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Abstract: Chronic hepatitis B virus (HBV) infection is a global health problem that can lead to
liver dysfunction, including liver cirrhosis and hepatocellular carcinoma (HCC). Current antiviral
therapies can control viral replication in patients with chronic HBV infection; however, there is a
risk of HCC development. HBV-related proteins may be produced in hepatocytes regardless of
antiviral therapies and influence intracellular metabolism and signaling pathways, resulting in liver
carcinogenesis. To understand the mechanisms of liver carcinogenesis, the effect of HBV infection
in human hepatocytes should be analyzed. HBV infects human hepatocytes through transfer to the
sodium taurocholate co-transporting polypeptide (NTCP). Although the NTCP is expressed on the
hepatocyte surface in several animals, including mice, HBV infection is limited to human primates.
Due to this species-specific liver tropism, suitable animal models for analyzing HBV replication and
developing antivirals have been lacking since the discovery of the virus. Recently, a humanized mouse
model carrying human hepatocytes in the liver was developed based on several immunodeficient
mice; this is useful for analyzing the HBV life cycle, antiviral effects of existing/novel antivirals, and
intracellular signaling pathways under HBV infection. Herein, the usefulness of human hepatocyte
chimeric mouse models in the analysis of HBV-associated hepatocarcinogenesis is discussed.
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1. Introduction

Despite the global promotion of a universal vaccination program for hepatitis B virus
(HBV) infection, an estimated 257 million people still suffer from chronic HBV infection
and, each year, an estimated 887,000 individuals die from HBV-related liver diseases,
including liver cirrhosis and hepatocellular carcinoma (HCC) [1]. Acute HBV infection
via exposure to blood or other body fluids through sexual intercourse, unsafe injections,
or injury with sharp instruments including medical devices is also recognized as a global
problem. Therefore, vaccines are administered to adolescents besides their administration
to newborns, expecting a long-term effect in preventing HBV infection in adults [2]. As
pegylated interferons and nucleotide/nucleoside analogs have been approved for chronic
hepatitis B treatment, it is now possible to strongly suppress HBV replication, resulting in
the reduction in the severity of liver inflammation and fibrosis [3–9]. The current guidelines
for managing chronic hepatitis B recommend long-term treatments using these antivirals,
with the aim to prevent disease progression and improve patients’ quality of life [10–12].
However, as it is still difficult to eradicate HBV from hepatocytes with the current therapies,
there is still a risk of HCC development, even when HBV replication is continuously
suppressed with antiviral therapy. Therefore, to further reduce the incidence of HCC, it
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is necessary to develop novel antiviral drugs that can lead to viral eradication; however,
most novel drugs are still in preclinical or phase 1 or 2 clinical trials [13].

Considering that HCC occasionally develops even when HBV replication is sup-
pressed substantially by antiviral therapy, HBV-related proteins, such as hepatitis B surface
(HBs), hepatitis B core (HBc), polymerase (pol), and hepatitis B x (HBx) protein, might be
associated with carcinogenesis as their production is maintained during antiviral therapy.
Therefore, to prevent hepatocarcinogenesis more effectively, it is important to understand
the mechanisms of HBV-related hepatocarcinogenesis in detail and identify molecules that
accelerate carcinogenesis by cooperating with viral proteins.

Recently, humanized mice with livers carrying transplanted human hepatocytes have
been used as an experimental model for HBV infection and replication. As humanized
mice are generated from severe immunodeficient mouse lines, hepatitis does not occur in
HBV-infected mice. Therefore, using this mouse model, the direct effect of HBV infection
in human hepatocytes can be analyzed without host immune responses. However, the
association between HBV infection and hepatocarcinogenesis has not been analyzed using
this mouse model as its lifespan is comparatively shorter than that of normal mice, and
HCC does not occur in chimeric mouse livers. In this review, I discuss the usefulness of a
humanized mouse model for analyzing hepatocarcinogenesis via HBV infection.

2. HBV Infection Is Animal Specific

HBV is a member of the Hepadnaviridae family and contains a 3.2-kb partially double-
stranded circular DNA genome in the viral particle. HBV attaches to heparan sulfate
proteoglycan (HSPG) on the surface of hepatocytes [14–17], and then virions enter the hep-
atocytes through transfer to sodium taurocholate cotransporting polypeptide (NTCP) [18].
Although NTCP expression in the liver can be observed in various animals, including mice,
HBV infection is limited to human primates [19]. As the myristoylated pre-S1 subdomain
of the large HB protein, which is considered an important region for the attachment of the
virus to hepatocytes, can bind to hepatocytes of various animals, including mice, regardless
of their susceptibility to HBV [20,21], the restricted infectivity of HBV to primates and
scandentia (treeshrews) is considered to be due to the post-binding steps, such as mem-
brane fusion, and not the presence or absence of the binding receptor [20]. Owing to this
species-specific liver tropism in the early stages of HBV infection, suitable animal models
for analyzing HBV replication and developing antivirals are lacking.

