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Approximate Bayesian computation (ABC) is an approach for using measurement data to calibrate stochastic computer models,
which are common in biology applications. ABC is becoming the “go-to” option when the data and/or parameter dimension is large
because it relies on user-chosen summary statistics rather than the full data and is therefore computationally feasible. One technical
challenge with ABC is that the quality of the approximation to the posterior distribution of model parameters depends on the user-
chosen summary statistics. In this paper, the user requirement to choose effective summary statistics in order to accurately estimate
the posterior distribution of model parameters is investigated and illustrated by example, using a model and corresponding real
data of mitochondrial DNA population dynamics. We show that for some choices of summary statistics, the posterior distribution
of model parameters is closely approximated and for other choices of summary statistics, the posterior distribution is not closely
approximated. A strategy to choose effective summary statistics is suggested in cases where the stochastic computer model can be
run at many trial parameter settings, as in the example.

1. Introduction

To advance knowledge of biological systems, bioinformatics
includes a wide range of real and modeled data. For a model
with parameters 𝜃 and data 𝐷, a key quantity in Bayesian
inference is the posterior distribution of model parameters
given by Bayes rule as 𝑝post(𝜃 | 𝐷) = 𝑝(𝐷 | 𝜃)𝑝prior(𝜃)/𝑝(𝐷),
where 𝑝prior(𝜃) is the probability distribution for 𝜃 prior to
observing data 𝐷, 𝑝(𝐷 | 𝜃) is the likelihood, and 𝑝(𝐷) =
∫
𝜃
𝑝(𝐷|𝜃)𝑝prior(𝜃) is themarginal probability of the data, used

to normalize the posterior probability 𝑝post(𝜃 |𝐷) to integrate
to 1 [1]. The likelihood 𝑝(𝐷|𝜃) can be regarded as the “data
model” for a given value of 𝜃. Alternatively, when the data 𝐷
is considered fixed, 𝑝(𝐷|𝜃) is regarded as a function of 𝜃, and
non-Bayesian methods such as maximum likelihood find the
value of 𝜃 that maximizes 𝑝(𝐷 | 𝜃) [1]. Regarding notation,
note, for example, that 𝑝(𝐷|𝜃) is not the same as 𝑝(𝐷), but
to keep the notation simple, we assume the distinction is clear
from context.

In many applications, the data model 𝑝(𝐷|𝜃) is computa-
tionally intractable but instead is implemented in a stochastic
model (SM), so many realizations from 𝑝(𝐷|𝜃) are available
by running the model many times at each of many trial
values of 𝜃. In a bioinformatics example, [2] considered the
classic problem of inferring the time to the most recent
common ancestor of a random sample of 𝑛 DNA sequences.
The full likelihood of the data𝐷 involves the branching order
and branch lengths, which is known to be computationally
intractable because the number of possible branching orders
of a sample of 𝑛 DNA sequences grows approximately as 𝑛!.
Therefore, [2] greatly simplified the analysis by replacing 𝐷
with the number of segregating sites (a segregating site is
a site that exhibits variation in the DNA character across
the sample) 𝑆𝑛 in the sample of 𝑛 sequences. The key
simplification exploited in [2] is that the distribution of 𝑆𝑛
does not depend on the branching order or individual branch
lengths, but only on the total length of the phylogenetic
tree, which is the sum of all branch lengths. Of course 𝑆𝑛 is
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a summary statistic that has long been of interest in pop-
ulation genetics. But how effective is 𝑆𝑛 for estimating the
posterior distribution of the time to themost recent common
ancestor of the sample? The main point of this paper is
to explore the impact of the choice of summary statis-
tic(s) on the quality of the estimated posterior distribution
𝑝post(𝜃 |𝐷) when using approximate Bayesian computation
(ABC), which is defined in Section 2. We investigate the user
requirement to choose good summary statistics to effectively
estimate the posterior distribution of model parameters by
example, using a model and corresponding real data of
mitochondrial DNA population dynamics.

In our context, the SM provides the data generation
mechanism, so there is no explicit functional form for 𝑝(𝐷 |
𝜃). Likelihood-free inference dates to at least [3], but the
name approximate Bayesian computation (ABC) originated
in [4] while referring to an approach to likelihood-free
inference methods. Effective values of input parameters for
both deterministic and stochastic computer models are typ-
ically chosen by some type of comparison to measured data.
Parameter estimation for deterministic models is frequently
done by running the model at multiple values of the input
parameters, constructing an approximator to the model, and
using the approximator inside a numerically intense loop that
examines many trail values for the input parameters [5–8].
The numerically intense loop is often Markov Chain Monte
Carlo (MCMC), which is a method to simulate observations
from the posterior distribution of model parameters [1, 9].
Parameter estimation for stochastic models for which an
explicit likelihood is not available has been attempted at
least once using MCMC with a model approximator [10],
but is far more commonly done using ABC. For examples
of ABC applied to calibrate SMs, see [11–27] and the many
references cited by [11–27]. The example in Section 4 is based
on the example in [10], but we use ABC instead of a model
approximator inside the MCMC loop.

