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Abstract

As sequencing technologies have evolved, the tools to analyze these sequences have made similar advances. However, for

multi-species samples, we observed important and adverse differences in alignment specificity and computation time for

BWA-MEM (Burrows–Wheeler aligner-maximum exact matches) relative to BWA-ALN. Therefore, we sought to optimize BWA-MEM

for alignment of data from multi-species samples in order to reduce alignment time and increase the specificity of

alignments. In the multi-species cases examined, there was one majority member (i.e. Plasmodium falciparum or Brugia

malayi) and one minority member (i.e. human or the Wolbachia endosymbiont wBm) of the sequence data. Increasing BWA-MEM

seed length from the default value reduced the number of read pairs from the majority sequence member that incorrectly

aligned to the reference genome of the minority sequence member. Combining both source genomes into a single reference

genome increased the specificity of mapping, while also reducing the central processing unit (CPU) time. In Plasmodium, at a

seed length of 18 nt, 24.1% of reads mapped to the human genome using 1.7±0.1 CPU hours, while 83.6% of reads mapped

to the Plasmodium genome using 0.2±0.0 CPU hours (total: 107.7% reads mapping; in 1.9±0.1 CPU hours). In contrast, 97.1%

of the reads mapped to a combined Plasmodium–human reference in only 0.7±0.0 CPU hours. Overall, the results suggest

that combining all references into a single reference database and using a 23 nt seed length reduces the computational

time, while maximizing specificity. Similar results were found for simulated sequence reads from a mock metagenomic data

set. We found similar improvements to computation time in a publicly available human-only data set.

DATA SUMMARY

The human dataset analyzed during the current study is avail-

able from the 1000 Genomes Project in the Sequence Read

Archive (SRA) (http://www.internationalgenome.org, acces-

sion number ERR022446), the three Plasmodium–human

datasets are available from the Wellcome Trust Sanger Insti-

tute in the SRA (accession numbers ERR015379 https://www.

ncbi.nlm.nih.gov/sra/?term=ERR015379, ERR012739 https://

www.ncbi.nlm.nih.gov/sra/?term=ERR012739, and ERR0153

60 https://www.ncbi.nlm.nih.gov/sra/?term=ERR015360), the

Brugia–Wolbachia dataset is available from the University of

Maryland Institute for Genome Sciences in the SRA (accession

number SRR5188379 https://www.ncbi.nlm.nih.gov/sra/?

term=SRR5188379) and the simulated data from the mock

metagenome dataset is available from the University of Mary-
land Institute for Genome Sciences in Dryad doi:10.5061/
dryad.m1m0p. Tables S1, S2, and S3 are available in the online
Supplementary Material.

INTRODUCTION

One of the most popular tools for aligning genome sequenc-
ing reads to a reference genome is the Burrows–Wheeler
aligner (BWA). The BWA software package allows users to
align highly similar sequences to a large reference genome
based on searches for exact matches with the Burrows–
Wheeler transform [1]. There are three different BWA

algorithms: BWA-ALN (or BWA-backtrack), BWA-SW (Smith–
Waterman Alignment) and BWA-MEM (maximum exact
matches). BWA-ALN was the original BWA algorithm and was
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developed for 36–100 bp reads [1]. BWA-ALN allows for gaps
and mismatches, facilitating the identification of insertions
and deletions [1]. When originally implemented, BWA-ALN
was 10–20� faster than the leading alignment tool, without
sacrificing accuracy [1].

BWA-SW was originally used for mapping longer reads, like
those originating from the 454 platform, but was updated
for use with 200–1 000 000 bp sequencing reads [1]. As the
length of sequencing reads increases, so does the error rate
and the potential for structural variation within the reads.
Therefore, alignment algorithms for longer reads must
switch from global matches to local matches to accommo-
date this error rate and potential structural variation [1].
BWA also implemented a Smith–Waterman-like dynamic
program to quickly align the query sequence to all suffix
trees of the reference [1]. In addition to this seed-and-
extend approach, heuristics were added to further increase
the speed of BWA-SW [1]. However, as the amount of data
generated by large-scale genomics projects increased and
read length decreased, BWA-SW lacked the ability to analyze
the data [1].

The most recent addition to the BWA suite is BWA-MEM [2].
BWA-MEM was implemented to increase the speed of aligning
100–1000 bp sequences to a large reference genome, while
maintaining accuracy [2]. BWA-MEM has the ability to per-
form chimeric alignments, can handle sequencing errors,
and can choose between local or global/end-to-end align-
ments [2]. It is ideal for sequencing reads >70 bp and can
handle reads up to 1 Mbp [2]. BWA-MEM uses a seed-and-
extend approach and extends the seed with an affine-gap
Smith–Waterman algorithm, but also implements re-seed-
ing to reduce incorrect mappings from a missing seed [2].
BWA-MEM also employs heuristics that prevent it from
extending an alignment through a poorly mapping area [2].
Another significant improvement of BWA-MEM is that larger
reference databases can be used. With BWA-ALN, the com-
plete reference index was limited to around the length of the
human genome [1], but BWA-MEM can now handle longer
references [2]. BWA-MEM is reported to be much faster than
other aligners, and provides accurate alignments for both
short and long reads [2].

