11 25.05 24.06 23.44 23.83 24.59 25.37 25.08 25.03
Max. 32.23 33.22 33.25 31.71 30.43 29.59 28.94 29.4 30.75 31.36 30.73 31.18
Rainfall 31.78 25.36 63.53 134.19 92.52 35.61 31.81 35.06 28.09 77.44 110.48 60.20

TZ mean 23.59 23.7 23.68 23.02 22.28 21.09 20.58 21.64 22.94 24.02 24.07 23.69
Max. 28.68 29.02 28.92 28.01 27.61 27.08 26.89 28.01 29.38 30.24 29.75 28.8
Rainfall 154.76 140.2 165.76 140.61 56.29 10.97 4.99 7.29 15.18 32.55 84.85 144.4
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Table 1, the equations for climatic changes in temperature and precipitation from the fitted curves, and climatology data in
Table 2 are used and the results are presented in Section 4 below.

3. Results and numerical simulations

3.1. Impact of temperature and/or rainfall on specific parameters and R0

The fitted curves derived from Table S1 (Mangal et al., 2008) and Table S2 (Kalinda et al., 2017a) establish the relationship
between temperature and/or rainfall with each specific parameter, while the expression in equation (2) represents the
relationship between R0 and the individual parameter. By combining these relationships, we can evaluate the impact of
temperature changes on the value of R0 for specific parameters. First, it is evident from R0 expression in equation (2) that
increasing values of b1ðTÞ,u2ðTÞ, b2ðTÞ, andL2ðT ;RÞ leads to an increase in R0, while increasing values of dvðTÞ, d2ðTÞ, and y3ðTÞ
result in a decrease in R0. Second, we can directly observe the impact of temperature on the transmission dynamics repre-
sented by R0. For instance, the fitted curve for the human infection rate b1ðTÞ is given as

b1ðTÞ¼6:300� 10�3T � 0:0980; (9)

where, db ðTÞ=dT >0, indicating that human cercaria infection increases linearly with temperature. Consequently, dR0 ¼ dR0:
1 dT db1

db1
dT >0, implying that the transmission rate of schistosomiasis will increase with increasing temperature. Moreover, the fitted
curve for shedding of cercariae u2ðTÞ is give as

u2ðTÞ¼394:9 T � 5584:1; (10)

and du2ðTÞ=dT >0. As a result, cercaria is shed more often in places with increasing temperature ranges of 20e35 �C.

Consequently, dR0

dT ¼ dR0
du2

:du2
dT >0, which shows that R0 increases with increasing temperature. The fitted curve for the snail

infection rate, b2ðTÞ, is given by:

b2ðTÞ¼ � 9:830� 10�6T2 þ 6:148� 10�4T � 0:008257; (11)
This curve describes a nonlinear relationship between b2ðTÞ and temperature. The maximum snail infection rate, ac-
cording to this curve, is b2ðTÞ ¼ 0:00136, which occurs at a temperature of T ¼ 31:3oC. Consequently, snail infections increase

and decrease in locations with climatic fluctuations between 20.0 to 31.3 �C and 31.3e35.0 �C, respectively. Therefore, dR0
dT ¼

dR0
db2

:db2
dT shows that the transmission is increasing between 20.0 and 31.3 �C and decreasing between 31.3 and 35.0 �C.

Furthermore, the fitted curve for the snail mortality rate, dvðTÞ, is defined as follows:

dvðTÞ¼1:120� 10�4T2 � 5:208� 10�3T þ 0:06332 (12)
The result of ddvðTÞ=dT shows a minimum at 23.3 �C, indicating that for temperatures between 23.3 and 35 �C, dvðTÞ
increases. On the other hand, for temperatures between 20 and 23.3 �C, dvðTÞ decreases. Therefore, it follows from the formula
dR0
dT ¼ dR0

ddv
:ddv

dT that the transmission decreases for temperatures between 23.3 and 35.0 �C and increases between 20.0 and

23.3 �C.
In addition, the fitted curve for snail infection mortality rate is expressed as:

d2ðTÞ¼8� 10�5T2 � 1:22� 10�3T � 0:00545 (13)
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From equation (13), it can be observed that dd2ðTÞ=dT >0. Therefore, d2ðTÞ increases with increasing temperature.

