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Abstract: Leymus mollis (2n = 4x = 28, NsNsXmXm), a wild relative of common wheat (Triticum
aestivum L.), carries numerous loci which could potentially be used in wheat improvement. In
this study, line 17DM48 was isolated from the progeny of a wheat and L. mollis hybrid. This line
has 42 chromosomes forming 21 bivalents at meiotic metaphase I. Genomic in situ hybridization
(GISH) demonstrated the presence of a pair chromosomes from the Ns genome of L. mollis. This pair
substituted for wheat chromosome 2D, as shown by fluorescence in situ hybridization (FISH), DNA
marker analysis, and hybridization to wheat 55K SNP array. Therefore, 17DM48 is a wheat-L. mollis
2Ns (2D) disomic substitution line. It shows longer spike and a high level of stripe rust resistance.
Using specific-locus amplified fragment sequencing (SLAF-seq), 13 DNA markers were developed to
identify and trace chromosome 2Ns of L. mollis in wheat background. This line provides a potential
bridge germplasm for genetic improvement of wheat stripe rust resistance.

Keywords: Leymus mollis; molecular cytogenetics; SLAF-seq; stripe rust; wheat 55K array

1. Introduction

Common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is one of the major
food crops in the world. Against the background of the prominent contradiction between
population growth and the shortage of resources, wheat yield is increasingly challenged.
Wheat stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst), is a serious
threat to wheat production. When wheat is susceptible to Pst infection, the yield loss is
about 10–20%, but it can reach 50% or even result in no harvest in a pandemic year [1].
The most economical, effective and environmental-friendly method is to breed resistant
cultivars, but the narrow genetic basis of wheat restricts its genetic improvement [2].
Therefore, it is necessary to provide new wheat germplasms with stripe rust resistance to
facilitate wheat resistance breeding.

Leymus mollis (Trin.) Pilger (2n = 4x = 28, NsNsXmXm), a wild relative of wheat, pos-
sesses large and long spike with numerous spikelets and resistance to multiple abiotic and
biotic stresses [3,4]. Through wild hybridization and cytogenetic manipulation, different
wheat-L. mollis derivatives were developed as bridge materials for wheat improvement.
Among them, octaploid Tritileymus line M842 (2n = 8x = 56, AABBDDNsNs) carrying
many beneficial agronomic traits were identified through cytogenetic methods [5]. Yield
and resistance-related genes have been transferred into wheat background in the form of
partial amphiploidy, addition lines, substitution lines and translocation lines [6–8]. The
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accurate identification and rapid trace of alien chromosomes or translocated fragments
directly affect breeding process [9]. Molecular markers are one of the most convenient
methods to identify alien chromosomes due to the high efficiency. The existing markers
cannot meet the needs of L. mollis chromosome detection in the common wheat background.
With the development of next generation sequencing technology and bioinformatics tools,
SLAF-seq (specific-locus amplified fragment sequencing) technique has been developed as
a high-resolution strategy for large scale de novo discovery and genotyping of SNP [10].
It also provides a strategy for developing markers to detect and track alien chromosomes
or genes from wheat wild relatives in the wheat background. Based on the SLAF-seq
technology, 507 STS markers of Thinoprum ponticum 1Js chromosomes, 89 specific markers
of Thinopyrum elongatum 7E chromosomes, two 2St-chromosome-specific markers, and
two 3St-chromosome-specific markers were developed respectively [11–13]. Therefore,
SLAF-seq is a feasible method to develop sufficient markers for accurate detection of alien
chromatin, which could promote the further exploitation of beneficial genes for wheat
genetic improvement. To date, no specific SLAF-based markers have been reported in
L. mollis.

In the study, a wheat-L. mollis 2Ns (2D) disomic substitution line 17DM48 with a good
level of stripe rust resistance and longer spike was identified from the derivatives of wheat
and L. mollis. The chromosome numbers of 17DM48 and its chromosomal inherited behavior
in meiosis were surveyed by cytogenetic methods. The chromosomal composition was
ascertained using FISH, GISH, molecular markers and a single-nucleotide polymorphism
(SNP) array. Specific markers were developed using SLAF-seq for tracing chromosome
2Ns and improving the selection efficiency. Its agronomic traits and stripe rust resistance
were evaluated in the field experiment. This line could serve as a bridge material for wheat
genetic improvement to increase stripe rust resistance.

