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Inferring strategies 
from observations in long iterated 
Prisoner’s dilemma experiments
Eladio Montero‑Porras1,5*, Jelena Grujić1,5, Elias Fernández Domingos1,2 & Tom Lenaerts1,2,3,4

While many theoretical studies have revealed the strategies that could lead to and maintain 
cooperation in the Iterated Prisoner’s dilemma, less is known about what human participants actually 
do in this game and how strategies change when being confronted with anonymous partners in each 
round. Previous attempts used short experiments, made different assumptions of possible strategies, 
and led to very different conclusions. We present here two long treatments that differ in the partner 
matching strategy used, i.e. fixed or shuffled partners. Here we use unsupervised methods to cluster 
the players based on their actions and then Hidden Markov Model to infer what the memory-one 
strategies are in each cluster. Analysis of the inferred strategies reveals that fixed partner interaction 
leads to behavioral self-organization. Shuffled partners generate subgroups of memory-one strategies 
that remain entangled, apparently blocking the self-selection process that leads to fully cooperating 
participants in the fixed partner treatment. Analyzing the latter in more detail shows that AllC, AllD, 
TFT- and WSLS-like behavior can be observed. This study also reveals that long treatments are needed 
as experiments with less than 25 rounds capture mostly the learning phase participants go through in 
these kinds of experiments.

The emergence of cooperation in human populations has been an object of study in many different disciplines 
ranging from social sciences1–3, physics and complex systems4,5 to biology6,7 and computer science8, among many 
others. While cooperation is widespread in human societies, its origins remain unclear, although many mecha-
nisms have been proposed to explain its evolutionary advantage2. In fact, many social situations pose a dilemma, 
in which, while being cooperative towards society is beneficial for the population as a whole, free-riding on the 
efforts of others may generate substantial individual gains9,10. While many studies have explored which individual 
behaviors can promote cooperation in these social dilemmas8,11,12 or aimed to find how much human decision-
making aligns with those cooperative strategies1,13, not so much is known about which strategies effectively can 
be extracted from experimental game-theoretical data, which often do not end in full cooperation. Identifying 
the actual decision-making schemes is essential, especially if one wants to understand why cooperation is not 
achieving anticipated levels, to grasp the incentives needed to promote beneficial outcomes or how artificial 
systems may need to be designed so that they align with human pro-social behavior.

Using a data science approach we aim to provide an answer to such questions here, focusing on a new cohort 
of game theoretical experiments within the well-known framework of the pairwise Iterated Prisoner’s dilemma 
(IPD)14. In the IPD, when both players cooperate (C) in a round, they both get a reward (represented by R), while 
if one of them defects (D), and the other cooperates they get a payoff T and S respectively. If both defect, they 
both get a payoff P. The dilemma emerges when T > R > P > S , with 2R > T + S . The payoff is accumulated 
by the interacting players at each round until the game ends. In this iterated version of the one-shot PD there 
are a plethora of possible equilibrium outcomes15, including cooperative ones16.

The literature has reported on many strategies that can induce cooperation in the IPD with fixed partners. 
These results were produced mainly through models and simulations. In the famous first Axelrod tournament17, 
for instance, Tit-for-Tat (TFT) emerged as the most successful strategy. TFT starts by signaling the intention 
to cooperate and afterwards mimics the previous action of the opponent, and it has been argued to be a good 
representation of reciprocal behavior in human societies. Reciprocity has been thoroughly researched as one of 
the most important mechanisms to favour cooperation1,2,18. More generally, conditionally cooperative strategies 

OPEN

1Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Brussels  1050, Belgium. 2Machine Learning 
Group, Université Libre de Bruxelles, Brussels  1050, Belgium. 3Center for Human-Compatible AI, UC Berkeley, 
Berkeley  94702, USA. 4FARI Institute, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050  Brussels, 
Belgium. 5These authors contributed equally: Eladio Montero-Porras and Jelena Grujić. *email: eladio.montero@
vub.be

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-11654-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7589  | https://doi.org/10.1038/s41598-022-11654-2

www.nature.com/scientificreports/

appear to generate the right set of opportunities for cooperative behavior to spread in large populations19–21, 
highlighting the importance of context and past experiences in the effectiveness of cooperative strategies. Reci-
procity thus justifies, from an evolutionary perspective, the existence of altruistic and pro-social behaviors22.

However successful TFT was to explain aspects such as direct reciprocity and conditional cooperation, this 
strategy is known to dissolve into mutual defection in the presence of execution errors, i.e. when participants 
fail to keep the implicit cooperative agreement at a given round23, especially in heterogeneous populations24. 
Attempts to repair this flaw lead to the introduction of Generous-Tit-for-Tat (GTFT)25 which cooperates if the 
opponent cooperates, but if the opponent defects it sometimes “forgives” and continues to cooperate. This strategy 
is also a reactive strategy, but unlike TFT, it is stochastic, because the player’s next action is now given with some 
probability. Yet, GTFT has its own problems leading to the introduction of the Win-Stay-Lose-Shift (WSLS)26 
strategy that repeats the action from the previous round if the player is happy with the obtained payoff (T and 
R), otherwise changes to the opposite action (when the payoff is P or S). More strategies have been proposed and 
analyzed since then (see Martinez-Vaquero et al27 for a comprehensive study).