Due to the speed and accuracy of BWA, it has been the
aligner of choice for many different types of analyses from
various organisms. BWA has been used for the analysis of all
phases of the 1000 Genomes Project, studying multiple
types of genetic variation in thousands of individuals across
the globe [3–5]. In addition to studying this genetic varia-
tion, BWA has also been used to align cancer genome
sequences to the human genome, including ovarian cancer
[6], stomach cancer [7], prostate cancer [8], renal-cell can-
cers [9–11], cutaneous melanoma [12], head and neck squa-
mous cell carcinoma [13], lung cancers [14, 15], papillary
thyroid cancer [16], urothelial bladder carcinoma [17],
acute myeloid leukemia [18], colon and rectal cancer [19],
breast cancer [20], endometrial cancer [21], and glioblas-
toma [22].

While BWA was initially designed for single nucleotide poly-
morphism (SNP)-based analysis [2], it has also been used to
identify structural variation. The Mobile Element Locator
Tool (MELT) [5, 23], which identifies mobile elements in
eukaryotic sequencing samples, relies on BWA-generated
alignments. MELT was used in the 1000 Genomes Project to
identify structural variants and LINE element insertion and
deletion events in these samples [5, 23]. LGTSeek relies on
BWA-ALN to align read pairs to identify lateral gene transfers
(LGTs) from a donor organism to a recipient organism
[24]. LGTSeek can align sequencing reads to the recipient
reference, then align the unmapped reads to the potential
donor references, identifying pairs where one read maps to
the host and the other read maps to the donor [24]. This
approach relies on the speed and accuracy of BWA-ALN to
accurately identify these categories of reads.

While BWA-MEM aligns the sequencing reads to the reference
more quickly than BWA-ALN [1], we have observed instances
of low stringency/specificity of these alignments when using
LGTSeek. This decreased specificity can result in the double
mapping of sequencing reads to multiple references. For
example, this was observed while examining dual-species
transcriptome data [25] from Wolbachia endosymbionts
and Drosophila ananassae, and was solved by combining
the reference genomes. In this case, in preliminary work,
BWA-ALN and BWA-MEM were both used for the alignments,
but the counts were wildly different. More specifically,
BWA-MEM mapped bona fide Wolbachia sequencing reads to
the D. ananassae reference genome, when only a very small

IMPACT STATEMENT

As most organisms do not live in isolation, it can be infor-

mative to study combinations of organisms in co-culture.

This has been greatly facilitated by ever improving

sequencing data and tools. However, many of these tools

were not developed for multi-species datasets, and it is

not immediately apparent that optimization is needed or

what optimization is needed. How multi-species datasets

are handled varies even between generations of the

same aligner, like the Burrows–Wheeler aligner (BWA)-ALN

and BWA-MEM (maximum exact matches). In this case, opti-

mization could be obtained with BWA-MEM by using a com-

bined reference, containing all of the genomes of the

species present, and changing the seed stringency.

There are many uses for aligners for multi-species data-

sets that will benefit from this optimization including: (a)

use in dual-species RNASeq datasets where mis-map-

ping leads to inappropriate gene expression calculations,

(b) use in identifying discordant read pairs that suggest

horizontal/lateral gene transfer, and (c) use to cull data-

sets, for instance removing human reads from clinical

pathogen data sets prior to data deposition. All of these

cases will benefit from the increased specificity of the

optimization here with little loss to sensitivity.
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portion of the read matched the Drosophila reference
genome. This likely results from the fact that BWA was
designed with the intent of mapping sequence data from a
single organism to a single reference genome. However, as
more tools use BWA for multi-species comparisons and
more researchers use it in host–pathogen samples, these
misalignments can significantly confound analyses.

Here, we sought to optimize BWA-MEM in eukaryote/eukary-
ote and eukaryote/prokaryote dual-species datasets by alter-
ing various options to prevent incorrect mappings. We
identified appreciable effects upon altering the seed length
of BWA-MEM alignments, which determines the minimum
base pair length of an exact match, and by default is 19 nt.
Since BWA-MEM can handle larger reference databases, we
also separately analyzed the effect of combining host–patho-
gen references into one larger database. Both methods
decrease computational time, while increasing or maintain-
ing specificity of the alignments. During this research, we
also observed that the computational time spent on human
genome sequence alignments, in general, could be decreased
by increasing the seed length, which we attribute to the time
spent attempting to align poor quality, off-target, non-
human contaminant sequences to the reference genome.

METHODS

Sample description

Human dataset

The 100 bp paired-end Illumina human dataset is available
from the 1000 Genomes Project in the Sequence Read
Archive (SRA) (http://www.internationalgenome.org, ERR0
22446). The data is from a Colombian male and the sample
(HG01133) of B-lymphocytes was collected from the
peripheral vein [5].

Plasmodium-human dataset

The 76 bp paired-end Illumina Plasmodium–human data-
sets are available from the Wellcome Trust Sanger Institute
in the SRA (ERR015379, ERR012739 and ERR015360) from
a study that extracted DNA from leukocyte-depleted blood
samples or after short-term in vitro culture [26]. These sam-
ples (PK0055-C, PK0076-C and PK0044-C) all originated in
Burkina Faso in 2008 [26].