2. Results
2.1. Cytological Characterization of 17DM48

Root tip cells (RTCs) in mitosis metaphase, pollen mother cells (PMCs) in meiosis
metaphase I and anaphase I were observed and counted respectively using an Olympus
BX-43 microscope. Of 150 RTCs, 143 (95.33%) cells contained 42 chromosomes, showing
that 17DM48 had the chromosome numbers with 2n =42 (Figure 1a). A total of 82 PMCs
were observed, 78 PMCs had the chromosome configuration of 2n = 21II (Figure 1b). No
trivalents or quadrivalents were observed at metaphase I, and no chromosomes were lagged
at anaphase I (Figure 1c). Consequently, line 17DM48 exhibited high cytological stability.
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Figure 1. Cytogenetic analysis of 17DM48. (a) root tip cell at mitotic metaphase, 2n = 42. (b) chromo-
somal configuration of pollen mother cell at meiotic metaphase, 2n = 21 II. (c) chromosomal config-
uration of pollen mother cell at anaphase I, 2n = 21 + 21. 
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Genomic DNA of L. mollis and P. huashanica were used as probe respectively to iden-

tify the introduced L. mollis chromosomes in 17DM48. GISH revealed that 17DM48 had 
two alien chromosomes with green hybridization signals originated from the Ns subge-
nome of L. mollis (Figure 2a,b). 

To determine the chromosome constitution of 17DM48, sequential FISH–GISH anal-
ysis was performed. Oligo-pSc 119.2 with green signals and Oligo-pTa535 with red sig-
nals, were able to distinguish the 42 wheat chromosomes simultaneously by combining 
these two oligonucleotide probes. Compared with the standard FISH karyotype of com-
mon wheat Chinese Spring (CS) [14], it was suggested that 17DM48 lacked a pair of wheat 
2D chromosomes and presented two specific ones with the terminal strong binds distrib-
uted on both long and short arms by Oligo-pTa535 probe (Figure 2c). Sequential FISH-
GISH analysis conducted on the same slide revealed that two extra specific chromosomes 
had strong signals of L. mollis (Figure 2d), thus corroborating that the lacked 2D chromo-
somes in 17DM48 were substituted by two Ns chromosomes of L. mollis. 

 

Figure 1. Cytogenetic analysis of 17DM48. (a) root tip cell at mitotic metaphase, 2n = 42. (b) chromosomal
configuration of pollen mother cell at meiotic metaphase, 2n = 21 II. (c) chromosomal configuration
of pollen mother cell at anaphase I, 2n = 21 + 21.
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2.2. GISH and Sequential FISH–GISH Analysis

Genomic DNA of L. mollis and P. huashanica were used as probe respectively to identify
the introduced L. mollis chromosomes in 17DM48. GISH revealed that 17DM48 had two
alien chromosomes with green hybridization signals originated from the Ns subgenome of
L. mollis (Figure 2a,b).
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Figure 2. GISH and FISH-GISH analysis on 17DM48. The probes for GISH were L. mollis genomic 
DNA (green) and P. huashanica genomic DNA (green). (a) GISH detection of 17DM48 using L. mollis 
genomic DNA as probe (green). (b) GISH detection of 17DM48 using P. huashanica genomic DNA 
as probe (green). (c) FISH analysis of 17DM48. The probes were Oligo-pSc119.2 (green), and Oligo-
pTa535 (red). (d) Sequential FISH-GISH analysis of 17DM48 by the probe of L. mollis genomic DNA. 
Chromosomes were counterstained using DAPI (blue). The arrows referred to alien chromosomes. 
Scale bar = 10 μm. 

  

Figure 2. GISH and FISH-GISH analysis on 17DM48. The probes for GISH were L. mollis genomic
DNA (green) and P. huashanica genomic DNA (green). (a) GISH detection of 17DM48 using L. mollis
genomic DNA as probe (green). (b) GISH detection of 17DM48 using P. huashanica genomic DNA
as probe (green). (c) FISH analysis of 17DM48. The probes were Oligo-pSc119.2 (green), and Oligo-
pTa535 (red). (d) Sequential FISH-GISH analysis of 17DM48 by the probe of L. mollis genomic DNA.
Chromosomes were counterstained using DAPI (blue). The arrows referred to alien chromosomes.
Scale bar = 10 µm.

To determine the chromosome constitution of 17DM48, sequential FISH–GISH analysis
was performed. Oligo-pSc 119.2 with green signals and Oligo-pTa535 with red signals,
were able to distinguish the 42 wheat chromosomes simultaneously by combining these
two oligonucleotide probes. Compared with the standard FISH karyotype of common
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wheat Chinese Spring (CS) [14], it was suggested that 17DM48 lacked a pair of wheat 2D
chromosomes and presented two specific ones with the terminal strong binds distributed
on both long and short arms by Oligo-pTa535 probe (Figure 2c). Sequential FISH-GISH
analysis conducted on the same slide revealed that two extra specific chromosomes had
strong signals of L. mollis (Figure 2d), thus corroborating that the lacked 2D chromosomes
in 17DM48 were substituted by two Ns chromosomes of L. mollis.