From an experimental angle, only a few works have examined how participant actions in the IPD may be 
translated into relevant strategies used by humans, while also studying what factors may affect the observed 
behavior. Some experiments with animals showed that guppies7, sticklebacks28 and tree swallows29, exhibit a 
TFT-like behavior. In human behavioral economic experiments, both the theoretical GTFT and WSLS appear 
to align with the decision-process of the subjects30. Dal Bó et al31 showed in another IPD experiment that, when 
given the choice among theoretical strategies, subjects preferred strategies like Always Defect (AllD), TFT, and 
Grim Trigger (starts cooperating, cooperates as long as both players have cooperated in the last round, and 
defects otherwise) and did not use WSLS, which was shown to have more “desirable” properties, such as not 
defecting forever after a deviation.

While matching theoretical strategies to experiments or asking people to select their preferred strategy pro-
vides insight into how they relate to human preferences, it does not immediately reveal how humans actually 
decide to act in the IPD while playing freely, since their strategies can change with time and respond to different 
factors, such as their opponents’ actions or simply by learning the game and reach their own equilibrium. Alter-
natively, their strategy may be directly inferred from the data itself, using algorithmic models32. This approach 
was taken to determine the strategies in an Ultimatum game experiment, where binary decision trees were used to 
model the strategies33 or symbolic regression34. A similar approach was taken to infer the behavior of participants 
in Trust games35,36 or in a market simulation, where strategies were inferred using using Bayesian inference37,38. 
Yet so far, no inference of strategic models has been performed on IPD, a caveat this work is overcoming.

We present thus, on the one hand, the results of a behavioral economics experiment that investigates how 
subjects act in the IPD and, on the other hand, the strategies that can be extracted from the data. The experiment 
consists of two treatments: i) one where the subjects play the IPD with a fixed partner over a large, unspecified 
number of rounds, which will be called the fixed partners or FP treatment; and ii) a second long IPD treatment 
where the opponent changes each round, which we call shuffled partners or SP treatment. The objective of col-
lecting the data over a large number of rounds was to understand what the effect is of a long experiment on the 
level of cooperation in the IPD and to study how the inferred behavior differs over time and between a setting 
where partnerships can be established or one where one is repeatedly confronted by strangers39–41.

It is not clear from the literature how many rounds of the IPD are needed to observe a stabilization in the 
human decision-making process, meaning that the learning phase has passed and people are acting according 
to a clearly defined strategy. Some works have studied the strategies subjects play for ten rounds42, another 
one that studied the evolution of cooperation in the IPD lasted on average 1.96 and 4.42 rounds, for their two 
treatments43, another work studied strategies in the IPD with noise lasted on average 8 rounds, where they noticed 
a considerable strategic diversity, suggesting the subjects did not learn the game completely44, others, a range 
of 10 to 35 rounds45, 15 rounds46 and 100 rounds47, to cite a few. Yet, the latter focuses on an interaction with a 
fixed theoretically defined agent. To study the evolution in the decision-making process, we need to know how 
long the subjects need to learn the game among themselves in different points in time. Given this insight, one 
can then use the algorithmic modeling approach to infer the actual behaviors, comparing them over time and 
over different treatment settings, as is the case here.

As experience determines the behavior of each participant, which we will call context, we will use unsuper-
vised clustering techniques to identify the contexts that are found in both IPD treatment data and then determine 
which strategic algorithmic models may be inferred from the data in each of the contexts (with the context being 
defined by their own actions and their opponents’ in the previous round). We focus in this work on memory-one 
strategies since the experiments only informed participants of what happened in a previous round. Moreover, it 
has been shown that for indefinitely repeated games, players’ payoffs with memory-one strategies are the same 
regardless if their co-players use longer-memory strategies48, making it difficult to discern the significance of 
the longer-memory ones.

Our hypothesis is that different behaviors will be inferred from the differing context experiences. Iterating 
the game for a sufficient time, as specified earlier, will thus allow to clearly discern their short and long-term 
behavior. We designed the experiment to last 100 rounds, without explicitly informing this hard limit to the par-
ticipants, which is much longer than previous experiments43–45 to cite a few, and investigated how many rounds 
are actually needed before the learning process ends and the participant behavior appears to become consistent. 
In other long experiments, this stabilization seemed to appear after 10-20 rounds49, which will be examined in 
more in a detailed analysis here.