Brugia–Wolbachia dataset

The 101 bp paired-end Brugia–Wolbachia dataset is avail-
able from the University of Maryland Institute for Genome
Sciences in the SRA (SRR5188379) from a currently unpub-
lished study designed to test DNA amplification methods on
low input DNA samples. DNA was extracted from a popula-
tion of Brugia malayi worms. Qiagen Repli-G (Qiagen) was
used to amplify 2 ng genomic DNA with tetramethylammo-
nium chloride (TMAC)[27]. A genomic DNA library was
constructed for sequencing on the Illumina platform using
the KAPA Hyper Prep kit (Kapa Biosystems) according to
the manufacturer’s protocol. DNA was fragmented with the
Covaris E210. The DNA was purified between enzymatic
reactions and the size selection of the library was performed

with SPRI-select beads (Beckman Coulter Genomics). The
PCR amplification step was performed with primers con-
taining a 7 nt index sequence. The indexed libraries were
pooled and sequenced on a on a Hiseq2500 sequencer
(Illumina).

Simulated metagenomic dataset

A dataset of 101 bp paired-end sequencing reads from a
mock metagenomic community was simulated with ART,
version 2.3.7 28]. An even 8� sequencing depth with a
HiSeq2500 error profile, a minimum fragment length of
300 bp and SD of 105 bp was generated across the reference
genomes: Acinetobacter baumanii ATCC17978; Actinomy-
ces odontolyticus ATCC17982; Bacillus cereus ATCC10987;
Bacteroides vulgatus ATCC8482; Clostridium beijerinckii
ATCC51743; Deinoccous radiodurans DSM20539; Entero-
coccus faecalis ATCC47077; Escherichia coli ATCC700926;
Helicobacter pylori ATCC700392; Lactobacillus gasseri DSM
20243; Listeria monocytogenes ATCCBAA-679; Methano-
brevibacter smithii ATCC35061; Neisseria meningitidis
ATCCBAA-335; Propionibacterium acnes DSM16379;
Pseudomonas aeruginosa ATCC47085; Rhodobacter sphaer-
oides ATCC17023; Staphylococcus aureus ATCCBAA-1718;
Staphylocococcus epidermidis ATCC12228; Streptococcus
agalactiae ATCCBAA-611; Streptococcus mutans ATCC7
00610; and Streptococcus pneumoniae ATCCBAA-334.

BWA alignments

All alignments were written as SAM output files using BWA v.
0.7.12. The qsub -m function, as implemented in GE 6.2u5
lx24-amd64 dated December 1, 2009, was used to generate a
summary report from each experiment including the central
processing unit (CPU) time for each script that was exe-
cuted. To reduce variation in CPU times, all jobs were exe-
cuted on a single multi-core node ensuring that <40% of
the total number of cores and <75% of total memory were
used. Each job was executed in triplicate, and no replicate
jobs were running simultaneously. For BWA-ALN/SAMPE

alignments, the script contained ALN commands for each
FASTQ file executed sequentially followed by the SAMPE com-
mand, which were all executed with the default parameters.
For BWA-MEM alignments, the script contained a single com-
mand to align the sequencing read pairs to their respective
references; default parameters were used except where seed
length was altered. The Ensembl GRCh37 human reference
containing the decoy sequence was used for alignments to
the human genome. The B. malayi genome [29] version 4
was obtained from WormBase (www.wormbase.org) and
was used as the combined reference for Brugia and Wolba-
chia. The Wolbachia wBm genome [30] reference was
obtained by pulling the Bm_006 contig from the combined
reference and the Brugia reference was made by using all
contigs except Bm_006. The Plasmodium reference used
was version 3.0 of high quality Plasmodium falciparum 3D7
draft genome released by PlasmoDB-9.3 [31]. The com-
bined human–Plasmodium reference was created by adding
the Plasmodium contigs to the GRCh37 FASTA file. SAMTOOLS

FLAGSTAT v.1.1 was used to determine the number of total
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reads, secondary reads, and mapped reads in each sample.
To correct for the number of secondary reads, the percent-
age of reads mapping was calculated as (mapped reads –

secondary reads)/(paired in sequencing reads) �100.

RESULTS

Datasets

Four types of datasets were used for this study: eukaryote/
prokaryote, eukaryote/eukaryote, eukaryote only and simu-
lated metagenomic. The first dataset contained 101 bp
paired-end Illumina sequencing reads from a population of
B. malayi worms and their Wolbachia endosymbiont strain
wBm from an unpublished study examining DNA amplifi-
cation methods; it will be referred to as the Brugia–Wolba-
chia dataset (Table 1). Using the Perl 5.8.8 rand() and srand
() functions, 250 000 first reads were randomly selected and
the taxonomy of best hits for these reads was generated with
a MEGA-BLAST (v. 2.2.17) search against the NCBI nucleotide
database NT. We typically find that in MEGA-BLAST searches
of this nature that some percentage of reads have no match,
and that the best criterion to use is the percentage of reads
with a best match relative to the number of reads that have
any match, and this criterion was used in all other instances.
Based on this criterion, this dataset was estimated to contain
79.7% reads with matches having best matches to B. malayi
and 14.5% reads with best matches to Wolbachia wBm.
However, the version of NT used for these searches does
not have the B. malayi genome, so most reads did not have
matches, making this measurement skewed in this case. If
we instead focus on all reads, 14.1% of reads had a best
match to B. malayi and 2.6% of reads had a best match to
Wolbachia wBm, which is likely a better reflection of the
composition of this data.