Consequently, the transmission indicator R0 also increases with temperature in the range of 20 to 35 �C, as indicated by dR0
dT ¼

dR0
dd2

:dd2dT >0: On the other hand, the fitted curve for miracidia mortality rate, y3ðTÞ, is mathematically represented as:

y3ðTÞ¼0:18340T� 1:71; (14)
Similarly, it can be observed that dy3ðTÞ=dT >0. Consequently, in areas where temperatures fluctuate between 20 and

35 �C, the infection of snails withmiracidia increase and according to the expression dR0
dT ¼ dR0

dy3
:dy3dT , the prevalence of the disease

(R0) also rises within the same temperature range.
Moreover, the revised formulation for the snail recruitment rate, L2ðT ;RÞ, assumes that snails can withstand variations in

temperature and precipitation throughout their life stages, starting from the egg stage to the juvenile and adult stages. It is
mathematically represented as:

L2ðT;RÞ¼
EvðTÞ
dvðTÞ:PEðRÞ:PJðT;RÞ:

1
tSðTÞ

; (15)

In equation (15), EvðTÞ represents the number of snail eggs per snail per day, 1=dvðTÞ denotes the average lifespan of adult
snails, PEðTÞ and PJðT ;RÞ represent the daily survival probabilities of eggs and juvenile snails respectively, and tSðTÞ represents
the total time required for a snail to develop from an egg to an adult. It is evident from equation (15) that L2ðT ;RÞ, increases
with higher values of EvðTÞ , PEðRÞ; and PJðT ;RÞ, while increasing values of dvðTÞ, and tSðTÞ result in a decrease in L2ðT ;RÞ. The
impact of temperature and/or rainfall on a specific parameter and snail recruitment rate in equation (15) can be summarized
as follows:

The relationship between the number of snail eggs EvðTÞ, and temperature T , as determined from the equation that best
fits the data in Table S2, can be expressed as

EvðTÞ¼ � 0:09601T2 þ 5:10696T � 59:52573 (16)
By analyzing dEvðTÞ=dT , it can be observed that EvðTÞ increases until it reaches a peak at approximately 27 �C, after which it

starts to decrease. Consequently, based on the formula dL2ðT ;RÞ
dT

¼ dL2ðT ;RÞ
dEvðTÞ :

dEvðTÞ
dT , the snail recruitment rate L2ðT;RÞ increases

within the temperature range of 20 to 27 �C and decreases within the range of 27 to 35 �C.
Additionally, it is important to note that the survival rates of eggs and juvenile snails are influenced independently by both

rainfall and temperature (Parham & Michael, 2010). Therefore, we can express PJðT ;RÞ as the product of temperature-
dependent daily juvenile snail survival probability, PJðTÞ, and rainfall-dependent survival probability, PJðRÞ. Specifically,
PJðTÞ is defined as PJðTÞ ¼ e�yJ ðTÞ, where yJðTÞ represents the temperature-dependent natural mortality rate of juvenile snails,
obtained from a line that best fits the data (SI Table S2). Thus, PJðTÞ can be represented as an exponential function:

PJðTÞ¼ e�ð8:750�10�5T2�3:762�10�3Tþ0:04178Þ (17)

In equation (17), it can be observed that dP ðTÞ=dT indicates that P ðTÞ initially decreases to a minimum around T ¼ 22 �C and
J J

then increases with higher temperatures. Consequently, changes in L2ðT ;RÞ will follow the same trend. In contrast, PiðRÞ
describes the probability of survival for eggs or juvenile snails on a daily basis and in comparison to Parham and Michael,
(Parham & Michael, 2010), we can express PiðRÞ as

PiðRÞ¼
�
4PMi

.
R2L

�
RðRL � RÞ; i¼fE; Jg; (18)
Here, PMi represents the maximum daily survival probability of the egg and juvenile stages, RL represents the maximum
rainfall in the region of interest, and RL >RðtÞ>0. Whenwe set PMi ¼ 0:8 and RL ¼ 200 mm, it can be observed that dPiðRÞ= dR
indicates that PiðRÞ is maximum when the total amount of rainfall received is approximately 125 mm. Therefore, L2ðT ;RÞ
increases with an increase in rainfall up to 125 mm, but decreases with further increases in rainfall. Additionally, the
temperature-dependent egg hatching rate aJðTÞ represents the transition from the egg stage to the juvenile stage, while the
juvenile maturation rate qJðTÞ signifies the transition from the juvenile stage to the adult stage. The regression lines that best
fit the temperature data in SI Table S2 for these rates are represented by equation (19):

aJðTÞ ¼ �0:0031084T2 þ 0:1775496T � 2:3562789
qJðTÞ ¼ �0:0006839T2 þ 0:0385458T � 0:4990643