The participant behavior is modeled using Hidden Markov Models (HMM)50, and its parameters are trained 
using hmmlearn51 on the treatment data separated in behavioral clusters, while simultaneously trying to find 
the preferred minimal HMM structure (number of states and transition structure) to achieve this. The result-
ing HMM models are both simple and transparent, containing enough modeling power to represent subjects’ 
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strategies in the IPD while also being generative. The latter is of interest as the inferred strategies could be directly 
be used within the context of theoretical simulations assessing their performance, which is left for future work.

Methods
Experimental data collection.  As explained in the Introduction, data was collected for two treatments 
wherein participants played long IPD in two different pairwise configurations, i.e. fixed partners (FP) and shuf-
fled partners (SP). The data from these experiments were collected in Brussels, Belgium, at the Brussels Experi-
mental Economics Laboratory (BEEL), part of the Vrije Universiteit Brussel (VUB). All experiments followed 
the relevant guidelines and regulations of data protection and experiments with human participants and were 
approved by the Ethical Commission for Human Sciences at the VUB (ECHW2015_3). Moreover, all partici-
pants gave consent to the experiment by signing a consent form after the instructions of the experiment were 
read and all questions the participants had were answered and addressed.

Table 1 shows the payoff matrix containing the per round rewards used in the two treatments. For both treat-
ments, participants could observe the actions of their partner in the previous round, even when this partner 
changed from the previous to the current round. More information about the experimental sessions and details 
about the data collected can be found in the Supplementary Information.

For each participant in both treatments, we collected their choices, as is visualized by panel A in Fig. 1. The 
combination of two actions, i.e. CC, CD, DC or DD (action format: player-opponent, e.g. CD means the focal 
player cooperated and their opponent defected in the previous round), provides a context for the next round, 
as participants will get this information when making their decision. Each context can now be combined with 
the action of a participant after observing that context and this combination, as shown in panel B of Fig. 1, can 
now be translated into one of eight values. The entire sequence of actions of a participant and the associated 
contexts can thus be transformed into a new sequence of numbers that represent the conditional actions of each 
participant. This new sequence will be used to train an HMM, representing in its emission probabilities in every 
state the conditional response, i.e. cooperate or defect, based on the context they experienced. We also collect 
for each context, the probability of observing a conditionally cooperative action, as visualized in Figs. 4 and 6in 
the Results section.

Clustering contexts and context‑dependent behaviors.  People act according to their preferences, 
which includes how they think others should behave. In order to understand the strategies that are being used 
one needs to explicitly consider the context wherein they happen. Thus, to find the strategies in the FP and SP 
treatments, we first separate participants according to their experiences. Once this is complete one can question 
whether each participant displays the same response for the contexts they experience. This allows one to cor-
rectly grasp how humans act in the IPD. As mentioned in the introduction, we focus in this work on memory-
one strategies. There are two reasons for this focus: 1) as Press et al. mentioned, in indefinitely repeated games 
memory-one strategies have the same payoff against those with a longer memory48, making it problematic to 
discern them. This argument holds for our experiments as the participants did not know how many rounds the 
experiment would take. 2) The experimental interface (see Supplementary Information) only reminded partici-
pants of their and their opponent’s actions in the last round. It may be that participants remember actions from 
two or more rounds in the past, yet they were not triggered to do so. Our methodology nevertheless allows for 
the identification of strategies with longer memories, but we have left that for future work as new experiments 
and more extensive analysis would be required to estimate the importance of each longer-memory strategy 
against the memory-one’s that are studied here.

To identify the context groups and the behaviors within those groups, a cluster analysis was performed here: 
we first clustered the subjects based on the number of times of (CC), (CD), (DC) and (DD) happened, providing 
a contextual clustering. Subsequently, another clustering was performed on the number of cooperative actions 
in the sequence for each of the previous action combinations, i.e. (CC)C, (CD)C, (DC)C and (DD)C, providing 
thus a behavioral clustering per context. These variables are used to generate the t-distributed stochastic neighbor 
embedding (t-SNE)52 plot in Fig. 3 and Supplementary Fig. s3.

Different clustering approaches were considered (e.g. K-means, Hierarchical Clustering, and Network Modu-
larity analysis, as can be observed in Supplementary Information, see section 1.3 for more information on the 
Modularity Network clustering) but in the end, K-means is sufficient as the other approaches generated similar 
results (see for Supplementary Fig. S1, S3 top row, for a comparison with Hierarchical Clustering and Fig. S4 
for Modularity Network Clustering). The implementations were done in Scikit learn53. To determine the opti-
mal number of clusters, we used the “elbow” method by Santopaa et al54 which plots a curve with the sum of 
squared distances of samples to their closest cluster center and chooses the minimum best number of clusters 
that minimize the inertia. See Supplementary Figs. S1 and S2 for the results produced but the “elbow” method.

To evaluate the quality of the results generated by clustering algorithms, we use the silhouette measure55, 
which measures the mean intra-cluster Euclidean distance and the mean nearest-cluster Euclidean distance for 

Table 1.   Payoff matrix for both IPD treatments.