The second dataset that we initially focused on contained
76 bp paired-end Illumina sequence reads from P. falcipa-
rum sequenced from a human sample from the SRA
(ERR015379) [26]; it will be referred to as the Plasmo-
dium–human dataset (Table 1). Parsing the taxonomy of
best hits of 250 000 randomly selected first reads generated
with a MEGA-BLAST search against NT, this dataset was esti-
mated to contain 87.5% reads with best matches to P.

falciparum reads and 7.4% reads with best matches to
human sequences.

The third dataset contained 101 bp paired-end Illumina
sequence reads that have been simulated from a mock meta-
genomic community (Dryad doi:10.5061/dryad.m1m0p); it
will be referred to as the mock metagenomic dataset
(Table 1). The final dataset examined was 100 bp Illumina
paired-end human sequencing reads from the 1000
Genomes Project (ERR022446) [5]; it will be referred to as
the 1000 Genomes dataset (Table 1). Parsing the taxonomy
of best hits of 250 000 randomly selected first reads gener-
ated with a MEGA-BLAST search against NT, this dataset was
estimated to contain 94.7% of reads with matches having
best matches to human sequences.

Percentage of mapped read pairs using different
seed lengths with BWA-MEM

BWA-MEM was used to align three different whole genome
sequencing datasets to the respective reference databases
with varying seed lengths from 18 to 30 nt. In the two dual-
species datasets, the sequencing reads were aligned to the
reference genome of each species separately, as well as a
combined reference of both genomes. The 1000 Genomes
dataset was only aligned to the human reference genome.
The lowest variation in percentage of reads mapped with
BWA-MEM was observed in the 1000 Genomes dataset, where
the total percentage of reads mapped only varied by 0.49%
across all seed lengths tested (Fig. 1, Table 2).

In the Brugia–Wolbachia dataset, reads mapping to the ref-
erence genome of the minority member (Wolbachia)
decreased markedly from 3.3 to 2.9%when increasing the
seed length from 18 to 20 nt (Fig. 1, Table 2). While this is
only a 0.4% difference, it is important to consider it is
>10% of the reads that mapped to this genome. This prob-
lem of read pairs aligning to both references was resolved,
meaning they were mapped to the best position, by combin-
ing the Brugia and Wolbachia references into a single refer-
ence sequence (Fig. 1, Table 2). The percentage of reads that
mapped to Brugia only varied by 0.87% across all seed
lengths (Fig. 1, Table 2). However, the extensive amount of
recent LGT to B. malayi from its Wolbachia endosymbiont
[32] confounds this analysis such that we sought to evaluate
this phenomenon with several subsequent datasets.

In the Plasmodium–human dataset, the aggregate number
of read pairs aligning to each reference was >100% until the
seed length was set to >29 nt, when mapping drastically
declined due to a likely over-stringent seed length. The
aggregate number of read pairs decreased from 107.8 to
102.2%when the seed length was increased from 18 to 23
nt (Fig. 1, Table 2). This problem of read pairs aligning to
both references was resolved by combining the human and
Plasmodium reference into one file (Fig. 1, Table 2). For all
seed lengths mapped against this combined reference, the
Plasmodium–human dataset consistently had 94.6–97.1%
of read pairs aligning (Fig. 1, Table 2). Aligning the Plasmo-
dium–human data to the Plasmodium reference or the

Table 1. Total number of reads for each dataset

The datasets are listed that were used in this study, with the total

number of reads.

Dataset Accession no. Total no.

of reads

Brugia–Wolbachia SRR5188379 31 494 916

Plasmodium–human ERR015379 6 051 406

Plasmodium–human ERR012739 8 080 550

Plasmodium–human ERR015360 25 867 194

1000 Genomes ERR022446 219 493 146

Simulated metagenome Dryad acc. (doi:10.5061/

dryad.m1m0p)

5 490 726
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Plasmodium–human combined reference led to a consistent
percentage of read pairs mapping across seed length up to
30 nt, indicating that increasing the seed length did not dra-
matically decrease the number of read pairs that were
aligned for these seed lengths (Fig. 1, Table 2). Increasing
the seed length beyond 30 nt led to a substantial decrease in
the number of reads aligned, as expected (Table S1, available
in the online Supplementary Material), which was only
tested with this dataset.

Two further Plasmodium–human datasets were tested,

ERR012739 and ERR015360, to ensure these observations

were not limited to the original dataset selected. Parsing the

taxonomy of best hits of 250 000 randomly selected first

reads generated with a MEGA-BLAST search against NT,

ERR012739 was estimated to contain 73% Plasmodium

reads and 18% human reads, while ERR015360 was esti-

mated to contain 60% Plasmodium reads and 3% human

reads. All three datasets showed the same trends as the orig-

inal dataset examined (Fig. 2), namely over-mapping of

reads when mapped to separate references that could be

largely eliminated by mapping to an aggregate reference

and/or increasing the seed length to 23 nt.