)
(19)
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Clearly, 1=aJðTÞ and 1=qJðTÞ represents the lengths of time required for an egg to survive before hatching and for a juvenile
snail to mature, respectively. As a result, the total time tSðTÞ needed for a snail cycle to develop from an egg to an adult snail
can be calculated as tSðTÞ ¼ ½aJðTÞ þ qJðTÞ�=aJðTÞ:qJðTÞ.

The snail recruitment rate L2ðT ;RÞ in equation (20) is derived by substituting equations (16)e(19) into equation (15).

L2ðT;RÞ¼
�
� 0:0031084T2 þ 0:1775496T � 2:3562789

�
�
�
� 0:0006839T2 þ 0:0385458T � 0:4990643

�
�
� 0:0031084T2 þ 0:1775496T � 2:3562789

�
þ
�
� 0:0006839T2 þ 0:0385458T � 0:4990643

�
�0:09601T2 þ 5:10696T � 59:52573
�

1:120� 10�4T2 � 5:208� 10�3T þ 0:06332

�
�
4P

.
R2

�
RðR � RÞ
ME L L

�
�
4P

.
R2

�
RðR � RÞ
MJ L L

�e�ð8:750�10�5T2�3:762�10�3T� 0:043178Þ (20)
Consequently, equation (20) for L2ðT;RÞ establishes a direct relationship between temperature, rainfall, and the trans-

mission indicator R0. The rate of change of R0 with respect to temperature can be determined by dR0
dT ¼ dL2ðT ;RÞ

dT : dR0
dL2ðT ;RÞ, while

the rate of change of R0 with respect to rainfall can be assessed using dR0
dR ¼ dL2ðT ;RÞ

dR : dR0
dL2ðT ;RÞ. When dR0

dT <0, an increase in

temperature leads to a decrease in R0, particularly in areas affected by global warming. However, when dR0
dT > 0, rising tem-

perature results in both an increase in R0 and the prevalence of the disease. Similarly, if dR0
dR <0, increased precipitation leads to

a decrease in R0, whereas if dR0
dR >0, higher precipitation leads to an increase in R0 and disease prevalence.

The overall impact of temperature and/or rainfall on R0 can be assessed by examining the combined effects of these factors.
The following equations mathematically connect R0 to temperature (T) and precipitation (R)

dR0
dT ;R

¼ db1ðTÞ
dT

:
dR0

db1ðTÞ
þ dL2ðT;RÞ

dT
:

dR0
dL2ðT;RÞ

þ db2ðTÞ
dT

:
dR0

db2ðTÞ
þ ddvðTÞ

dT
:
dR0

ddvðTÞ þ
dd2ðTÞ
dT

:
dR0

dd2ðTÞ
Fig. 2. Fitted models of temperature variant parameters; (a) human infection rate b1ðTÞ, (b) cercaria shedding rate u2ðTÞ, (c) snail infection rate b2ðTÞ, (d) snail
mortality rate dvðTÞ, (e) infected snail mortality rate d2ðTÞ, (f) miracidia death rate, y3ðTÞ against temperature.
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þdy3ðTÞ
dT

:
dR0

dy3ðTÞ
þ du2ðTÞ

dT
:
dR0

du2ðTÞ
þ dL2ðT;RÞ

dR
:

dR0
dL2ðT;RÞ
Furthermore, when both temperature and precipitation increase simultaneously, the combined effects on R0 are deter-

mined by the value of d
2R0

dTdR<0. If d
2R0

dTdR>0, R0 increases as both temperature and precipitation rise. A higher value of R0 indicates
greater challenges in controlling the spread of schistosomiasis, while a lower value of R0 makes it easier to combat the disease.

3.2. Numerical simulations

In this section, numerical simulations of the model system (1) are conducted to provide support, validation, and verifi-
cation of the findings presented in the numerical analysis. Specifically, Fig. 2 illustrates the influence of temperature on
specific parameters within the transmission dynamics of schistosomiasis.