3. Construction of a Human Hepatocyte Chimeric Mouse Model for Hepatitis
Virus Infection

To construct suitable animal models for gene therapy applications and for the analyses
of biological mechanisms in metabolic diseases, autologous hepatocellular transplantation
has been performed in mice, rabbits, and dogs since 1990 [22–24]. However, a serious
problem in these animal experiments was that the replacement rates of the transplanted
hepatocytes in the host livers were very low (less than 1%). In 1994, Rhim et al. succeeded in
improving the replacement rate of autologously transplanted liver cells by up to 80% using
albumin-urokinase (Alb-uPA) transgenic mice in which the urokinase gene is driven by the
murine albumin promoter/enhancer and accelerates hepatocyte death [25,26]. Furthermore,
they succeeded in constructing a rat hepatocyte chimeric mouse model, in which mouse
hepatocytes were replaced with transplanted rat hepatocytes, using Alb-uPA transgenic
mice backcrossed with a nude mouse strain [27]. Thus, repopulation with xenogeneic
hepatocytes in Alb-uPA transgenic mouse livers under immune-deficient conditions has
been indicated to be feasible, especially the construction of human hepatocyte chimeric
mice with livers carrying human hepatocytes.

In 2001, a humanized mouse model was developed using Alb-uPA/SCID mice,
which was generated by backcrossing Alb-uPA transgenic mice with the severe com-
bined immunodeficiency (SCID) mouse strain [28,29]. As the Alb-uPA/SCID mice are
severely immunodeficient, most of their hepatocytes can be replaced with transplanted
human primary hepatocytes without immunological elimination [29,30] and their liver
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tissues are susceptible to HBV [28,31] and hepatitis C virus (HCV) [29,32]. Currently, sev-
eral humanized mouse models, using Alb-uPA Tg/Rag2 KO mice, cDNA-uPA Tg/SCID
mice, Fah−/−/Rag2−/−/IL2rγ−/− (FRG) mice, Fah−/−/NOD/Rag1−/−/IL2rγcnull (FNRG)
mice, and herpes simplex virus type 1 thymidine kinase NOD/SCID/IL2rγcnull (HSV-TK-
NOG) mice, have been developed, and these models have demonstrated susceptibility to
HBV [28,33–40]. Although these humanized mouse models are useful for analyzing the
HBV life cycle [40–47] and antiviral effects of existing and novel antivirals [48–60], it has
not yet been clarified whether hepatocarcinogenesis mechanisms can be analyzed using
these mouse models.

Recently, dual chimeric mouse models that carry not only human hepatocytes but also
human immune cells have been developed by transplanting both human hematopoietic
stem cells (HSCs) and either adult or fetal hepatocytes into some immune-deficient mouse
models, such as FRG mouse [42,61–65]. HBV infects these dual chimeric mice, and hepatitis
and liver fibrosis can be observed after HBV inoculation. However, the replacement rates
to human hepatocytes in the liver are still lower than that in human hepatocyte chimeric
mice, and HCC development has not been reported in these mouse models. Therefore,
the replacement rate should be improved in these models to analyze the mechanisms
of HCC development. If the replacement rate in dual chimeric mouse models can be
improved as much as that in human hepatocyte chimeric mouse model, comprehensive
gene expression analyses can be performed using their livers. Furthermore, it might
help clarify the differences in the effects of HBV infection and human immunity on HBV-
related hepatocarcinogenesis.