The paper is organized as follows. The next section gives
background on ABC. Section 3 describes in more detail the
challenge in ABC of choosing effective summary statistics.
Section 4 is an example, using a model and corresponding
lab data of mitochondrial DNA population dynamics. The
example shows that for some choices of summary statistics,
the posterior distribution of model parameters is closely
approximated and for other choices of summary statistics, the
posterior distribution is not closely approximated. A strategy
to choose effective summary statistics is suggested in cases
where the stochastic computermodel can be run atmany trial
parameter settings, as in the example.

2. ABC Background

Assume that a SM has input parameters 𝜃 and outputs data
𝑦𝑀= 𝑓(𝑦|𝜃) (𝑀 for “model”) and that there is corresponding
observed real data 𝑦obs. In this section and the remaining
sections we either use the conventional notation 𝑦 for data
or the informal 𝐷 used in the Introduction, depending on
context. We replace the notation for the data generation
mechanism 𝑝(𝐷|𝜃) with 𝑓(𝐷|𝜃) to convey the fact that there

is no explicit functional form for the likelihood, but only
a “black box” SM that outputs data for given values of inputs 𝜃.
That is, traditionally, the notation 𝑝(𝐷 | 𝜃) conveys a specific
functional form, such as the familiar Gaussian distribution,
while the notation 𝑓(𝐷 | 𝜃) conveys the black box function
encoded by the SM.

The ABC approach uses 𝑦obs to “calibrate” the SM by
choosing effective values for the 𝜃 parameters. If the SM
can be run for many trial values of 𝜃, MCMC can be
used, where candidate 𝜃 values are accepted in the chain
if the distance 𝑑(𝑦obs, 𝑦𝑀(𝜃)) between 𝑦obs and 𝑦𝑀(𝜃) is
reasonably small. Alternatively, for most applications, and
for our focus here, it is necessary to reduce the dimension
of 𝑦obs to a relatively small set of summary statistics 𝑆 and
instead accept trial values of 𝜃 inside the MCMC loop if
𝑑(𝑆(𝑦obs), 𝑆(𝑦𝑀(𝜃))) < 𝑇. For example, 𝑦obs can be a time
series of changes in the proportion of mutant species at
various time lags, while 𝑆(𝑦obs) could be a scalar count of how
often successive differences in 𝑦obs are larger than a multiple
of the measurement error. Most applications of ABC have
relied on summary statistics that are chosen on the basis of
expert opinion or established practice (such as the number of
segregating sites in the example in Section 1) rather than for
their role in providing a high quality approximation to the
posterior distribution 𝑝post(𝜃 |𝑦obs) [4, 12, 14, 18, 20].

The goal in nearly all Bayesian inference is to approximate
the posterior distribution 𝑝post(𝜃 | 𝑦obs) of 𝜃 given the data
𝑦obs. The ABC approach to do so is to estimate 𝑝post(𝜃|𝑦obs) =
𝑝(𝑦obs | 𝜃)𝑝prior(𝜃)/𝑝(𝑦) using the so-called partial posterior
distribution 𝑝post(𝜃 | 𝑆obs) = 𝑝(𝑆obs | 𝜃)𝑝prior(𝜃)/𝑝(𝑆obs). That
is, ABC conditions on the value of the observed summary
statistic 𝑆obs rather than on the actual data 𝑦obs. Because
trial values of 𝜃 are accepted if 𝑑(𝑆(𝑦obs), 𝑆(𝑦𝑀(𝜃))) < 𝑇,
an approximation error to the partial posterior distribution
arises that several ABC options attempt to mitigate. Such
options involve weighting the accepted 𝜃 values by the actual
distance 𝑑(𝑆(𝑦obs), 𝑆(𝑦𝑀(𝜃))) [13].

ABC was developed to calibrate a model using summary
statistics, but ABC has the potential to choose between
candidate models, say models𝑀1 and𝑀2. When analytical
likelihoods are available, one typically evaluates 𝑃(𝑀 | 𝑦obs)
using the likelihoods 𝑓1(𝑦obs) and 𝑓2(𝑦obs) and the prior
probabilities of the models 𝑀1 and 𝑀2. Bayesian model
selection is a large topic [1, 4, 12, 21], and it is currently used
in calibrating deterministic models using field data [5–8].
Using Bayes rule, 𝑃(𝑀1|𝑦obs) = (𝑃(𝑦obs|𝑀1)𝑃(𝑀1))/𝑃(𝑦obs)
and 𝑃(𝑦obs |𝑀1) are the marginal likelihood for model 𝑀1,
defined as 𝑃(𝑦obs | 𝑀1) = ∫𝑃(𝑦obs | 𝜃,𝑀1)𝑝prior(𝜃)𝑑𝜃. In
model selection to decide between 𝑀1 and 𝑀2, the prior
probabilities 𝑃(𝑀1) and 𝑃(𝑀2) must also be specified so
that 𝑃(𝑀1 | 𝑦obs) can be compared to 𝑃(𝑀2 | 𝑦obs) [1, 21].
The analogous concept in the case of stochastic models is
still the posterior distribution 𝑃(𝑀1 | 𝑦obs) or 𝑃(𝑀2 | 𝑦obs),
but summary statistics are used to approximate 𝑃(𝑀1 |𝑦obs)
and 𝑃(𝑀2 | 𝑦obs). Applications papers have extended ABC to
include an option to choose among candidate models that
includes different models with possibly different numbers of
parameters in a solution space that is explored by simulation
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[4, 12, 21]. However, the approximation quality of ABC with
or without model selection is a subject of ongoing research
[18–21].