Similar over-mapping of reads was again observed with a sim-
ulated dataset of a 21-member mock metagenomic commu-

nity (Fig. 3). When mapped to the composite reference, 100%
of the reads mapped, as expected for a simulated dataset.

However, even at a seed length of 30 nt, the aggregate percent-

age of reads mapping to each individual reference was still
>104% (Fig. 3), which may be due in part to multi-mapping

of reads to the many highly similar rRNAs. Mapping to an

aggregate reference and/or increasing the seed length to 23 nt
improved the mapping specificity (Fig. 3). However, it is less

clear that 23 nt was the ideal seed length as substantial

improvements could be observed beyond a 23 nt seed length
(Fig. 3). This difference may be due to using simulated

sequence data, the high degree of similarity in regions of the
genomes like the rRNA, or the complexity of the population.

We investigated using real sequencing data from a mock
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Fig. 1. The percentage of mapped read pairs for all BWA-MEM datasets. The percentage of mapped read pairs for all datasets against

all references is shown for each seed length for (a) the human–Plasmodium dataset, (b) the Brugia–Wolbachia dataset and (c) the

human-only dataset. The sequencing reads were aligned to the reference genome of each species separately, as well as a combined

reference of both genomes, as indicated in the legend. Mappings to the reference genome of the minority member in the sample

(human for the Plasmodium–human dataset and Wolbachia for the Brugia–Wolbachia dataset) were plotted on the secondary y-axis on

the right, while all others were plotted on the primary y-axis on the left. The sum of the mappings to individual reference genomes is

illustrated with a dashed line to enable comparisons.

Table 2. The percentage of read pairs that aligned to each reference

The percentage is provided of read pairs from a subset of datasets that aligned to each reference for BWA-ALN with default parameters and BWA-MEM

with seed lengths from 18 to 30 nt.

Dataset Reference ALN 18 19 20 21 22 23 24 25 26 27 28 29 30

Plasmodium–human Human 10.2 24.1 22.4 21.2 20.4 19.9 19.6 19.4 19.2 19.1 19.0 18.8 18.7 18.5

Plasmodium–human Plasmodium 78.1 83.6 83.3 83.1 82.9 82.8 82.6 82.4 82.3 83.6 83.3 83.1 82.9 82.8

Plasmodium–human Combined reference 88.3 97.1 96.9 96.7 96.5 96.3 96.1 95.9 95.7 95.5 95.3 95.1 94.9 94.6

Brugia–Wolbachia Brugia 91.9 94.4 94.0 93.8 93.8 93.7 93.7 93.6 93.6 93.6 93.6 93.5 93.5 93.5

Brugia–Wolbachia Wolbachia 2.7 3.3 3.0 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.8 2.8 2.8 2.8

Brugia–Wolbachia Combined reference 94.5 96.4 96.2 96.1 96.1 96.1 96.1 96.0 96.0 96.0 96.0 96.0 96.0 96.0

1000 Genomes Human 95.9 99.7 99.6 99.6 99.6 99.6 99.5 99.5 99.4 99.4 99.4 99.3 99.2 99.2
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community sequenced by the human microbiome project [33,
34], but only single end reads were available.

CPU times and trends

The CPU time of the alignments was also interrogated, by
measuring in triplicate using a single grid node with 48
CPUs and 95.6GB memory, controlling for variation by
limiting CPU usage to <40% of the maximum and memory
usage to <75% of the maximum (Fig. 4). We could not con-
trol for other factors like caching and network traffic, but
saw little variation in CPU time across replicates, which
were not run simultaneously on the node. The alignment of

the reads to the combined Brugia–Wolbachia reference
database took similar CPU time relative to aligning to only
the Brugia reference (Fig. 4, Table 3) demonstrating the
benefit of using a combined reference when possible.

Alignments to the human reference genome had the most
dramatic decrease in CPU time with increasing seed lengths
for both the human–Plasmodium dataset and the 1000
Genomes dataset (Fig. 4). In the case of the 1000 Genomes
dataset, the CPU time at a seed length of 18 nt was 21.1
±1.7 h (Table 3). Increasing the seed length to 23 nt reduced
the CPU time to 16.8±1.0 h, resulting in a 1.3-fold reduction
or 4.3 h decrease in CPU time (Fig. 4, Table 3).

The Plasmodium–human dataset showed even more sub-
stantial improvements when aligning to the combined data-
set, but most substantially between 18 and 20 nt seed
lengths. For example, at a seed length of 18 nt, the align-
ment of this dataset to the human reference took 1.7±0.1 h,
while the alignment to the combined reference only took 0.7
±0 h, a 2.4-fold decrease (Table 3, Fig. 4). The seed length
also plays a role as observed by the decrease in CPU hours
with increasing seed length up to ~23 nt. An increase in
seed length to 23 nt reduced the Plasmodium–human CPU
time 3.4-fold in the alignments to just the human reference
(Fig. 4, Table 3). Overall, improvements to the CPU time
for both host–pathogen datasets plateaued by seed length of
23 nt (Fig. 4, Table 3). The decreasing CPU time needed as
a function of seed length, combined with the over-mapping
of reads against a single reference compared to a combined
reference, suggests that using BWA-MEM to generate poor
alignments to the incorrect reference can lead to excessive
use of computational resources. Increasing the seed length
beyond 30 nt led to a sizable decrease in the CPU hours
(Table S2), but this is likely a result of the undesirable
decrease in the number of reads aligned (Table S1).