4. Analyzing the Association between HBV Genotype and Hepatocarcinogenesis
Using HBV-Infected Humanized Mouse Models

HBV is categorized into nine genotypes based on nucleotide differences, and the
clinical features of chronic hepatitis B, such as the incidence of HCC, are partially different
among HBV genotypes. A Taiwanese cohort study revealed that the incidence of HCC
among HBV genotype C carriers was 2.35-fold higher than that among HBV genotype B
carriers [66]. In contrast, early onset non-cirrhotic HCC is more common in patients with
HBV genotype B infection than in patients with HBV genotype C infection [67–69]. Another
study indicated that patients with HBV genotype C infection have a 4-fold higher risk of de-
veloping cirrhosis and HCC than those with HBV genotype A, B, or D infection [70]. Based
on these clinical studies, HBV genotype C infection might induce hepatocarcinogenesis
more commonly than the other HBV genotypes. Therefore, it should be possible to indicate
the differences in HCC development among HBV genotypes using a humanized mouse
model. Previously, we generated HBV genotype A- and genotype C-infected human hepa-
tocyte chimeric mice and compared the mRNA expression profiles of human hepatocytes
obtained from mouse livers by next-generation sequencing [71]. Although the regulated
pathways were similar between HBV genotype A and C infections, the induction levels
of HBV infection were different (Table 1). Notably, genes associated with oxidative stress
and the Wnt signaling pathway, which are well known to induce carcinogenesis [72–75],
were more highly induced in human hepatocytes with HBV genotype C infection than in
those with HBV genotype A infection. As other studies have also indicated that cellular
stresses, such as oxidative damage, in mouse livers with HBV genotype C2 and Ba infec-
tions were significantly higher than those in mouse livers with infection by other HBV
genotypes [76,77], these results might reflect the differences in the incidence of HCC among
HBV genotypes.
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Table 1. Comparison of induction rates of the top 10 genes which were upregulated in both HBV
genotype A and C infection.

Gene FC
(Cont vs. GtA)

FC
(Cont vs. GtC)

p Value
(GtA vs. GtC)

SAA1 165.419 42.399 0.0418
PRAP1 4.7979 1.2349 0.0054

LYZ 283.224 44.5099 0.0144
LCN2 574.344 165.8939 0.0276
SAA4 6.877 2.583 0.0352

RPL7A 3.330 1.251 0.0014
TMSB4X 1.304 3.297 0.0005

GLUL 3.658 1.165 0.0004
FGL1 3.489 1.050 0.0010
CD74 14.546 3.923 0.0205

CXCL10 18.436 46.935 0.0157
Statistical analysis was performed by t test. FC, fold change; Cont, mice without HBV infection; GtA, mice
with HBV genotype A infection; GtC, mice with HBV genotype C infection; SAA1, serum amyloid A1; PRAP1,
proline-rich acidic protein 1; LYZ, lysozyme; LCN2, lipocalin 2; SAA4, serum amyloid A4; RPL7A, ribosomal
protein L7a; TMSB4X, thymosin, beta-4; GLUL, glutamate ammonia ligase; FGL1, fibrinogen-like 1; and CXCL10,
chemokine, CXC motif, ligand 10.

In addition, thymosin-β4 (TMSB4X) and glutamate-ammonia ligase (GLUL), which
were significantly upregulated by HBV genotype C and A infections, respectively, have
been reported to be associated with other cancers. Although it has been reported that
intracellular β-thymosins regulate monomeric actin to control actin polymerization in cells
and extracellular TMSB4X promotes corneal and dermal wound healing and cardiac repair
after ischemic injury [78], TMSB4X upregulation is frequently observed during tumor
progression and is associated with carcinogenesis and metastasis in various cancers [79–82].
However, TMSB4X upregulation in HCC tissues is not frequent [83] and the association
between TMSB4X and HCC has not been fully analyzed. GLUL is an enzyme involved in
the synthesis of glutamine that catalyzes the condensation of glutamate and ammonia in an
ATP-dependent manner [84]. Glutamine dependency is considered to be enhanced in cancer
cells, and increased glutamine catabolism in MYC-induced liver tumors is associated with
GLUL downregulation [85]. GLUL expression in the livers with HBV genotype C infection
is not upregulated compared with that in the livers with HBV genotype A infection (Table 1),
suggesting an association between GLUL expression with the difference in HCC incidence
among HBV genotypes. Regardless, a genome-wide association study has reported that
GLUL haplotype might be associated with familial HBV-related HCC [86], and further
analyses may clarify the contribution of GLUL toward hepatocarcinogenesis.

Hayashi et al. performed a cDNA microarray using humanized mouse livers infected
with HBV genotype F1b obtained from young Alaskan native patients with HBV-related
HCC. They demonstrated that five genes associated with cell proliferation or carcino-
genesis, v-myc avian myelocytomatosis viral oncogene homolog (MYC), Grb2-associated
binding protein 2 (GAB2), bradykinin receptor B2 (BDKRB2), follistatin (FST), and mitogen-
activated protein kinase kinase kinase 8 (MAP3K8), were significantly upregulated in
human hepatocytes infected with HBV genotype F1b compared with their expression
in hepatocytes infected with other genotypes [87]. Furthermore, they identified that the
incidence of HCC in Alaskan native patients with HBV genotype F1b infection was asso-
ciated with core mutations, and they showed enhanced upregulation of these five genes
by mutations in the basal core promoter and pre-core lesion of the HBV genome using a
humanized mouse model.