ABC is compelling, when the data and/or parameter
dimension is large, and is becoming the “go-to” option for
many application areas, particularly whenever the likeli-
hood involves summing probabilities over many unobserved
states such as genealogies in biology [2], applications in
epidemiology [22], astronomy, and cosmology [23].However,
challenges remain in ensuring that ABC leads to reasonable
approximation to the full posterior distribution of SMparam-
eters 𝜃.

3. Choosing Summary Statistics for ABC

To obtain samples from the approximate posterior distri-
bution for candidate models and model parameters, ABC
invokes MCMC [1, 9, 17] with summary statistics such as
moments of the observed data to those in the simulated
data to decide whether to accept each candidate model
and set of parameter values inside the MCMC loop. Note
that in cases where the likelihood (the probability density
function, pdf, viewed as a function of the parameters values)
is known except for a normalizing constant, MCMC has been
the main option for numerical Bayesian inference since the
1990s [1]. The main challenges with MCMC using a known
likelihood function are that efficient sampling methods are
sometimes needed to choose candidate parameter values, and
in all cases the burden is on the user to check whether the
MCMC is actually converging to the correct full posterior
distribution. Because ABC simply accepts trial values of the
parameters provided 𝑑(𝑆(𝑦obs), 𝑆(𝑦𝑀(𝜃))) < 𝑇, a common
version of ABC uses a very specialized form ofMCMC that is
called the “rejection” method. Other ABC versions are under
investigation [17].

ABC typically consists of three steps: (1) sample from the
prior distribution of parameter values 𝑝prior(𝜃); (2) simulate
data for each simulated value of 𝜃; (3) accept a fraction
of the samples prior values in (1) by checking whether the
summary statistics computed from the data in (2) satisfy
𝑑(𝑆(𝑦obs), 𝑆(𝑦𝑀(𝜃))) < 𝑇. If desired, adjust the accepted 𝜃
values on the basis of the actual 𝑑(𝑆(𝑦obs), 𝑆(𝑦𝑀(𝜃))) value.
Despite the simplicity of ABC, open questions remain regard-
ing to what extent ABC achieves its goal of approximating
the full posterior probability. ABC has been shown to work
well in some cases [19], but it has also proven not to
work well in other cases [21]. There are open questions for
ABC regarding the choice of summary statistics [18–21],
whether model selection via ABC is viable (meaning that
the user can know whether the estimation quality of the full
posterior distribution is adequate to successfully compare
candidate models [21]), and regarding error bounds for the
estimated posterior distribution. Approximate error bounds
are possible by simulation using auxiliary simulations such as
in Section 4 and [20].

ABC requires the user to make three choices: the sum-
mary statistics, the threshold 𝑇, and the distance measure 𝑑.
This paper’s focus is on the user’s choice of summary statistics.
Recall from the Introduction that in many applications

of ABC, the user chooses summary statistics such as the
number of segregating sites in a random sample of 𝑛 DNA
sequences simply because such a statistic is heavily used in
the application area without considering whether the chosen
summary statistic renders the partial posterior to be a good
approximation to the full posterior.

A few recent papers have considered summary statistic
selection from the viewpoint of aiming for better inference
or better approximation to the full posterior probability [18–
21]. ABC makes two approximation steps. First, the full
posterior probability is estimated by the partial posterior
probability. Second, the partial posterior probability is itself
estimated. Recall from Section 2 that some versions of ABC
include options to improve the quality of the partial posterior
approximation, such as weighting the accepted parameter
values in the MCMC [12, 13].

To improve the choice of which partial posterior approx-
imation to use, the notion of approximate statistical suf-
ficiency can be invoked to try to choose more effective
summary statistics [18]. Suppose there is a list of 𝑘 candidate
summary statistics {𝑆1, 𝑆2, . . . , 𝑆𝑘}. A user then wonders
whether adding candidate statistic 𝑆𝑘+1 would improve the
approximation of the full posterior 𝑝post(𝜃 | 𝑦obs). In [18],
ABC must be performed on {𝑆1, 𝑆2, . . . , 𝑆𝑘} and then on
{𝑆1, 𝑆2, . . . , 𝑆𝑘+1}. If the calculated ratio 𝑅𝑘(𝜃) = 𝑝post(𝜃 |
𝑆1, 𝑆2, . . . 𝑆𝑘+1)/𝑝post(𝜃 | 𝑆1, 𝑆2, . . . 𝑆𝑘) is statistically signifi-
cantly different from 1, include candidate statistic 𝑆𝑘+1. The
framework in [18] is therefore the same framework as for
variable selection in fitting any response, so the full arsenal
of possibilities in modern data mining is possible. To date,
only relatively simple variable selection that is sensitive to the
order with which candidate summary statistics are presented
has been assessed, only in the few examples in [18]. In
[18], the procedure to decide whether 𝑅𝑘(𝜃) is statistically
significantly different from 1 involves an auxiliary simulation
and calculating the maximum and minimum values of
𝑅𝑘(𝜃) on a user-chosen grid of 𝜃 values. An even more
computationally demanding option to decide whether 𝑅𝑘(𝜃)
is statistically significantly different from 1 could invoke some
type of density estimation. The simulation approach in [18]
makes no judgment whether including candidate summary
statistic 𝑆𝑘+1 leads to a better approximation. Instead, the
simulation approach aims to infer whether including 𝑆𝑘+1
has a significant impact on the estimated partial posterior
distribution.