C D

C 3,3 0,4

D 4,0 1,1
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each observation, with 1 is being the best score and values near zero indicate that some clusters might be over-
lapping, while negative values indicate observations assigned to a wrong cluster.

Inferring Hidden Markov Models.  Given the context clusters and the context-dependent behavioral sub-
clusters, a HMM, using the conditional action sequences (see Fig. 1), is produced for each sub-cluster. As shown 
in the figure, a HMM is composed of a number of states (s1 and s2 in the figure) which are connected by tran-
sitions (yellow arrows). The HMM is a probabilistic Markov Model in which each observation of a sequence 
is produced by a hidden (non-observable) state50. We used a multinomial model for HMM with a sequential 
structure, this means that the model has states connected from left to right, where a transition to another state 
can only be made in that direction. Returns to a previous hidden state are thus not possible. As also shown in the 
figure, the transformed sequence of conditional actions is used to train the HMM. The procedure to determine 
the optimal number of hidden states is specified in Algorithm 1 in the Supplementary Information.

To train the HMM, the hmmlearn library51 was used. To visualize the resulting models the GraphViz pack-
age for Python56 was used. We expect the participant choices to be stochastic since subjects were not instructed 
to use any strategy in particular, but the action they considered was best according to their expectations. For 
this reason, we expect the inferred strategies to be noisy. For visualization, we mapped the number sequences 
back to human-readable triplets, and all the emission probabilities in the HMM less than 0.05 were discarded, 
as shown in Fig. 1*.

Evolution of the strategies.  To analyze how the players changed and adapted their strategy over all the 
100 rounds, the same procedure of the two-fold clustering and HMM modeling was performed on four differ-

Figure 1.   From treatment data to HMM. (A) At the top, the first 10 rounds between a player and her opponent, 
In the red box, the actions of round 2, which represent the context for round 3. (B) The action sequence 
mapping, with the green box in panel A representing the action sequence (CD)D for player A and the blue box 
(DC)C also in panel A for player B in rounds 5 and 7 respectively. (C) The transformed sequence for players A 
and B into integers so the HMM with the mapping table in panel B. (D) The resulting sequences are grouped 
given their sub-cluster and then processed by the HMM in panel (E). In this example, the resulting HMM 
is a model with two states s1 and s2 with transition probabilities given by the yellow arrows with emission 
probabilities in the boxes below. (F) HMM visualization. Note that all the emission probabilities ≤ 0.05 and all 
transition probabilities ≤ 0.01 were not taken into account for readability. The resulting HMM emission table is 
colored green from the hidden state s1.
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ent round windows, i.e. from round 1-25, 26-50, 51-75, and finally rounds 76-100). The objective is to assess 
whether the strategy stabilizes over time and to examine how the treatment, i.e. fixed or shuffled partners, affect 
the results.

Ethical approval.  Ethical approval by reference number ECHW2015_3 was obtained from the Ethical 
Commission for Human Sciences at the Vrije Universiteit Brussel to perform this experiment. All experiments 
were performed in accordance with the European Union GDPR guidelines and regulations, and the study was 
conducted in accordance with the Declaration of Helsinki. All the participants in the study had to give their 
informed consent prior to the participation. All the data of the experiment has been anonymized and cannot be 
linked to any participant.

Results
Specific contextual subgroups with associated behavioral responses emerge in each treat‑
ment.  Before identifying the different clusters in the data provided by both treatments (see “Methods” sec-
tion and Supplementary Information for details), we first examine the distribution of contexts experienced by 
participants during the experiment. Figure 2 shows this distribution while also revealing the fraction of times 
each context led to a cooperative response by a participant. In the case of the FP treatment, mutual cooperation 
(CC) or mutual defection (DD) is observed most often and was matched with the expected response (i.e. either 
(CC) → C or (DD) → D , which we write as (CC)C and (DD)D respectively). In the SP treatment, mutual defec-
tion DD and the anticipated response D was most prevalent. Although a similar cooperation probability was 
shared by the two treatments (see Supplementary Table S3) in the case of DC and CD, there was a higher prob-
ability of cooperation in FP than in SP in the DC context, i.e. responding positively to an act of cooperation of 
the co-player. Overall, the figure shows that by shuffling partners cooperation is reduced, as anticipated by prior 
experiments39. Also, it already hints at different clusters that could be inferred from both data sets.

Clustering the treatments on the contextual information that each participant experiences (the frequency of 
contexts CC, CD, DC and DD) with K-means (see “Methods” section) singled out 3 groups in both FP and also 3 
in SP. As reported in “Methods” section and visualized in Supplementary Fig. S1, different algorithms (network 
modularity and hierarchical clustering) were tested, revealing that a similar number of clusters was obtained in 
each case. Cluster quality is assessed using silhouette scores, which are 0.5445 and 0.4201 respectively for the 
FP and SP treatment. These results indicated that a relatively good separation is found between the different 
contextual clusters.