Considering that the clinical features of chronic hepatitis B are partially different
among HBV genotypes, molecular mechanisms driving genotypic characteristics, including
the incidence of HCC, might be revealed using a humanized mouse model. Furthermore,
the association between the identified molecular targets and host immune responses might
be analyzed using other in vitro and in vivo models to clarify HBV-related hepatocar-
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cinogenesis, such as dual chimeric mouse models carrying both human hepatocytes and
human immune cells [42,61,62], as the severity of liver inflammation is different among
HBV genotypes.

5. Analyzing the Association between Intracellular Signaling Pathways and
Hepatocarcinogenesis Using HBV-Infected Humanized Mouse Models

It is well known that endoplasmic reticulum (ER) stress is associated with hepatocar-
cinogenesis. As ER stress leads to oxidative stress and DNA damage in hepatocytes, it
can regulate intracellular signaling pathways related to cell proliferation, apoptosis, and
inflammatory cytokine and chemokine production [71,88,89], resulting in carcinogenesis.
In HBV infection, ER stress has been reported to be induced by calcium depletion in the ER
via the accumulation of the HBx and HB proteins (Figure 1) [88,90–92]. HBx induces the
unfolded protein response (UPR), leading to the activation of the activating transcription
factor 6 and inositol-requiring enzyme 1/X-box binding protein 1 pathways in the UPR [93].
Cho et al. reported that HBx induces the proliferation of hepatocellular carcinoma cells via
activator protein 1 (AP1) overexpression as a result of ER stress [94]. In contrast, Li et al.
reported that HBx localizes in the ER lumen and relieves ER stress by directly binding
to glucose-related protein 78, resulting in the prevention of HCC cell death and negative
regulation of DNA repair [95]. Although these findings seem to be contradictory, the former
phenomenon might be induced in normal hepatocytes to repair intracellular disorders, and
the latter might occur in cancer cells for progressing or promoting carcinogenesis. HBx
perturbs intracellular Ca2+ homeostasis and reduces the uptake of Ca2+ in the mitochon-
dria [96]. In contrast, ER stress in hepatocytes is also induced by the accumulation of large
HB proteins [90,91]. When HB proteins accumulate in the ER, the ER expands and releases
Ca2+ into the cytoplasm, activating ER stress signaling [88,90,91,97].

Based on a gene expression analysis using HBV-infected humanized mouse livers,
the production of interleukin (IL)-8 (CXCL8) mRNA in the liver tissues was significantly
upregulated by HBV infection, and CXCL8 transcriptional activation might be induced by
large HB proteins [88]. Although it has been reported that IL-8 could be induced by HBV
infection [98–100], the mechanism of IL-8 induction has not been clarified, and research
using HBV-infected humanized mice may help clarify the mechanism of IL-8 induction.
IL-8 suppresses intracellular immune responses induced by HBV infection; studies have
also demonstrated an association between IL-8 and HCC development. Serum IL-8 is also
associated with the clinical features of HCC, such as tumor grade, extrahepatic metastasis,
and poor prognosis in patients with HCC [101,102], and IL-8 regulates tumor cell growth,
angiogenesis, and metastasis in the liver [103,104]. However, it is unclear whether serum
IL-8 concentration correlates with the production of IL-8 from the liver tissues. This point
needs to be verified using HBV-infected humanized mice.