Fig. 3 presents the impact of temperature and rainfall on specific parameters, which in turn affect the rate of snail
recruitment and subsequent changes in disease transmission. Notably, the figure highlights that an increase in rainfall, up to a
threshold of approximately 140 mm, is associated with an elevated probability of survival for both snail eggs and juveniles
(Fig. 3e and f). This observation underscores the importance of rainfall in influencing the reproductive success and population
dynamics of snails, thereby influencing the overall transmission of the disease.

The findings indicate that mean monthly temperatures of 22e27 �C (Table 2) are typical across the three countries. These
temperatures are associated with high rates of schistosomiasis activity of different host snail traits and schistosomes
(Fig. 4AeC; see also SI Figures S1, S3, S5), making them ideal conditions for the development of schistosomiasis and leading to
high reproduction numbers (Fig. 4D). In addition, the human infection rate (Fig. 4A), snail infection rate (Fig. 4B), and snail
recruitment rate (Fig. 4C) all peak around the same time of the year across the three countries. This typically happens during
February and April and between the months of October and November, respectively, when the temperatures range between
23.7 and 26.7 �C. Infection levels in the area are at their lowest in July. The region also experiences monthly maximum
temperatures ranging from 27 to 33 �C (Table 2), which severely restricts the activity of various host snail traits and schis-
tosomes (see SI Figures S2, S4, and S6). As a result, there are generally fewer new cases of schistosomiasis overall in the region
during this season (Fig. 4E).

The three nations have different annual rainfall patterns (Fig. 4F). Schistosomiasis cases increase in Uganda fromMarch to
May until the second rainy season, which lasts through the warm months of June and July and the rainy months of August to
November. During this period, the endemic level of the disease remains almost unchanged until November, the beginning of
the dry season, when numbers tend to decrease. During the dry months from April to July in Tanzania and April to September
in Kenya, schistosomiasis cases decline. In Tanzania, cases begin to rise from August and peak in December and from January
Fig. 3. Fitted model of temperature -and rainfall-dependent parameter simulations for (a) snail egg laying rate, EvðTÞ, (b) snail egg hatching rate aJðTÞ, (c) juvenile
mortality rate yjðTÞ (d) juvenile maturation rate qJðTÞ, (f) egg survival probability PEðRÞ, and (g) juvenile survival probability PjðRÞ.
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Fig. 4. Individual seasonal effects of temperature and/or rainfall on (A) human infection rate, (B) snail infection rate, (C) snail recruitment rate, and (D), (E), and
(F) reproduction numbers in Tanzania (blue), Kenya (red), and Uganda (green). For other temperature- and/or precipitation-dependent parameters, see SI Figures
S1eS6.
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to April before they begin to decline. In Kenya, they rise from September to November and from February to April. In addition,
the reproduction numbers in Kenya are so much higher (4D) and (4F) as compared to Tanzania and Uganda is associated with
high rates of juvenile maturation (which enhance snail recruitment; Fig. 4C), cercaria shedding, snail egg laying and hatching
rate (see SI Figures S1, S3, S5).

The schistosomiasis infection patterns are somewhat similar when temperature and rainfall are modelled together, with
lowest values in July and August (Fig. 5A). However, patterns of peaks are different with two peaks for Tanzania and Kenya
with rather similar phases in April (maximum) and a secondmaximum later in the year. A different annual pattern for Uganda
with only one peak and a phase shift of the maximum towards an earlier seasonal peak through December, January till
February. Surprising is the shear drop in Kenya from December to January. Fig. 5B depicts patterns that are quite similar to
those in Fig. 5A for Kenya and Uganda, but behaviors in Tanzania changes after one season of infection, however, with
similarly low case numbers through June, July and August as in Fig. 5A.