Panel A in Fig. 3 shows the composition of each cluster in terms of its context. In the FP treatment (A, top 
row), three different groups are identified: Cluster A containing the players who experience mutual cooperation 
CC most often, cluster B where they experience mutual defection DD most, and then cluster C where experi-
ences are mixed. These results were anticipated, given the differences shown in Fig. 2. In SP (bottom row Fig. 3A) 
mutual defection is favored over mutual cooperation in two of the clusters, i.e. clusters D and E. Nonetheless, 
there are sufficient differences between them which are captured by our clustering approach.

The tSNE plot (see “Methods” section) in panel B of Fig. 3 allows for the exploration of these differences 
and compares the clusters identified in both treatments. This plot reveals that clusters A and C, which are more 
cooperative in experienced contexts and responses, clearly differentiate themselves from the rest, and one can 
find them at completely the other side of experiences and responses to those belonging to cluster B of the FP 
treatment. There seems nonetheless to be an overlap between some members cluster C and those in F in the 

Figure 2.   Probability of each context and the cooperation rate per treatment. In the x-axis, the context of 
each decision is shown, i.e. the actions of the previous round. The green bar in each chart shows the fraction of 
subsequent cooperative actions when experiencing the particular context.
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SP treatment, yet most C members form a group on themselves. The experiences and behaviors of members of 
the E cluster, on the other hand, are close to those in B, which one can also observe when comparing the two 
bar charts. Finally, cluster D consists of participants that have experiences and responses that lie in between all 
others, separating the more defective and cooperative spectrum.

Given these observations, in the following sections, we show how we can infer the behaviors adopted by 
participants in each contextual cluster. It is important to note that not considering explicitly the experiences of 
the participants and focusing directly on the conditional behavior may result in grouping together participants 
that have encountered a different distribution of contexts. It is therefore essential to first partition the partici-
pants in function of their contexts distribution and then determine how they differ in their choices given these 
experiences.

Fixed partners promotes behavioral self‑selection to cooperative or defecting behav‑
iors.  Table 2 reports the number of behavioral sub-clusters for each contextual cluster (see “Methods” sec-
tion): in total, 8 subgroups were inferred from the raw data of the FP treatment, i.e., 2 in cluster A, 3 in cluster B, 
and 3 in cluster C. Supplementary Fig. S3 shows a tSNE visualization of how the treatment data is divided into 
clusters and sub-clusters for FP. As before, the best settings for K in K-means clustering were produced using the 
“elbow” method54 (see “Methods” section and Supplementary Fig. S2).

The behaviors in each contextual cluster are captured each time by two plots: i) a first plot that shows the 
likelihood of cooperation when experiencing a given context in a contextual cluster, and ii) a second plot that 
provides the inferred HMM in the behavioral sub-cluster (see “Methods” section).

For cluster A, one can observe the difference in response when it comes to a DD situation, when comparing 
both sub-clusters (results in red): Individuals in cluster A.0 are more likely to cooperate again, than those in A.1 
(see Fig. 4). Moreover, the resulting HMM for cluster A.0 shows how an initial strategy of reciprocating defection 
((CD)D), leads to mutual cooperation ((CC)C). In addition, an increase in forgiving defective behavior ((CD)C) 
can be observed in Cluster A.1 (see HMM for A.1 in Fig. 5), which is present less often in cluster A.0.

Figure 3.   Probability of cooperation given each context per cluster (using K-Means). (A) The top row shows 
the context composition of each cluster in the FP treatment, the bottom row does the same for each SP cluster. 
(B) tSNE visualization of the different clusters A–F.

Table 2.   Summary of the clustering results using K-Means. The contextual clustering results in 3 clusters of 
similar sizes. The behavioral clustering per context yielded 8 behavioral sub-clusters in FP and 11 behavioral 
sub-clusters in SP. The scikit-learn53 silhouette analysis was used to determine the quality of the clusters 
generated with the “elbow” method (see “Methods” section).

Treatment

Context No. behavioral Silhouette

Cluster Sub-clusters  Score

FP A (n = 30) 2 0.6868

FP B (n = 30) 3 0.3848

FP C (n = 32) 3 0.4627

SP D (n = 38) 4 0.2993

SP E (n = 38) 4 0.4417

SP F (n = 20) 3 0.4176
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Although cluster B is divided into three sub-clusters, there are actually two essential ones in terms of the 
number of participants they represent (see both Fig. 4 and the green HMM in Fig. 5). This next FP cluster mainly 
experienced mutual defection, and it is situated at the opposite of the behaviors present in the other two FP 
clusters (see Fig. 3B). Looking at B.1 and B.2 in both figures, participants in sub-cluster B.1 appear to respond 
more often with cooperation than those in sub-cluster B.2 (see Fig. 4, center panel), given that the triplets (CD)C 
and (DD)C occur at a higher frequency and that unconditional defection (DC)D occurs with a high frequency 
in sub-cluster B.2.