When ER stress is induced by Ca2+ depletion, stromal interaction molecule 1 (Stim1)
is introduced into the ER lumen, and store-operated Ca2+ entry (SOCE), a cell membrane
calcium transporter, is activated to maintain intracellular Ca2+ homeostasis. However,
the effect of HBV infection on the expressions of Stim1 and SOCE components, such
as the calcium release-activated calcium modulator (Orai) family, has not been clarified.
According to gene expression analyses using HBV-infected humanized mouse livers, Orai1
and Orai2 expressions were not significantly altered at 56-day post-HBV infection, but
increased at 238-day post-infection (Figure 2) [88,89]. Thus, HBx and HB might accumulate
in the ER gradually following infection, and the ER stress signal might be activated to
maintain intracellular homeostasis once viral proteins accumulate beyond a certain level.
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Figure 1. The association between HBV-related proteins and hepatocarcinogenesis via ER stress. Signaling pathways
related to hepatocarcinogenesis via HBs or HBx protein-induced ER stress are shown. HBV, hepatitis B virus; cccDNA,
covalently closed circular DNA; HBx, hepatitis B x protein; L-HBs, large hepatitis B surface protein; m-HBs, middle hepatitis
B surface protein; s-HBs, small hepatitis B surface protein; ER, endoplasmic reticulum; SOCE, store-operated calcium entry;
Orai, calcium release-activated calcium modulator; GRP78, glucose-related protein 78; Rheb, ras homolog enriched in
brain; mTOR, mammalian target of rapamycin; XBP1, X-box binding protein; NFAT, nuclear factor of activated T cells; and
IL-8, interleukin-8.

The ataxia-telangiectasia mutated (ATM)/checkpoint kinase 2 (Chk2)/p53 signal-
ing pathway is one of the checkpoint systems for DNA damage. When double-strand
DNA breaks occur in normal cells, ATM and Chk2 stabilize p53 by phosphorylation, lead-
ing to cell cycle arrest [105,106]. However, the ATM/Chk2/p53 pathway is known to
be impaired in several cancers [107]. Analyses of clinical HCC tissues [108] and hepa-
tocytes obtained from 15-month-old HBV-transgenic mice [109] have shown that Chk2
expression is increased and that Chk2 mislocalizes within mitotic structures. Moreover,
another study indicated that the HB protein inactivates the ATM/Chk2/p53 pathway
by downregulating reticulon 3 (RTN3), which promotes tumor growth [110]. Although
RTN3 interacts with Chk2 and the complex is recruited to the ER, its activation is depen-
dent on the calcium concentration in the ER [110]. As mentioned above, as ER stress by
Ca2+ depletion can be observed in humanized mouse livers, the association between the
ATM/Chk2/p53 pathway and hepatocarcinogenesis might be analyzed in detail using
HBV-infected humanized mice.

It has been demonstrated that long non-coding RNAs (lncRNAs) participate in many
cellular processes [111]. One of the proliferating cell nuclear antigen (PCNA) pseudogenes,
PCNAP1, is a lncRNA with 78% homology to the 3′-UTR of the PCNA transcript. Feng
et al. demonstrated that PCNAP1 expression was upregulated in both humanized mouse
livers after HBV infection and in HCC tissues [112]. They also indicated that PCNAP1
increased PCNA expression by competing with miR-154, resulting in the promotion of
tumor cell growth. Although the functional analyses of PCNAP1 were performed using
hepatoma cell lines and clinical HCC tissues, the upregulation of PCNAP1 might also be
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observed in HBV-infected humanized mice. The humanized mouse model might be useful
for analyzing alterations in gene or pseudogene expression.

Figure 2. Upregulation of Orai family in human hepatocytes after long term HBV infection. Twenty-three human hepatocyte
chimeric mice were prepared, and 19 were inoculated with 106 copies of HBV via the mouse tail vein. Mice were sacrificed
at 3, 10, 35, 56, and 238 days after inoculation, and human hepatocytes were collected from mouse livers obtained from
HBV-infected or non-infected mice. Total RNA was extracted. Gene expression analysis was performed using next-
generation sequencing, and Stim1 (A), Orai1 (B), and Orai2 (C) expression profiles were extracted. All statistical analyses
were performed using the Student’s t-test. Stim1, stromal interaction molecule 1; Orai, calcium release-activated calcium
modulator; p, p value.

6. Analyzing HBV Integration and Hepatocarcinogenesis Using HBV-Infected
Humanized Mouse Models

As HBV integration has been identified in several genes, such as TP53 (p53), CTNNB1,
and the promoter of TERT [113–116], HBV integration has been considered to be a potent
driver of HCC development [117]. However, the contribution of HBV integration to HCC
development is controversial as HBV integration occurs in random sites in the host genome
and seems to not drive clonal expansion in cancer lesions in genomic studies [116,118–121].
Therefore, the analysis of HBV integration using HBV-infected humanized mice is desir-
able. Recently, ultra-deep sequencing analysis was performed using humanized mouse
livers, and data from several time points after HBV infection were obtained [121]. HBV
integration in mouse livers increased at 4–7 weeks after HBV infection, similar to the
increase in intracellular HBV DNA, and approximately 70% of HBV integrations were
observed in mitochondrial DNA. Considering that 0.1% of HBV integrations were ob-
served in mitochondrial DNA in clinical tissues, and that most humanized mice have a
short lifespan, it might be difficult to analyze the association between HBV integration and
hepatocarcinogenesis using HBV-infected humanized mouse models.
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7. Analyzing Epigenetic Modifications and Hepatocarcinogenesis Using HBV-Infected
Humanized Mouse Models