Alternatively, to choose effective summary statistics [19]
aims to make the selection of summary statistics more
“automatic” and less user dependent by requiring the user to
run pilot simulations of the model. However, the examples
in [19] illustrate the potential for poor ABC performance
because the three ABC choices that lead to best performance
were shown to vary across examples. The suggested strategy
in [19] requires pilot runs of themodel in order to improve the
user choices, particularly of the summary statistics. The pilot
runs require a set of input parameter values 𝜃 to generate
data that is similar to the real data 𝑦obs. The goal is then
for many realizations of the data from parameter values
𝜃
 to help the user choose summary statistics. Specifically,
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for ABC to lead to good estimation of 𝜃, [19] shows that the
estimated posterior means of the parameters based on the
pilot runs are effective summary statistics. There are several
options described in [19] to estimate the posterior means of
model parameters. The simplest one to describe is to fit in
turn each individual parameter in 𝜃 using some type of data
transformation, such as the actual data and moments of the
data.The fitted coefficients from the fit are obtained from the
pilot simulation runs and can then be used in subsequent
runs to estimate the parameter means. Reference [20] also
aimed for better estimation of 𝜃 and also used auxiliary
simulations, but, unlike [19], summary statisticswere pursued
that minimized the entropy (uncertainty) of the estimated
full posterior probability. Of course the usermight have other
criteria, such as for ABC to lead to a good estimation of the
full posterior for 𝜃 as in our example in Section 4 which also
relies on auxiliary simulations.

To summarize this section, the choice of summary statis-
tics is very important if the partial posterior 𝑝post(𝜃 | 𝑆obs)
obtained using ABC is to provide an adequate approximation
to the full posterior 𝑝post(𝜃 | 𝑦obs). A few publications have
begun to address the issue of summary statistic selection
[18–21]. And, a debate has begun to what extent the partial
posterior 𝑝post(𝜃 | 𝑆obs) obtained using ABC is adequate for
model selection [21]. Again, summary statistic selection is an
important aspect of ABC’s ability to provide adequate model
selection capability.

4. Example: Mitochondrial DNA Population
Dynamics Model

This section presents an example for which the stochastic
computer model is relatively simple so we can generate many
observations from the model.

4.1. Example. Neuronal loss in the substantia nigra region of
the human brain is associated with Parkinson’s disease [10].
Deletion mutations in the mitochondrial DNA (mtDNA)
in the substantia nigra region are observed to accumulate
with age. A deletion mutation converts a healthy copy of
mtDNA to the mutant (unhealthy) variant. The number of
mutant copies in cases with Parkinson’s disease tends to
be higher than in controls without Parkinson’s disease. The
role that mtDNA deletions play in neuronal loss is not yet
fully understood, so better understanding of how mtDNA
deletions accumulate is an area of active research. Reference
[10] used a simple stochastic model that allowed for any
of five reactions, occurring at rates to be estimated. The
five reactions are mutation, synthesis, degradation, mutant
synthesis, and mutant degradation.

Let 𝑌1 denote the number of healthy (1) mtDNA copies
and𝑌2 denote the number of unhealthy (2) (mutant) mtDNA
copies. Following [10] we assume the following five reactions
are possible, with the reaction rates as specified. The lower
case 𝑦1 and 𝑦2 refer to an individual cell of type 1 or 2. So,
for example, reaction 𝑅1 below depicts a single cell of type 1
mutating to type 2 at a rate 𝑐1𝑌1.

𝑅1 : 𝑦1 → 𝑦2 at rate 𝑐1𝑌1

𝑅2 : 𝑦1 → 2𝑦1 at rate 𝑐2𝑌1/(𝑌1+𝑌2) = 1000 𝑐3𝑌1/(𝑌1+
𝑌2)

𝑅3 : 𝑦1 → 0 at rate 𝑐3𝑌1
𝑅4 : 𝑦2 → 2𝑦2 at rate 𝑐4𝑌2/(𝑌1+𝑌2) = 1000 𝑐3𝑌2/(𝑌1+
𝑌2)

𝑅5 : 𝑦2 → 0 at rate 𝑐3𝑌2.

The time between reactions is assumed to have an
exponential distribution. The sum of the five rates is the
total reaction rate, which determines exponential parameter
(the average time between reactions). Given that a reaction
occurs at a specific time, the relative rates determine the
probabilities with which the five reactions occur. To model
the harmful effects of mutation from type 1 to type 2 cells,
it is assumed that a cell dies if its proportion of mtDNA
deletions 𝑌2/(𝑌1 + 𝑌2) > 𝜏 for some lethal threshold 𝜏.
This simple model can be simulated from exactly using
Gillespie’s discrete event simulation [28]. Reference [10] gives
more information, including information about measure-
ment error models. To focus on summary statistic selection,
we simplify the measurement assumptions andmeasurement
error model used in [10] and assume that measurements of
{𝑌1, 𝑌2} are available at a sequence of times {𝑡1, 𝑡2, . . . , 𝑡𝑛}.The
real measurement data will be assumed to be of this form,
although the measurement details and number of neurons
sampled multiple times from each of 15 patients of varying
ages make the measurement process used in [10] somewhat
more complicated. In particular, the model in [10] did not
include a between-patient factor, so we simplified the data by
aggregating the data over patients and measurements of the
same patient at the same age. Figure 1 plots the aggregated
real data from Figure 1 of [10] and from one realization of
simulated data assuming that cells are measured each day.