Finally, in cluster C of the FP treatment, participants experienced a mixture of contexts, with a preference for 
mutually cooperative interactions. Clustering this group and inferring the corresponding HMM still revealed 
some differences (see again Fig. 4, Cluster C and Fig. 5, blue group). Sub-cluster C.0 presents different behavior, 
members of this sub-cluster unconditionally cooperated despite their opponent’s defection ((CD)C). Sub-cluster 
C.1 had a mixed strategy of reciprocating their opponent’s previous action, but their rate of exploitation ((CC)D 
= 0.33 and (DC)D = 0.07) is higher than other sub-clusters. Lastly, the sub-cluster C.2 was mainly matching 
their opponent’s previous action.

While stranger interactions induce defection, cooperative aspirations remain.  In the SP treat-
ment, a larger variety of behaviors can be observed, i.e. 11 in total spread again over 3 contextual clusters. Fig-
ures 6 and 7 immediately reveal some interesting information about the participants’ behavior in the three clus-
ters found for the SP treatment. Over all three clusters, i.e, D, E, and F, we can observe, through their associated 
HMM models, that they have different degrees of mutual defection (DD), with E containing the most (as also 
was clear from Fig. 3, bottom row, panel A). Moreover, the HMM models for E reveal a high tendency to defect 
even when the co-player acts cooperatively, even more than the defecting cluster B in FP. The opposite seems 

Figure 4.   Probability of cooperation given each context per cluster for the FP treatment. In each plot, the 
conditional probability of cooperating for each context is given. The bars represent the binomial error. Each 
contextual cluster is divided into sub-clusters that were identified using the frequency of cooperation given a 
context.

Figure 5.   Hidden Markov Models for the FP treatment. Here, the eight sub-clusters found in FP have a HMM 
that describes each sub-cluster’s strategy for the data over all rounds. Bold rectangles represent the initial state, 
while the others represent subsequent hidden states. Symbols with a probability lower than 0.05 are not shown, 
as well as the transition probability between states lower or equal to 0.01.
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to occur in cluster F, where mutual cooperation is the highest and players are more likely to ignore a unilateral 
defection of the co-player.

Cluster D on the other hand, appears to represent intermediate behavior with players still more mutually 
defecting but the frequency of some other response patterns has increased, which is also visible in Fig. 3B. Sub-
cluster D.1 shows to be more conditionally cooperative ((CC)C and (DC)C) than the other sub-clusters in D, 
i.e. with probability 0.3 (see Fig. 7, cluster D). Players in sub-cluster D.3 and E.2 appear to try to signal their 
co-players to cooperate given the high frequency of (DD)C in that subgroup to establish cooperation. The cluster 
D.0 is very similar to the sub-cluster D.2, where the difference is how forgiving and relentless they appear to be 
in relation to their co-player (see frequency of (CD)C and (DC)D in D.0 versus D.2).

Decision‑making simplifies over time and outcomes are decided early.  Although the HMM 
models in Figs. 5 and 7 provide detailed insights into the behaviors observed over a complete (long) IPD experi-
ment, we need to understand whether these behaviors are consistent over time, or whether early decision-mak-
ing differs from downstream decision-making, which would indicate a learning effect in the experiment. To 
achieve this goal, the treatment data for each participant is divided into four parts, each consisting of 25 rounds. 
For each window of 25 rounds, a separate HMM is trained, collectively visualized in the Supplementary Fig. S8 
for the FP treatment and Supplementary Fig. S9 for the FP treatment.

For FP one can observe that each strategy seems to converge with time to a dominating decision-making 
pattern. For example, the differences we observed between sub-clusters A.0 and A.1 are determined by how they 
act in the first 25 rounds, where it seems participants were still exploring their options. For example, participants 
in sub-cluster A.1, show a mix of unconditional cooperation ((CD)C), unconditional defection ((DC)D) and 

Figure 6.   Probability of cooperation given each context for the Shuffled Partners treatment. In the x-axis, it 
is shown the probability of cooperating given that in the previous round there was a certain context. The bars 
represent the binomial error. Each cluster is divided into sub-cluster that were divided using the frequency of 
cooperation given a context.

Figure 7.   Hidden Markov Models for the Shuffled Partners treatment. Here, the eleven sub-clusters found in 
SP have a HMM that describes each sub-cluster’s strategy. Symbols with a probability less than 0.05 were not 
shown, as well as the transition between states less or equal to 0.01.
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conditional behaviors ((CD)D, (DD)D and (CC)C). After 25 rounds, they coordinated on mutual cooperation for 
the remainder of the game. Cluster A.0 appears to have led to cooperation thanks to an initial reciprocal behavior 
((CD)D) that was followed by being resolving mistakes if they occur ((DC)C). Something similar, but then for 
defection, happens in SP (see Supplementary Fig. S9), where sub-clusters E.0 and E.1 differs essentially in how 
they react to contexts in the first 25 rounds, yet converge to the same behavioral pattern in the end.