Epigenetic modifications are significantly associated with the genesis and progression
of liver fibrosis. According to a genome-wide methylation analysis using peripheral blood
mononuclear cells (PBMCs) obtained from patients with HBV-related liver diseases, the
CpG methylation profiles in PBMCs might be associated with peripheral immune responses
and might be useful as a biomarker to predict liver cirrhosis [122]. In hepatocytes, viral
pathogens engage in numerous cellular events, including epigenetic modifications that
promote tumorigenesis [123]. In HBV infection, aberrant DNA methylation is considered to
be induced by HBV-related proteins, especially HBx [124–127]. Although DNA methylation
is commonly observed in normal aging livers, aberrant methylation of CpG islands of genes
is induced during liver inflammation and hepatocarcinogenesis [124–126]. To analyze the
effect of HBV infection on DNA methylation, a methylated CpG island amplification
microarray analysis was performed using HBV-infected humanized mouse livers [128].
The number of methylated genes in HCV mice was similar to or slightly higher than that in
HCV-infected humanized mouse livers, and it varied with the infection term. Furthermore,
in this study, 70% of methylated genes were extracted from both HBV- and HCV-infected
livers, and HBV-specific DNA methylation was not identified.

Other epigenetic modifications, such as histone modifications, are recognized as
key intracellular alterations associated with carcinogenesis [129–136]. HBx has been
demonstrated to promote HBV-induced HCC pathogenesis by inducing histone modi-
fications [137–140]. The cyclic AMP response element-binding protein (CREB)-binding
protein (CREBBP)/p300 transcriptional regulatory complex induces histone acetylation
by interacting with HBx, leading to the upregulation of the expression of genes associated
with tumorigenesis [140]. HBx also recruits the mSin3A/histone deacetylase 1 (HDAC1)
or HDAC1/Sp1 complex and contributes to the activation of hepatocarcinogenesis by
suppressing tumor suppressor genes [137,138]. Furthermore, histone methyltransferases,
such as SET and MYND domain-containing 3 and suppressor of variegation 3–9 homolog 1
(SUV39h1), are also known to be upregulated in HCC tissues [129,130,134,141], and their
expression is enhanced by HBx [134,136]. In addition, HBx is involved, directly or indi-
rectly, in the impairment of efficient homologous recombination and is known to induce
genomic instability by the inhibition of histone H2B monoubiquitylation and by structural
maintenance of chromosome 5/6 (Smc5/6) ubiquitination using a hijacked CRL4 com-
plex [142]. Although SUV39h1 upregulation is indicated in the HBV-infected humanized
mouse model [134], exhaustive analyses, such as chromatin immunoprecipitation sequenc-
ing, have not yet been performed using HBV-infected humanized mice. As epigenetic
modifications are considered to occur from the early phase of carcinogenesis and to change
with disease progression, exhaustive analyses might contribute to the identification of
novel therapeutic targets for HCC.

8. Conclusions and Future Prospects

In this review, I have discussed the usefulness of humanized mouse models carrying
human hepatocytes in the liver for analyzing HCC development. As these mouse models
are derived from immunodeficient mouse strains, the potential host immune response
to HBV infection is effectively eliminated, allowing researchers to study the direct effect
of HBV infection on human hepatocytes. Thus, these mouse models might be useful
for identifying therapeutic molecular targets. However, these models cannot be used
to analyze the effect of inflammation on the liver. Hepatocarcinogenesis is considered
to be supported by not only by HBV proteins, but also continuous liver inflammation.
The association between the identified therapeutic molecular targets and host immune
responses should be analyzed using other in vitro and in vivo models for clarifying HBV-
related hepatocarcinogenesis. Recently, dual chimeric mouse models which carry not only
human hepatocytes, but also human immune cells have been developed [42,61,62]. These
models allow researchers to analyze the effects of both HBV infection and human immunity
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on HBV-related hepatocarcinogenesis. However, the differences in clinical parameters,
such as HBV protein production levels, the duration of HBV infection, and the strength of
the immune responses, should also be considered while interpreting the results.
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