Schistosomiasis is a challenge across Tanzania, Kenya and Uganda, especially in March and April. For individual countries,
the three months with the highest rates of infections are April, May, and December in Kenya; February, March, and December
in Uganda; and April, and November in Tanzania (Fig. 5). During these months, the mean and maximum temperatures, and
precipitation values in the three countries increase from 20.6 to 26.1 �C, 26.9e31.7 �C and from 5 to 165 mm, respectively. In
contrast, there are relatively few cases in the three countries in June and July with mean, and maximum temperatures, and
precipitation from 21.1 to 24.1 �C, 26.9e29.4 �C, and from 5.0 to 91.8 mm, respectively. For example, in Uganda, the infection
numbers drop down to almost zero in Jul to Aug, while reproduction rates in Tanzania and Kenya are still around 6 to 7 during
this time of the year (Fig. 5A). The maximum values in Kenya are around 50% higher in the peak season compared to Uganda
and Tanzania (Fig. 5A). A comparison of precipitation with mean monthly temperatures (Fig. 5A) and maximum monthly
temperatures (Fig. 5B) reveals that for Uganda, Tanzania, and Kenya, respectively, the peaks are approximately 9, 11, and 15
infections per day and 6, 7, 13 infections per day, respectively.
3.3. Expected future changes in temperature and precipitation

Tables 3 and 4 outline the temperature-and precipitation-related parameter variations across different future climate
scenarios. Emphasis is placed on scenarios with severe temperatures that negatively impact schistosomiasis activity. Simu-
lation results of crucial parameters for the persistence of schistosomiasis are presented in Table 5.
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Fig. 5. Simultaneous effects of precipitation and mean temperature (A) as well as maximum temperatures (B) on reproduction numbers in Uganda (green), Kenya
(red), and Tanzania (blue).
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In the temperature range of [27, 35]�C, the findings indicate a decrease in parasite eggs, egg hatching rates, juvenile
maturation rates, and snail recruitment rates with increasing temperatures (Table 3).

The findings demonstrate that temperatures ranging from 27 to 33 �C, combined with precipitation levels of 4e150 mm,
create favorable conditions for snail recruitment. However, beyond 150 mm of rainfall, snail recruitment declines (Table 4).

The results of the PRCC test indicate that certain factors, such as the proportion of stools from infected individuals (r), the
number of parasite eggs per gram per day (qh), the miracidia shedding rate per parasite egg ðu1Þ, and the snail recruitment
rate L2ðT;RÞ, will continue to significantly influence disease transmission in the context of climate changes until 2050 (Table
5). An increase in these parameters leads to an elevated transmission of schistosomiasis. Among these factors, L2ðT ;RÞ is the
only parameter that depends on both temperature and precipitation and is the most sensitive to changes. For instance,
temperature ranges between 31 and 35 �C and rainfall levels between 100 and 200 mm, as well as seasons characterized by
4e50 mm of rainfall and temperatures of 27e29 �C, demonstrate that snail recruitment has a substantial impact on the
reproduction number. The findings indicate that temperatures between 27 and 33 �C that occur along with precipitations of
4e150 mm are suitable for snail recruitment. Beyond 150 mm rainfall, snail recruitment declines (Table 4).
4. Discussion

Mechanistic models provide valuable insights into the incidence and burden of infectious diseases such as schistosomiasis.
They enable tracking of short-term and long term effects on disease transmission and are particularly valuable for climate
change assessment and projections. The mechanistic approach used in this study quantifies or understanding of relevant
processes, enhancing confidence in extrapolating to various future conditions. Our model incorporates essential
Table 3
Model sensitivity of temperature- and precipitation-dependent parameter values. The full temperature range ½27; 35��C is subdivided into intervals of 2 �C
and the precipitation value is fixed at 100 mm when estimating the effect of temperature alone on snail recruitment rate L2ðT;RÞ, a temperature-and
precipitation dependent parameter. Values are given a ranges and baseline values (*). Other parameter descriptions are given in SI Tables S1 and S2.

Temperature b1(T) b*1 b2(T) b*2 dv (T) d*
v d2(T) d*2 u2ðTÞ u*

2 L2ðTÞ100mm L*
2ðTÞ

27-29 �C 0.0721
e0.0847

0.0784 0.001177
e0.001305

0.00124 0.0044
e0.0065

0.0055 0.0199
e0.0265

0.0232 5078
e5868

5473 43.7989
e27.9302

35.8646

29-31 �C 0.0847
e0.0973

0.091 0.001305
e0.001355

0.00133 0.0065
e0.0095

0.0080 0.0265
e0.0336

0.0301 5868
e6658

6263 27.9302
e14.0545

20.992

31-33 �C 0.0973
e0.1099

0.1036 0.001355
e0.001327

0.00134 0.0095
e0.0134

0.0115 0.0336
e0.0414

0.0375 6658
e7448

7053 14.0545
e4.9372

9.4959

33-35 �C 0.1099
e0.1225

0.1162 0.001327
e00.001177

0.00127 0.0134
e0.0182

0.0158 0.0414
e0.0499

0.0457 7448
e8237

7843 4.9372e0.5657 2.7515

Temperature bv (T) b*v EvðTÞ E*v aJðTÞ a*j yjðTÞ y*j qJðTÞ q*j u3ðTÞ u*3
27-29 �C 3.2418