The evolution of sub-cluster B.0 underlines the importance to have long enough experiments: as can be 
observed, these two participants started out exploring actions in the first 25 rounds, then mutually defected 
in the next 50 rounds, and finally found a way to cooperate in the last 25. The other two sub-clusters, B.1 and 
B.2 increase their probability to reciprocate defection (DD)D, but participants in sub-cluster B.1 showed from 
rounds 26-75 a willingness to establish cooperation ( (CD)C = 0.24 and 0.12 respectively) and ended up acting 
conditionally in the last quarter of the game.

Additionally, although cluster C in FP appeared to have less well-defined behaviors associated with it, one 
can see that C.0 and C.2 are in fact also very specific in their HMM description. Only for C.1 do we see many 
different contexts and responses in the emission probabilities of the HMM, yet this abundance of responses 
remains consistent over all rounds. A very similar situation happens in SP (see Supplementary Fig. S9), where 
even though in some clusters the strategies became more concise by having less diversity of contexts (see for 
instance cluster D.0). Yet, the majority of behaviors appear to remain rather stable over time, which is especially 
clear for cluster E. Overall, the HMM models in the figure reveal explicitly how having new partners at each 
round induces noise in the decision-process and hinders participants to converge to a clear strategy, relevant 
for the experiences they have.

FP Participants organize according to their behavioral clusters.  So clusters A and B in the FP treat-
ment consist mostly of (forgiving as well as strict) cooperators and defectors respectively. It appears to indicate 
that behavioral self-selection occurred among the participants in FP. In complex systems and evolutionary game 
theory, a self-selection mechanism (also called self-organization) occurs when parts of the system appear to 
reach a stable state57. In this case, self-organization brings them to either of the extreme cases, i.e. mostly coop-
eration or mostly defection. This phenomenon could be happening because of the possibility for imitation of the 
choices by their neighbors in FP, as argued by Mahmoodi et al.58. Members of the third cluster are in some sense 
still in between, either switching between matching choices or trying to outsmart the co-player. More informa-
tion about this analysis can be found in the Supplementary information, visualized in Supplementary Fig. S5.

The behavioral self-selection in FP is clearly a consequence of the fixed relationships in that treatment. In 
that case, previous actions play a more significant role than in the case of the SP treatment. This hypothesis is 
confirmed by the information obtained in the short questionnaire at the end of the experiment: each participant 
was asked if her decision was influenced by what the other player did in the previous round (see Supplementary 
Information for more details). In the SP treatment, 50 players responded that they were influenced (52.08^) by 
the other’s actions. Yet, in the FP treatment, 74 participants responded “yes” to the same question (80.43%). This 
means that FP participant actions were shaped strongly by actions in the last round, while in SP this shaping did 
not take place as almost half of the participants did not care about what their opponents did, leaving them with 
a different approach to decide between cooperating or defect.

Conditional strategies like TFT and WSLS are observed but not consistently used.  How do the 
strategies inferred from the treatment data relate to those proposed in the literature for the origins of cooperative 
behavior? To answer this question, the HMM results in Supplementary Figs. S8 and S9 need to be considered as 
the theoretical strategies have been analyzed mostly in fixed partners interactions. Focusing on cluster A in FP 
first, one can derive that both sub-clusters in A may be associated with TFT-like or a WSLS-like behavior. Con-
sidering A.0, one can observe from round 1-25 that this cluster is associated with a reciprocal strategy: It starts 
out by defecting when the co-player defects (i.e. (CD)D) but still cooperating when she does ((DC)C), leading 
quickly to mutual cooperation ((CC)C) for the remainder of the FP treatment. Given the strong presence of 
(CD)D, this behavior is almost like a form of TFT, around 70% of them started cooperating in the first round as 
Supplementary Fig. S6 shows, suggesting that participants of this sub-cluster followed the “starting nice” princi-
ple as the classical TFT dictates14.

Behaviors in A.1 also end up in mutual cooperation but achieve this in a different, yet less clear, manner: one 
could say the participants in A.1 also use a form of reciprocation when the co-player defects but cooperation 
appears to have been promoted while being generous ((CD)C in combination with (CD)D) and signaling to go 
back to cooperation when both defect ((DD)C). This behavior is very much associated with the idea of WSLS 
(Win-Stay, Lose-Shift) or Pavlov as explained by Kraines and Kraines26: When winning ((DC) and (CC) con-
texts) continue with the same action, when loosing ((CD) and (DD)) switch. This makes sense in the way that 
this strategy was designed to promote cooperation in defective environments, and to mimic the stochasticity 
of biological and social interactions26. Although non-WSLS responses are still present, it appears that together 
they were sufficient to induce cooperation.