Note that rates 𝑐2 and 𝑐4 are assumed to be known
multiples of rate 𝑐3, so the inference goal is to estimate
{𝑐1, 𝑐3, 𝜏}. A range of possible values for each of {𝑐1, 𝑐3, 𝜏} was
based in [10] on previous investigations. The prior range for
𝑐1 was 10

−6 to 10−3 per day, for 𝑐3 was 3 × 10
−5 to 10−3 per

day, and for 𝜏 was 0.5 to 1. All three of these parameters are
of interest not just as model calibration parameters, but for
their physical implications. For example, it is not yet known
whether neurons can survive with very high levels of mtDNA
deletions. As with any Bayesian analysis, an evaluation of the
sensitivity to the prior distribution for the model parameters
should be included, particularly for informative priors. In
our example, we used informative priors, uniform over the
accepted ranges. A separate simulation confirmed that the
estimated posterior is sensitive to the assumed parameter
range. An example comparison using two ranges for the
uniform priors is given in Section 4.4.

The approach in [10] to estimate {𝑐1, 𝑐3, 𝜏} is based on
approximating the computermodel using aGaussian Process,
which is a common approach in calibrating deterministic
computer models. Reference [10] mentions the possibility of
estimating {𝑐1, 𝑐3, 𝜏} using ABC. Future work will compare
such options. Here, we focus on better understanding of the
effect of summary statistic selection on ABC performance.
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Figure 1: Real (aggregated over patients and measurements of the same patient at the same age) from [10] (a) and corresponding simulated
data from the SM (b).

4.2. ABC Approach. Recall that we assume measurements of
{𝑌1, 𝑌2} are available at a sequence of times {𝑡1, 𝑡2, . . . , 𝑡𝑛}.The
real data we use is in Table 1 of [10], which for simplicity
we aggregate over subjects andmeasurements within subjects
to the data shown in Figure 1 (see Section 4.4). Note that
the real data is observed much less frequently than once
per simulated time step which is one day in our simulation.
For completeness, we first assume real data is available once
per day and then assume real data is available much less
frequently, such as in Figure 1(a).

In any implementation of ABC the user must specify
the distance measure, the acceptance threshold 𝑇, and the
summary statistics. In addition, the user chooses the number
of model runs at each value of the parameter vector and
the number of values of the parameter vector 𝜃 = {𝑐1, 𝑐3, 𝜏}
presented to the ABC algorithm.The statistical programming
language R is among the good choices for ABC implementa-
tion; here we use the abc function in the abctools package
for R [29]. The abc function also requires the user to decide
whether to work with transformed parameter values and
to select a method to improve estimation of the partial
posterior by adjusting the accepted 𝜃 values according to the
distance between the summary statistics and the observed
summary statistics [4, 13]. The default method is the “unad-
justed” method which accepts all 𝜃 values corresponding to
𝑑(𝑆(𝑦obs), 𝑆(𝑦𝑀(𝜃)))<𝑇without any weighting. Results given
in Section 4.4 are for the unadjusted option and for the option
that adjusts accepted 𝜃 values.

4.3. Simulation Approach. Our goal for this mDNA example
is to illustrate an approach to making good choices for
the summary statistics when the user wants the estimated
partial posterior distribution for 𝜃 to be well calibrated. Well
calibrated in this example context means, for instance, that
the true 𝜃 is contained in approximately 95% of repeated
constructions of 95% predictive intervals for 𝜃. That is, the
actual coverage is very close to the nominal coverage.

To check ourABC “calibration,”we repeated the following
simulation procedure using 𝑛rep = 1000 replications and
recorded how often nominal intervals containing 95%, 90%,
80%, 60%, 50%, 40%, 20%, 10%, and 5% of the estimated
posterior probability𝑝post(𝜃|𝑆obs) (which serves as an estimate

of 𝑝post(𝜃|𝑦obs)) actually contain the true parameter value for
the three parameters in 𝜃 = {𝑐1, 𝑐3, 𝜏}.

Simulation Procedure

Step A. Simulate data from the SM at many parameter values
𝜃 = {𝑐1, 𝑐3, 𝜏}. Specifically,

(1) select each of {𝑐1, 𝑐3, 𝜏} from their respective uni-
form prior distributions (the ranges are given in
Section 4.1) for 𝑛sim = 1000 simulations,

(2) for each selected value of {𝑐1, 𝑐3, 𝜏}, simulate up to
100 years of 1-day step sizes of the five reaction rates.
If 𝑌2/(𝑌1 + 𝑌2) > 𝜏 at any step, terminate. Some
variations of ABC will repeatedly simulate in step (2)
for the chosen {𝑐1, 𝑐3, 𝜏} values in step (1).

Step B.Real data (or simulated, but with the simulated playing
the role of real data):

(1) Real data: Either use real measurement data 𝑦obs
or mimic one realization of real measurement data
by repeating Step A once. Here we use simulated
measurement data to mimic real data, so that we can
know the true value of 𝜃 = {𝑐1, 𝑐3, 𝜏}.