Comparing BWA-MEM to BWA-ALN

We also sought to compare the percentage of mapped read
pairs aligned with BWA-ALN and BWA-MEM. We expected that
BWA-MEM would map more reads, since it could map reads
with more sequencing errors, as well as greater sequence varia-
tion. Consistent with these expectations, in all cases tested,
BWA-ALN mapped a lower percentage of reads relative to
BWA-MEM (Table 2). Also, as expected, given the underlying
algorithm, BWA-MEM computed the alignments faster than
BWA-ALN when the majority of reads map to the reference
genome (i.e. Plasmodium–human against the Plasmodium
genome, Plasmodium–human against the combined reference,
Brugia–Wolbachia against the Brugia genome, Brugia–Wolba-
chia against the combined reference, and 1000 Genomes
against the human genome). Conversely, we anticipated that
when the vast majority of reads did not map to the reference,
BWA-MEM would spend large amounts of compute time trying
to incorrectly align them to the genome (i.e. Plasmodium–

human against the human genome and Brugia–Wolbachia
against the Wolbachia genome). As expected, these latter two
cases were aligned more quickly with BWA-ALN than BWA-MEM

at the lower seed lengths tested (Table 3).
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Fig. 2. Percentage of mapped read pairs for different Plasmodium–

human datasets. The percentage of mapped read pairs for all datasets

against all references is shown for each seed length for three Plasmo-

dium datasets containing varying levels of human sequence.

ERR015379 is estimated to contain 88% reads with best matches to

P. falciparum reads and 7% reads with best matches to human

sequences. ERR012739 was estimated to contain 73% Plasmodium

reads and 18% human reads. ERR015360 was estimated to contain

60% Plasmodium reads and 3% human reads. All three datasets

showed the same trends as the original dataset examined, namely

over-mapping of reads when mapped to separate references that

could be largely eliminated by mapping to an aggregate reference

and/or increasing the seed length to 23 nt.
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The increase in the percentage of reads mapping with

BWA-MEM at a seed length of 18 nt led to an increase in both

the sequencing read depths, as well as the coverage. There

are 12 127 496 positions in the human genome that had 1�

sequencing depth with a seed length of 18 nt using

BWA-MEM with a maximum sequencing depth of 7990�

with the default parameters of SAMTOOLS MPILEUP, which

would discard positions with >8000� sequencing depth. In

contrast, 5 378 722 positions in the human genome had 1�

sequencing depth with BWA-ALN/SAMPE with a maximum

sequencing depth 919�. Therefore, there was >8-fold higher

maximum sequencing depth and >2-fold more positions

with coverage.

The Plasmodium reads mapping to the human genome with
a seed length of 18 nt were not evenly distributed through-
out the human genome. While reads mapped to all of the
chromosomes evenly, three non-chromosomal FASTA entries
had reads that were significantly over-represented relative
to the length of the sequence (�2, P<0.00005), including the
unplaced genomic contig GL000220.1 with 69 056 reads in
161 802 bp, the unplaced genomic contig GL000226.1 with
16 735 reads in 15 008 bp, and the decoy sequence contig
hs37d5 with 569 969 reads in 35 477 943 bp.

We further wanted to examine whether high-quality

matches of Plasmodium reads to the human genome refer-
ence enabled alignment of related poorly mapping reads
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Fig. 3. The difference in the percentage of mapped reads from that expected for simulated reads from a mock metagenomic commu-

nity. Because of differences in the genome size, the percentage of reads mapped varied extensively, such that the difference between

the observed percentage of mapped read pairs and the known percentage of mapped read pairs was interrogated for the simulated

data from the mock metagenomic community. This value is shown for each seed length for a simulated dataset of 101 bp paired-end

sequencing reads from a mock metagenomic community. Given that the data is simulated, the known percentage of mapped reads

was calculated from the 8� sequencing depth and the relative fraction the genome contributes to the population for each organism.

The aggregate percentage difference in mapping was plotted on the secondary y-axis on the right, while all individual percentage dif-

ferences were plotted on the primary y-axis on the left.

Robinson et al., Microbial Genomics 2017;3

7



through any of BWA’s processes like chaining, filtering
chaining, and seed extension. We used the 10.2% of Plas-
modium reads aligning to the human reference with
BWA-ALN as our proxy for high-quality matches. Those reads
and their mates were removed from the FASTQ files and these
modified human–Plasmodium FASTQ files were realigned to
the human genome using BWA-MEM for all seed lengths
tested. We found that the percentage of reads mapping to
the human reference with BWA-MEM was the same from
both the filtered FASTQ files and the initial FASTQ files after
accounting for the removal of the 10.2% of the reads that
correctly aligned to Plasmodium (Table S3).