So in the case of fixed partnership interaction, we see successful cases of TFT- and WSLS-like behavior 
but more often the “implementations” of these strategies did not lead to cooperation, most likely because they 
were not rigorously applied, as opposed to the case when working with theoretical models. We also see cases 
of non-conditional behavior, for example in sub-cluster E.0 and E.1 in rounds 26 to 100 where the participants 
in these clusters defect unconditionally (DC)D and (DD)D, which resembles the theoretical strategy AllD. The 
contrary also holds, where for example, sub-cluster F.0 unconditionally cooperates (CD)C and (CC)C during 
the whole game.
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Discussion
As seen in the Introduction, many approaches can be taken to study the strategies in the IPD. In this work, we 
clustered participants based on the context they experience. This is an important difference from other works 
since it allows us to see the nuances between people reacting to the same situation. We choose this approach 
because the act of either cooperating or defecting can mean different things depending on the context of the 
action. It is not the same to defect to exploit your opponent than to defect to reciprocate your opponents’ actions. 
Moreover, it is not the same to cooperate with a fixed opponent as to cooperate with a stranger, that has been 
interacting with strangers as well. We used unsupervised methods which make no prior assumptions about what 
strategies players could use, for this, we tested several methods with the same goal to group participants with 
similar experiences, and we confirmed there is a significant overlap between different approaches.

A second level clustering (behavioral clustering), on how often they cooperated is necessary to analyze the 
individual differences given their opponents’ actions, and how they signal their intentions in each situation. In 
fact, in the sub-clusters we found, we could identify players that faced the same context but behaved differently. 
This means that to understand the strategies people use in the IPD, it is necessary to see what was happening 
around them in the past and observe how they play in such situations.

Another factor that has an effect on people’s strategies in the IPD is their opponent structure. Since we had 
two treatments, one with fixed co-players and one with shuffled ones, we could see how they act and what strate-
gies they use given each context. Not only players in FP achieved more cooperation, but their strategies looked 
similar to their co-players. In other words, they were better at self-organizing and the intra-cluster behavior was 
very similar, as opposed to players of the SP treatment, who had to interact with members of other sub-clusters, 
who at the same time, had different strategies in mind.

One last hypothesis that we were able to prove here was the learning effect on people’s strategies in the IPD. 
By dividing the analysis into windows of 25 rounds, we could see that the initial quarter was used by the players 
to explore and try different options, we could even see this effect in a chaotic environment such as SP, where 
establishing an action plan can be difficult due to its opponent structure.

Using Hidden Markov Models proved to be a handful tool to visualize the strategies and approximate how 
these underlying factors (in this case, represented as hidden states) shape participants’ behavior. Taking a proba-
bilistic approach, rather than a rigid, deterministic one accounts for the stochastic nature of our interactions.

Our findings have implications on how strategies in the IPD are studied: first, performing long experiments 
allowed us to observe that the participants may not have one but many strategies throughout the game before 
reaching an equilibrium. This means that when we talk about “how do we really act” we need to account for an 
exploration stage and a stabilization point. Second, we found that the opponent structure has an effect on people’s 
behavior, and therefore, their strategies. Whether they are more adaptive to their opponents’ actions or persistent 
based on their initial expectations and preferences, this depends on how the game is designed, different strategies 
might arise. For this reason, we believe that a logical step towards developing these results further is to analyze 
these strategies in other scenarios, such as N-player IPD, as opposed to the pairwise setting we presented in this 
paper. Previous work has stated that cooperation could be hindered49, but it is uncertain whether they will still be 
able to reach an equilibrium in their strategies as fast as the pairwise game, and from the strategic point of view, 
their rationale of what constitutes exploitation or reciprocation changes in this case. Moreover, as we mentioned 
in the “Methods” section, our methodology can also be applied to more complex strategies such as Memory-2 
or higher. Even though subjects may as well be using more sophisticated strategies, the data is not sufficient to 
really draw conclusions about this. New experiments including a comparative analysis would be required to 
estimate the presence of such longer-memory strategies, while also assessing their importance relative to the 
memory-one ones. As this would lead to a paper in itself, this research is beyond the scope of the current work.

Although we could observe some identifiable strategies thanks to the theoretical work behind the IPD, it is 
still challenging to determine and predict human behavior in these games, and this was represented by the big 
diversity of options on each HMM. And while taking a probabilistic approach to model decision-making might 
help us to understand our heuristics, this will continue to be an open issue in research on human cooperation, 
since all models have their limitations and there are many other scenarios to take into account. Another factor 
that is well known is the noise that not only our actions produce, but also our perception of what others are doing 
and their expectations, which they may also have about us. This is a caveat of human interaction to overcome 
and we are still trying to understand through these experiments.

Data availability
The experimental data and other supplementary information are available at https://​doi.​org/​10.​5061/​dryad.​
37pvm​cvmk. The code to reproduce the results and plots can be found at the Zenodo repository.
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