e3.6086
3.4252 8.3709

e7.8317
8.1013 0.1715

e0.1785
0.1750 0.0039

e0.0062
0.0051 0.0432

e0.0436
0.0434 3.2418

e3.6086
3.4252

29-31 �C 3.6086
e3.9754

3.792 7.8317
e6.5244

7.1781 0.1785
e0.1606

0.1723 0.0062
e0.0092

0.0077 0.0436
e0.0386

0.0411 3.6086
e3.9754

3.7920

31-33 �C 3.9754
e4.3422

4.1588 6.5244
e4.4491

3.9867 0.1606
e0.1178

0.1392 0.0092
e0.0128

0.0110 0.0386
e0.0282

0.0334 3.9754
e4.3422

4.1588

33-35 �C 4.3422e4.709 4.5256 4.4491
e1.6056

3.02735 0.1178
e0.0502

0.1680 0.0128
e0.0172

0.0150 0.0282
e0.0123

0.0203 4.3422
e4.7090

4.5256
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Table 4
Effects of precipitation at constant temperatures in the range of 27e35 �C on the snail recruitment rate. To account for variations between regions,
precipitation of 4e200 mm is split into intervals of 50 mm.

T/�C R/mm L2ðT;RÞ L*
2ðT;RÞ T/�C R/mm L2ðT ;RÞ L*

2ðT ;RÞ
4e50 0.1885e12.4134 6.3009 4e50 0.0605e2.1943 1.1274

27-29 �C 50e100 19.4662e27.9302 23.6982 31-33 �C 50e100 6.2465e4.9372 5.5919
100e150 43.7989e27.9302 21.8995 100e150 14.0545e4.9372 9.4959
150e200 43.7989e12.4134 28.1062 150e200 14.0545e2.1943 8.1244

4e50 0.1202e6.2465 3.1834 4e50 0.0212e0.2514 0.13630
29-31 �C 50e100 12.4134e14.0545 13.2339 33-35 �C 50e100 2.1943e0.5657 1.3800

100e150 27.9302e14.0545 20.9924 100e150 4.9372e0.5657 2.751
150e200 27.9302e6.2465 17.0884 150e200 4.9372e0.2514 2.5943
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epidemiological and climate-dependent stages for intermediate hosts and Schistosoma parasites. Firstly, our model reveals
that when the reproduction number is less than or equal to unity, a disease-free equilibrium is achieved, which is both locally
and globally asymptotically stable. Conversely, when the reproduction number exceeds unity, a unique endemic equilibrium
arises, which is locally asymptotically stable. Secondly, incorporating both temperature and precipitation into the model
yields a better understanding of schistosomiasis transmission patterns compared to modeling them separately for the
reproduction number of a given month. This demonstrates that the combined influence of temperature and precipitation
provides a more comprehensive explanation of schistosomiasis transmission dynamics. The following discussions will pre-
sent both the individual and combined effects of temperature and precipitation.
4.1. Effect of temperature