(2) Using the 𝑛sim = 1000 simulations from Step A,
accept the trial 𝜃 = {𝑐1, 𝑐3, 𝜏} values from 100 (10%)
of the 𝑛sim = 1000 simulations on the basis of
𝑑(𝑆(𝑦obs), 𝑆(𝑦𝑀(𝜃))) in each of the 𝑛sim = 1000
simulations, resulting in an approximation of the
partial posterior probability 𝑝post(𝜃|𝑆obs)which serves
to estimate the full posterior probability 𝑝post(𝜃|𝑦obs).
The accepted trial 𝜃 values can be used “as is” to
approximate 𝑝post(𝜃|𝑦obs) or adjusted to account for
the actual distance 𝑑(𝑆(𝑦obs), 𝑆(𝑦𝑀(𝜃))), for example,
as in [4, 13].

Step C. (1) Use the 100 accepted trial values of in Step B to
tally whether the true parameter values are contained within
the estimated 95%, 90%, 80%, 60%, 50%, 40%, 20%, 10%, and
5% posterior intervals.

This 3-step simulation procedure is repeated for 𝑛rep =
1000 replications. Following [10], each simulation began with
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𝑛 = 1000 cells. We depart slightly from [10] in that each
simulation began with 𝑌2 = 600 mutant cells (rather than
0 mutant cells), so that each run of up to 100 years tended
to conclude in a modest number of years from the starting
point due to 𝑌2/(𝑌1 + 𝑌2) exceeding the lethal maximum
𝜏, so that run times are shorter; this mimics starting with
older subjects, nearly all of which do not live close to 100
years beyond their fictitious starting age defined by having
600 mutant cells at the start of the simulation. Such a choice
will impact our inference results, analogous to choosing data
ranges in calibration experiments. However, our topic is the
choice of summary statistics rather than experimental design
for choosing effective data ranges (the data ranges are the
subjects’ ages in our example).

Also following [10] we simulated the effects of mea-
surement error, but for simplicity we assumed there was
only one measurement method rather than two. To mimic
measurement errors due to finite number of observations
and the actual measurement process itself, we assume that
only 300 of the 1000 cells were observed and that 𝑌1/(𝑌1 +
𝑌2) fraction was measured with a relative random error
standard deviation of 0.20 on the log10 scale. These two
effects (observing 300 of 1000 and 0.1% relative error standard
deviation on log

10
(𝑌1/(𝑌1 + 𝑌2)) result in a root mean

squared error of approximately 0.13 in the measured relative
frequency 𝑌1/(𝑌1 + 𝑌2) on average across the range of
𝑌1/(𝑌1 + 𝑌2) values. In comparison, [10] assumes an absolute
random error standard deviation of 0.25 on the log2 scale.
Because two measurement techniques are combined in [10],
which complicated the analysis beyond our needs here,
we do not attempt to exactly mimic their approach, but
only to use reasonable measurement error assumptions for
illustration.

4.3.1. The Summary Statistics. Let 𝑍1 denote the measured
value of 𝑌1, and𝑍2 denote the measured value of 𝑌2. The first
candidate set of summary statistics is the following three: the
average rate of change of 𝑍1/(𝑍1 + 𝑍2), coefficients 𝑏1 and 𝑏2
in a linear model relating the change in 𝑍1 (the response) to
predictors consisting of the current 𝑍1, and the current ratio
𝑍1/(𝑍1 +𝑍2). The second candidate set of summary statistics
is the same as the first, but also includes the maximum of the
observed ratio 𝑍1/(𝑍1 + 𝑍2) and the number of steps until
cell death. The third candidate set of summary statistics is
the same as the first, but also includes coefficients 𝑏1 and 𝑏2
in a linear model relating the change in 𝑍2 (the response) to
predictors consisting of the current 𝑍2, and the current ratio
𝑍1/(𝑍1 + 𝑍2). All three candidate sets of summary statistics
were computed for sets of simulated data that was observed
at each time step (day), and also much less frequently as
in the real data. To mimic the real data, we sampled the
simulated data at 13 random times over the duration of each
simulation.

Concerning the choice of summary statistics, these three
candidate sets are arbitrary but reasonable statistics that
clearly relate to the SM and so are informative for the
SM parameters. For example, the average rate of change of
𝑍1/(𝑍1 + 𝑍2) relates directly to parameter 𝑐3.

4.4. Example Results. Here we present results for three
candidate sets of summary statistics. Our strategy involves
two criteria. First, retain for consideration any set of summary
statistics that leads to a well-calibrated estimate of 𝑝post(𝜃 |
𝑦obs) on the basis of the 3-step simulation procedure. Here,
the term “well calibrated” means that actual coverage is very
close to the nominal coverage. Second, among all sets of
such summary statistics, choose the set that has the smallest
estimation error for 𝜃. The second criterion is similar to
that suggested in [19, 20]. The strategy in [18] described in
Section 3 to decide whether adding an additional statistic will
impact the posterior could of course also be used to confirm
that the three candidate sets of summary statistics do lead
to meaningfully different estimates of the partial posterior
distribution𝑝post(𝜃 |𝑆obs).