There was no substantial difference between mapping to the
Plasmodium genome with BWA-ALN/SAMPE and BWA-MEM.
There were 16 995 093 Plasmodium positions with >5� cov-
erage in the BWA-MEM alignment with a seed length of 18 nt,
while there were 16 698 169 Plasmodium positions with
>5� coverage in the BWA-ALN/SAMPE alignment. When mod-
ified FASTQ files were made by removing reads identified as
human using BWA-ALN/SAMPE and those modified files were
mapped with BWA-ALN/SAMPE back to the Plasmodium

genome, 16 698 614 Plasmodium positions still had >5�
coverage, which is remarkably similar to the 16 698 169
Plasmodium positions with >5� coverage when mapping all
reads to the Plasmodium genome without filtering. How-
ever, when modified FASTQ files were made after removing
reads identified as human using BWA-MEM and those modi-
fied files were mapped with BWA-ALN/SAMPE back to the
Plasmodium genome, only 14 214 800 Plasmodium positions
still had >5� coverage, which is only 85% of the positions
with coverage in the Plasmodium genome using all reads
and BWA-ALN/SAMPE. Therefore, the excess removal of reads
based on their alignment with BWA-MEM at a seed length
of 18 nt may result in a loss of coverage of ~2 000 000 Plas-
modium positions that could lead to an inability to call
SNPs and other important genetic variants.

DISCUSSION

Effects on multi-species genome sequencing
datasets

New algorithms are making remarkable advances to expand
the complexity of alignments to best capture all the genomic
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Fig. 4. CPU time for all BWA-MEM datasets. The mean and SD of CPU time in hours for each of three replicate alignments is plotted

against each seed length for a subset of datasets. In the two dual-species data sets, the sequencing reads were aligned to the refer-

ence genome of each species separately, as well as a combined reference of both genomes. The 1000 Genomes dataset was only

aligned to the human reference genome.

Table 3. The CPU time in hours for each replicate for a subset of datasets and references

The CPU time in hours is provided for a subset of datasets for BWA-ALN with default parameters and BWA-MEM with 18–30 nt seed lengths. For BWA-ALN,

the CPU time reported is the sum of the CPU time for aligning read 1, the CPU time for aligning read 2 and the CPU time for running the SAMPE algo-

rithm on those two alignments.

ALN 18 19 20 21 22 23 24 25 26 27 28 29 30

Plasmodium 0.3
±0.1

0.2±0 0.2±0 0.2±0 0.2±0 0.2±0 0.2±0 0.2±0 0.2±0 0.2±0 0.2±0 0.1±0 0.1±0 0.1±0

Human 0.9
±0.1

1.7±0.1 1.1±0.1 0.8±0 0.7±0 0.6±0 0.5±0 0.5±0 0.4±0 0.4±0 0.4±0 0.4±0 0.3±0 0.3±0

Human–
Plasmodium

1±0.1 0.7±0 0.6±0 0.6±0 0.5±0 0.5±0 0.5±0 0.5±0 0.4±0 0.4±0 0.4±0 0.4±0 0.3±0 0.3±0

1000 Genomes 34.1±1 21.1
±1.7

19.2
±1.9

17.7
±1.6

17.8
±1.5

17.3
±1.4

16.8
±1

15.6
±1.8

15.7
±1.1

15.5
±1

15.1
±1.6

14.2
±0.1

13.3
±1.2

12.8
±1.1

Brugia 1.3±0 1.1±0 1±0 0.9±0 0.9±0 0.9±0 0.8±0 0.8±0 0.8±0 0.8±0 0.7±0 0.8±0 0.8±0 0.7±0

Wolbachia 0.1±0 0.4±0 0.4±0 0.4±0 0.4±0 0.4±0 0.4±0 0.4±0 0.4±0 0.4±0 0.4±0 0.4±0 0.4±0 0.4±0

Brugia–Wolbachia 1.3±0 1.1±0.1 1±0 0.9±0.1 0.9±0 0.9±0 0.8±0 0.8±0 0.8±0 0.8±0 0.8±0 0.7±0 0.7±0 0.7±0
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variation in a single organism [1, 2, 35–38]. These improved
alignments are essential for better identification of SNPs, copy
number variants and instances of structural variation. How-
ever, there is the potential for problems to arise when these
algorithms are applied in untested scenarios, like multi-species
sequencing projects. In these cases, one of the vital steps is
properly attributing the reads to each organism.

Numerous studies have reported transcriptomics-based
gene expression differences of two organisms within a single
sample [39–50]. For the gene expression differences to be
accurately obtained, the reads from both organisms need to
map uniquely to the appropriate reference. The results pre-
sented here for Brugia–Wolbachia and Plasmodium–human
read mappings suggests this may not occur all the time.
Plasmodium reads map to the human genome and Brugia
reads map to the Wolbachia genome, which could result in
transcripts appearing to be transcribed that are not. It also
could result in erroneous assessment of the level of differen-
tial gene expression.

This may also present problems in mapping-based metage-
nomics analyses, and our results suggest that using a com-
bined reference and increasing the seed length may lead to
improvements. The exact seed length is not clear, and fur-
ther work using real sequencing data from mock communi-
ties, as opposed to simulated data, may be necessary to
resolve the matter.