The study demonstrates that the transmission potential of schistosomiasis is highly sensitive to changes in the mean and
maximum temperature within the region, leading to variations in the number of cases across seasons andmonths. This aligns
with the well-established understanding that schistosomiasis, being a vector-borne disease, is greatly influenced by climatic
fluctuations (Martens et al., 1995). Schistosomiasis infections exhibit changes in accordance with temperature variations
within the mean monthly temperature range of 22e27 �C. Within this temperature range, there is an increase in human
infection, snail infection rate, snail egg-laying rate, egg hatching, and snail maturation with rising temperatures. These
findings are consistent with previous model-based studies by Ngarakana-Gwasira et al. (Ngarakana-Gwasira et al., 2016),
which propose an optimal temperature range of 18e28 �C for schistosomiasis transmission. Additionally, Malone (Malone,
2005) reports a temperature range of 20e27 �C as ideal for the intramolluscan development of S. mansoni within Bio-
mphalaria spp. snails. Moreover, Marti (Marti, 1986) andManyangadze et al. (Manyangadze et al., 2016) observe an increase in
the snail populationwith a slight temperature rise above 25 �C. Conversely, there are fewer cases of schistosomiasis inmonths
with increasing mean monthly temperatures above 27 �C, corresponding to a decline in schistosomiasis activity. Similarly,
monthly maximum temperatures between 27 and 33 �C are associated with reduced schistosomiasis cases, attributed to
decreased survival of eggs and juveniles, lower rates of human and snail infection, and slower snail maturation. These findings
align with the understanding that higher temperatures are linked to increased snail mortality, reduced fecundity, and hin-
dered snail growth, resulting in a decline in schistosomiasis cases (McCreesh & Booth, 2013; Ngarakana-Gwasira et al., 2016;
Kalinda et al., 2017b).
4.2. Effects of precipitation

The availability of suitable snail breeding sites, primarily in surface water such as ponds, is largely influenced by pre-
cipitation (Xue et al., 2011). Our findings suggest that moderate precipitation ranging from 5 to 150 mmmay contribute to an
increase in the number of schistosomiasis cases. This is associated with a higher snail recruitment rate, as snail eggs and
juveniles have a greater chance of survival under such conditions. These results are consistent with previous studies that have
shown a positive correlation between precipitation, the distribution of intermediate host snails, and the spread of schisto-
somiasis (Codjoe & Larbi, 2016; Stensgaard et al., 2016; Tabo et al., 2022; Xue et al., 2011). On the other hand, rainfall
exceeding 150 mm has a suppressive effect on schistosomiasis transmission. This is attributed to a reduction in snail
recruitment due to decreased survival of snail eggs and juveniles. This finding is supported by evidence demonstrating that
decreased schistosomiasis cases result from increased streamflow velocities and associated habitat disturbance, which
negatively impact the recruitment and survival of cercariae, miracidia, snail eggs, and juveniles (Adekiya et al., 2020; Xue
et al., 2011). Furthermore, during the rainy season, there is a potential decrease in activities related to infested water, such
as swimming, fishing, sports, and water collection for household use, due to flood-related risks. This could also contribute to a
reduction in schistosomiasis transmission.
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4.3. Effects of temperature and precipitation

Our study highlights the importance of suitable
monthly temperature and precipitation conditions
in maximizing the transmission of schistosomiasis.
These findings support previous research indicating
that temperature and precipitation play crucial
roles in species richness (Hauffe et al., 2016), the
distribution of intermediate host snails (Tabo et al.,
2022), and the size of snail populations, ultimately
influencing disease transmission patterns and
spread (McCreesh & Booth, 2013; Stensgaard et al.,
2016). We demonstrate that regions in Uganda,
Tanzania, and Kenya are most susceptible to schis-
tosomiasis transmission and spread when they
experience temperature variations within the range
of 20e27 �C and varying levels of rainfall between 5
and 140mm. This aligns with observations made by
Martens et al. (Martens et al., 1995), McCreesh and
Booth (McCreesh & Booth, 2013), and Stensgaard
et al. (Stensgaard et al., 2016), highlighting the
favorable conditions for schistosomiasis trans-
mission resulting from climate change when these
specific hydrometeorological conditions are met.
Interestingly, our results indicate that regions with
adverse temperatures exceeding 27 �C, which are
typically known to limit schistosomiasis trans-
mission, may still facilitate disease development
when accompanied by suitable precipitation. In
such regions characterized by a combination of dry
and wet weather conditions, episodes of precipi-
tation followed by a drop in temperatures below
27 �C create favorable environmental conditions for
schistosomiasis transmission. However, it is worth
noting that certain ranges of precipitation variation
may have no discernible effect on temperature and
may even limit the development of schistosomiasis,
resulting in a decline in reported cases. This
observation provides corroboration for the findings
in the scientific literature, which propose that
certain weather patterns may not favor schistoso-
miasis transmission due to their limited influence
on average temperatures in specific regions (Mas-
Coma et al., 2009; McCreesh & Booth, 2013; Van
der Wiel & Bintanja, 2021; Tabo et al., 2023).
When considered collectively, the transmission
dynamics of schistosomiasis are susceptible to
seasonal variations influenced by climate factors,
potentially exerting significant effects on the effi-
cacy of control and elimination endeavors.