Figure 2 is a plot of the actual (estimated to within ± 0.03
on the basis of 1000 replications of the simulation approach)
coverage versus the nominal coverage for 95%, 90%, 80%,
60%, 50%, 40%, 20%, 10%, and 5% posterior intervals for
set one of the three sets of summary statistics, using the
ridge-based adjustment of the accepted 𝜃 values in abc
or not [4, 13]. Ridge-based adjustment is a form of local
ridge regression (a modification of ordinary regression to
adjust for collinearity of the predictors) that uses the actual
distance 𝑑(𝑆(𝑦obs), 𝑆(𝑦𝑀(𝜃))) rather than the simple rejection
criterion. Figure 3 is the same as Figure 2 but for summary
statistics set 2. Figure 4 is the same as Figure 2 but for
summary statistics set 3. Notice from Figures 2–4 that the
unadjusted values lead to better calibration than the adjusted
values, with the actual probabilities being closer to the
nominal probabilities. Apparently, although it is reasonable
to adjust accepted parameter values by using the actual dis-
tance 𝑑(𝑆(𝑦obs), 𝑆(𝑦𝑀(𝜃))) [4, 13], whether such adjustment
improves the approximation to the posterior depends on
the specifics of each data set, including the adequacy of the
chosen summary statistics. It is for that reason that available
software such asabc allows the user to compute both adjusted
or unadjusted 𝜃 values.

To quantify the results shown in Figures 2–4 we com-
pute the root mean squared error (RMSE) between the
observed coverage probability and the nominal coverage
probability for the nine posterior intervals (95%, 90%, 80%,
60%, 50%, 40%, 20%, 10%, and 5%) for each parameter
estimate for each of the three sets of summary statistics,
RMSE1 = √∑

𝑛rep
𝑖=1
∑
9

𝑗=1
(𝑝𝑖,observed,𝑗 − 𝑝𝑖,nominal,𝑗)

2
/9𝑛rep. Infor-

mally, we can choose the candidate set of summary statistics
that has the smallest RMSE1. More formally, to determine
whether the smallest RMSE1 among the three (or any number
of) candidate sets of summary statistics is significantly
smaller than the second smallest RMSE, we can repeat the
entire simulation procedure approximately 100 times and
rank the candidate sets of summary statistics on the basis of
their RMSE1 values across the 100 repetitions of the 3-step
simulation. In this example, candidate set 3 has the smallest
RMSEs among the three sets of candidate summary statistics.
For any set of candidate summary statistics that are acceptable
on the basis of RMSE1, the second version of the RMSE
defined as RMSE2 = √∑

𝑛rep
𝑖=1
(𝜃𝑖 − 𝜃𝑖)

2
/𝑛rep in estimating 𝑐1, 𝑐3,
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Figure 2: Actual (estimated towithin±0.03 on the basis of 1000 replications of the simulation approach) coverage versus the nominal coverage
for 95%, 90%, 80%, 60%, 50%, 40%, 20%, 10%, and 5%posterior intervals for each of the three parameters for each of the three sets of summary
statistics, using the ridge-based adjustment (a) in abc or not using any adjustment (b). This plot is based on summary statistics set 1.
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Figure 3: Same as Figure 2, but for summary statistics set 2.

Table 1: The RMSE1 and RMSE2 values for each of the three sets
of candidate summary statistics for 𝑐1, 𝑐3, and 𝜏 using unadjusted
estimates of the respective posterior distribution. The table entries
are RMSE1 for 𝑐1, 𝑐3, and 𝜏 in the top line and RMSE2 for 𝑐1, 𝑐3, and 𝜏
in the bottom line. Table entries are based on one set of 𝑛rep = 1000
replications of the 3-step procedure in Section 4.3 and are repeatable
across sets of 1000 replications to the number of digits shown.

Candidate summary statistic RMSE1 for 𝑐1, 𝑐3, and 𝜏
RMSE2 for 𝑐1, 𝑐3, and 𝜏

1 RMSE1: 0.0002, 0.0002, 0.15
RMSE2: 0.19, 0.08, 0.05

2 RMSE1: 0.0002, 0.0002, 0.09
RMSE2: 0.20, 0.09, 0.08

3 RMSE1: 0.0002, 0.0001, 0.09
RMSE2: 0.18, 0.07, 0.09

and 𝜏 should be evaluated. In RMSE2, 𝜃𝑖 is either 𝑐1, 𝑐3, or 𝜏,
and 𝜃𝑖 is the corresponding estimate. As the corresponding
estimate, we use the mean of the corresponding estimated
posterior. The two types of RMSEs for the three sets of
candidate summary statistics are listed in Table 1.

There is no guarantee that the “best” set of candidate
summary statistics will dominate the other choices of sum-
mary statistics. For example, summary statistic set 3 is our
choice in this example, but it has higher RMSE2 for 𝜏 than
the other two choices. As a reviewer has pointed out, such
an outcome requires a user choice, and we suggest “majority
rule,” meaning that we choose the summary statistic set that
has the smallest RMSE1 and/or RMSE2 (depending on user
needs) for the most number of parameters. So, in this case we
invoke “majority rule” and choose summary statistic set 3.

Any application of ABC that does not include a simu-
lation evaluation such as this one or similar ones in [18–
21] is incomplete. Somewhat unfortunately, this means that
the choice of summary statistics is not truly “automatic,”
because it relies on intensive simulations in addition to those
in standard ABC. However, the choice of summary statistics
can be regarded as “objective,” because a similar strategy is a
necessary part of a complete ABC application.