In parasite and pathogen sequencing projects that require
the direct isolation of nucleic acids from a human patient,
sequencing reads are often screened prior to deposition in
public repositories, like the SRA [51], to remove human
sequences. Theoretically, mapping-based algorithms, like
BWA, provide fast and efficient mechanisms for removing
such human reads from parasite and pathogen sequencing
projects. However, the results presented here suggest that
too many sequences may be erroneously targeted for
removal. Specifically, only 85% of the positions have cover-
age in the Plasmodium genome after removing ‘human’
reads with BWA-MEM with a seed length of 18 nt relative to
removing ‘human’ reads with BWA-ALN/SAMPE.

Lastly, pipelines like PathSeq [52] and LGTSeek [24] use
aligners to identify the putative provenance of reads, assign-
ing a taxonomy for reads and/or read pairs. PathSeq identi-
fies microbial reads in samples, in order to identify novel
microbe–disease associations [52]. LGTSeek identifies read
pairs with discordant taxonomy, like bacteria-eukaryote
read pairs in animal and human genomes that may indicate
bacteria-animal LGT [24]. In this case, a stringent mapping
assignment is needed in order to assign the most appropri-
ate taxonomy. The results from both the Brugia–Wolbachia
and the Plasmodium–human datasets suggest that this may
not be the case with BWA-MEM without further optimization.
While we focus on differences between BWA-ALN/SAMPE and
BWA-MEM, it is important that any aligner be thoroughly
tested when used in these scenarios for the particular organ-
isms under study.

Solutions

Given the results presented here, one solution that should
be employed whenever possible is to include the genomes of
all expected organisms in a single reference database. Doing
so increased the specificity of the alignments and decreased
computation times. This strategy has already been used in
human genome sequencing projects that include the Broad
Institute’s ‘decoy’ genome sequence in their reference
genome. The ‘decoy’ genome sequence contains sequences
frequently encountered in human whole-genome sequenc-
ing projects that are otherwise not in the reference [5].

In some studies, however, not all reference organisms are
known. For example, when running algorithms like PathSeq
[52] or LGTSeek [24] to identify instances of ‘foreign’ DNA,
the potential sources are unknown and are the focus of the
study. Additionally, if a sequencing library or run is con-
taminated, the researcher may not be aware of the presence
of sequence reads from additional organisms that could be
leading to an increase in computation times. In these cases,
the specificity would be improved and the CPU times
decreased by increasing the seed length. In this study, a seed
length of 23 nt was ideal since lower seed lengths increased
computation times and off-target mappings, while higher
seed lengths could reduce sensitivity with no improvement
to computation times or off-target mappings. It is not clear
if this is the universal ideal seed length that would be appli-
cable for all scenarios. The ideal seed length may be a func-
tion of the evolutionary distances and similarity between
the organisms being sequenced concomitantly. However, we
have demonstrated that the use of simulated datasets con-
structed from the reference datasets may be useful in
informing these decisions and identifying what further
experimental controls may be needed.

While much of our analysis focuses on a seed length of 18
nt, it is important to remember that the default seed length
for BWA-MEM is 19 nt. We initially identified this problem
with a seed length of 19 nt; however, it is much more appar-
ent and easier to interrogate at a seed length of 18 nt. Lastly,
there may be scenarios that warrant the use of legacy align-
ers, like BWA-ALN, which may be less sensitive, but have a
higher degree of specificity.

Computational resource optimization

Analysis of genomic data can be computationally intensive,
leading to long CPU times and high analysis costs. Our
analysis suggests that almost all datasets can benefit from an
increase in the seed length to reduce CPU time and associ-
ated costs. However, this decrease in computation time may
affect the ability to identify ‘split reads’, where a read
matches two different locations in the genome, suggesting
structural variation in genomics projects and splicing in
transcriptomics projects. As such, further work may be
needed by specialists in a field (e.g. structural genomic sci-
entists and annotation specialists) to demonstrate how
changing the seed length may or may not affect the validity
of structural variation and gene structure predictions. Split
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reads in RNASeq projects of dual-species projects need to
be handled with care, balancing the sensitivity of detecting
splice junctions with the specificity of correct mapping. At a
minimum, this can be dealt with in multi-species datasets
by aligning to a combined reference that contains all known
members of the consortium sequenced.

Conclusion

As sequencing technologies continue to advance and
sequencing becomes less expensive, the tools to analyze
these sequences need to be optimized for the intended
study. Here, BWA-MEM was optimized to reduce alignment
time and increase the specificity of alignments. While this
optimization might not be necessary for all datasets, we
found it to be particularly helpful in sequencing data
obtained simultaneously from multiple organisms. In these
cases, there was one dominant sequence source (i.e. Plasmo-
dium or Brugia) and one minority sequence source (i.e.
human or Wolbachia). Increasing the seed length reduced
the number of read pairs aligning, incorrectly, to the refer-
ence genome from the minority sequence source (human or
Wolbachia). Overall, increasing the seed length to 23 nt and
combining both organisms into one reference genome can
reduce the CPU time, sometimes quite substantially, with
more specificity in the mapping, as was the case with the
Plasmodium–human dataset. In some situations, the use of
legacy aligners may also be warranted. Less substantial, but
still possibly significant, improvements to CPU time upon
changing the seed length were found in all cases. This sug-
gests using a 23 nt seed length by default may be desirable.
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