4.4. Future trend of schistosomiasis

The impact of climate change on schistosomiasis
transmission and control measures varies depend-
ing on the frequency, temporal distribution, and
range of temperature and rainfall events. Climate
change-induced increases in snail recruitment rates
are expected to lead to higher schistosomiasis cases
during specific seasons. This finding aligns with
analogous models that predict the expansion of
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schistosomiasis into cooler regions and the potential for increased transmission in the future (Martens et al., 1995; McCreesh
et al., 2015). Our model results suggest that seasons characterized by high snail recruitment rates present optimal oppor-
tunities to intensify intermediate host snail control efforts. However, in regions experiencing precipitation levels ranging
from 50 to 150 mm and average temperature fluctuations between 27 and 35 �C, the PRCC test results indicate that snail
recruitment rate values remain constrained andmay not significantly drive schistosomiasis occurrence. This suggests that the
impact of precipitation fluctuations within this range on the temperature-constrained snail recruitment is minimal,
consistent with observations that rainfall between 50 and 150 mm is negatively correlated with a low number of S. mansoni
patients (Xue et al., 2011). In summary, our parameterized models of schistosomiasis and climate dynamics provide insights
into regions that may become more conducive to the spread of the disease in the future. This information is valuable for
identifying areas that may require heightened surveillance and targeted control interventions to mitigate the potential
impact of climate change on schistosomiasis transmission.

4.5. Model limitations/methodological implication and future research

It is important to acknowledge the limitations of our study. Firstly, the parameter values utilized in our model, which
represent the biological aspects and real-life scenarios of schistosomiasis transmission, were sourced from the published
literature. Consequently, inconsistencies and variability may exist within the data collected under diverse conditions,
introducing potential uncertainties and biases into our model results. Nonetheless, the mathematical model employed in our
manuscript offers a robust framework for comprehending the interplay between temperature, rainfall, and schistosomiasis
transmission dynamics. It serves as a quantitative framework, with baseline parameter values providing a reasonable
approximation, thereby enhancing our understanding of the impact of climate factors, seasons, and timing of interventions.
By accurately predicting disease outbreaks, we facilitate the assessment of appropriate intervention strategies during specific
months and seasons. Furthermore, this model has global applicability, extending its usefulness to diverse regions worldwide.
In addition, our transmission model has been autonomous under static conditions. Despite insights gained, it is not
exhaustive, and environmental variability and uncertainty persist. These result from natural fluctuations, parameter esti-
mation, or external data sources. Fully addressing uncertainty and variability exceeds the scope of this paper. Future research
should extend to a non-autonomousmodel, treating temperature and rainfall as dynamic variables. This extendedmodel may
introduce compartments for exposed, latent, and immature/juvenile snail populations and explore additional control mea-
sures other than climate.

5. Conclusion

Understanding the impact of climate change on schistosomiasis transmission requires considering the individual and
combined effects of temperature and precipitation. When examined separately, the findings indicated that increasing mean
monthly temperatures are associated with higher schistosomiasis cases, while increasing maximum monthly temperatures
are linked to a decrease in cases. Additionally, a threshold level of rainfall is necessary to reduce the burden of schistosomiasis.
However, the highest disease burden occurs when favorable temperature and precipitation conditions coincide, leading to
increased prevalence of intermediate hosts, higher human and snail infection rates, enhanced survival of snail eggs and
juveniles, and increased snail egg laying and hatching rates. These conditions also provide optimal opportunities for
implementing control measures. Our model effectively identifies hydrometeorological conditions that increase the trans-
mission risk of schistosomiasis, making it a valuable tool for predicting the spatial distribution of the disease under climate
change and developing management strategies. This study contributes to the understanding of schistosomiasis transmission
dynamics in the context of climate change and provides insights for policymakers to make informed decisions regarding
disease control. Future research should explore the contrast between climate-driven management of snail vectors and
schistosomiasis control strategies. Moreover, incorporating spatially explicit transmission models will enhance predictions of
disease persistence and spread.
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