For completeness here, we also use the real data from
Table 1 of [10] in place of the simulated data described in
the simulation procedure above. Recall from above that the
best results (lowest RMSEs) were obtained using candidate
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Figure 4: Same as Figure 2, but for summary statistics set 3.
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Figure 5: Estimated posterior distribution for 𝜃 = {𝑐1, 𝑐3, 𝜏} using candidate summary statistics set 3 for the real data, observed only 13 times
over multiple years.

summary statistics choice 3 with no adjustment of the
accepted 𝜃 values. However, the real data is observed less
frequently than each time step (day), so next we use slightly
different summary statistics than described above. Rather
than lag-one (one-day) changes, we use the actual times
between measurements so that approximate rates of changes
can be computed. The resulting posterior for the data in
Table 1 of [10] is given in Figure 5 for summary statistic
choice 3. Additionally, a second set of simulations was done
for simulated data observed only approximately 13 times over
the simulation (as in the real data in Figure 1(a)). Again,
summary statistic choice 3 had the lowest RMSE1 and RMSE2
values (uniformly lowest in this case, even for 𝜏).

Finally, any Bayesian analysis should address the issue of
whether the posterior is sensitive to the prior. For example,
in our ABC context, we first used the uniform priors for each
parameter as described in Section 4.1, which are the same
as those used in [10]. To evaluate sensitivity to the prior,
we modified the parameter ranges for 𝑐1 from 10

−6 to 10−3

per day to 10−7 to 10−2 per day, for c3 from 3 × 10
−5 to

10
−3 per day to 3 × 10−4 to 10−2 per day, and for 𝜏 from

0.50 to 1 to 0.85 to 1. Using summary statistics set 3, the
posterior means for {𝑐1, 𝑐3, 𝜏} are 0.0007, 0.0001, and 0.90,
respectively, for the original prior ranges and are 0.00007,
0.001, and 0.87, respectively, for the modified prior ranges.
These posterior means were each calculated twice using 103
simulations and are repeatable to within the number of
digits listed. Therefore, the choice of prior does significantly
impact the posterior in our example. Reference [10] dis-
cusses the physical consequences of various parameter values,
particularly for 𝜏. However, there are no widely accepted
values for any of the three parameters, so we cannot use
accepted parameter values as another check to compare ABC
summary statistic choices. Instead, we assess the quality of the
ABC-based approximation to the posterior using auxiliary
simulation as illustrated in Figures 2–4 comparing predicted
to actual coverage probabilities and using RMSEs as in
Table 1.
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5. Summary

ABC is becoming the “go-to” option when the data and/or
parameter dimension is large because it relies on user-chosen
summary statistics rather than the full data and is therefore
computationally feasible. AlthoughABC is compelling, when
the data and/or parameter dimension is large, and is begin-
ning to be used in many application areas, as of 2013, there
is no cohesive theory or a consistent strategy for ABC, yet
there are many applications in bioinformatics, astronomy,
epidemiology, and elsewhere for which a stochastic CM
provides an alternative to the likelihood. In addition software
to implement ABC is becoming widely available; see [30] for
a partial list of currently available ABC software.

One technical challenge with ABC is that the quality
of the approximation to the posterior distribution of model
parameters depends on the user-chosen summary statistics.
In this paper, the user requirement to choose effective sum-
mary statistics in order to accurately estimate the posterior
distribution of model parameters is illustrated by example,
using a model and corresponding lab data of mitochondrial
DNA population dynamics.The example shows that for some
choices of summary statistics, the posterior distribution of
model parameters is closely approximated and for other
choices of summary statistics, the posterior distribution is not
closely approximated.

A strategy to choose effective summary statistics is
suggested in cases where the stochastic computer model can
be run atmany trial parameter settings, as in the example.The
strategy is to choose the best results from several candidate
sets of summary statistics, such as shown in the Results in
Figures 2–4. As in [19, 20], auxiliary simulations that produce
data having similar summary statistics as the observed data
are needed. Then, the best results are defined on the basis of
two criteria. First, those summary statistics that lead to the
best-calibrated estimated posterior probabilities are identi-
fied. Second, among those summary statistics that perform
well on the first criterion, those summary statistics that lead
to the smallest estimation errors for the parameters 𝜃 are
preferred. The disadvantage of this approach is that reliance
on auxiliary simulations to choose summary statistics adds
to the computational burden. However, the ABC algorithm
is easily parallelized so modern desktop computers are fully
adequate for many problems, such as our example. The user
might consider using criteria other than those used in Figures
2–4 and in Table 1 to evaluate the posterior distribution.
However, we regard those criteria as necessary for adequate
approximation to the posterior in this context.

Future work will consider the acceptance threshold and
variations of ABC such as [17] that mimic standard MCMC
sampling rather than using the rejection method with adjust-
ments to the accepted trial 𝜃 values as in [4, 13]. Also, because
real data almost never obey all the assumptions of anymodel,
even themost elaborate stochastic model, some allowance for
model bias should be made as that done with deterministic
models [6–8]. Finally, a comparison of this ABC approach
with the stochastic model approximator approach in [10]
would be valuable.
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