2.3. Wheat 55K SNP Array Analysis

A wheat 55k SNP array were employed to further analyze the chromosomal composi-
tion of 17DM48. A total of 46,600, 48,033, and 28,361 polymorphic SNP loci were identified
in 17DM48, 7182, and P. huashanica, respectively (Supplementary Table S1). The maximum,
minimum, and mean percentages of SNP genotyping loci shared between 17DM48 and
7182 were 75.87% (on chromosome 1D), 12.37% (on 2D), and 53.62% overall. The maximum,
minimum, and mean percentages of SNP genotyping loci shared between 17DM48 and
P. huashanica were 29.02% (on 2D), 4.20% (on 4D), and 7.04% overall. Line 17DM48 had the
lowest percentage of same SNP loci with its parent line 7182 but shared the highest one with
P. huashanica. To make a visual comparison, the corresponding positions in chromosome
2D were marked, which had same genotype SNP loci in the same locations in line 17DM48,
7182, and P. huashanica. It showed that 17DM48 shared more of the same genotype SNP loci
in the same locations as P. huashanica rather than line 7182 (Figure 3b). The result indicated
that 17DM48 was a wheat–L. mollis 2Ns (2D) disomic substitution line.
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confirmed that alien chromosomes in 17DM48 belonged to the second homoeologous 
group. The polymorphic markers verified in this study can be used to trace chromosome 
2Ns of L. mollis in wheat background. 

Figure 3. Wheat 55K SNP mapping analysis of 17DM48. (a) Obvious crossing point in terms of the
position of the 2D chromosome. (b) Positions of the same SNP loci at the 2D chromosome in the
genotype of 17DM48 with P. huashanica and line 7182.

2.4. Molecular Marker Analysis

PLUG and EST–STS markers distributed in seven homoeologous groups of wheat
were used to verify the homoeologous relationship of alien chromosomes. The results
showed that three PLUG markers (TNAC1139-TaqI/HaeIII, TNAC11204-TaqI/HaeIII and
TNAC1210-TaqI/HaeIII) and three EST markers (BG607805-2AL/2AS/2BS, BQ169707-
2AS/2BS/2DS, CD453246-2AS/2BS/2DS) located on the chromosomes of the second ho-
moeologous group amplified expected bands in L. mollis and 17DM48 but not in common
wheat line 7182 and the durum wheat line D4286 (Supplementary Table S2, Figure 4).
It confirmed that alien chromosomes in 17DM48 belonged to the second homoeologous
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group. The polymorphic markers verified in this study can be used to trace chromosome
2Ns of L. mollis in wheat background.
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Figure 4. EST–STS and PLUG markers analysis of wheat-Leymus mollis disomic substitution
line 17DM48. The red arrows indicate the L. mollis specific band. (M). DNA marker DL2000.
(1) 7182. (2) D4286. (3) L. mollis. (4) 17DM48. (a) BG607805. (b) CD453246. (c) BQ169707.
(d) TANC1204-TaqI. (e) TANC1210-TaqI. (f) TANC1139-TaqI. (g) TANC1210-HaeIII. (h) TANC1204-
HaeIII. (i) TANC1139-HaeIII.

2.5. Evaluation of Agronomic Traits

The agronomic traits of 17DM48 and its parents were investigated as shown in Table 1.
In terms of resistance to stripe rust, line M842 were resistant to stripe rust with infection
type 0, and its derived line 17DM48 displayed a high level of resistance with infection type
1 compared to its parent 7182 and the susceptible control Huixianhong (HXH) (Figure 5).
The spike length of 17DM48 was significantly longer than all wheat parents. (Figure 6c).
Similarly, the average number of florets and spikelets per spike of 17DM48 was extremely
higher than those of its parents (Figure 6d,e).

Table 1. Evaluation of agronomic traits of 17DM48 and its parents.

Material
Plant

Height
(cm)

Tiller
Number

Spike
Length

(cm)

Florets Per
Spike

Spikelets
Per Spike

Kernels
Per Spike

Thousand
Kernel
Weight

(g)

Kernel
Length
(mm)

Kernel
Width
(mm)

Awn
Type

Stripe
Rust

Reaction
(IT)

M842 86.10 ±
3.32 Aa 9 ± 5 Bb 11.75 ±

1.21 Bb 89 ± 6 BCc 21 ± 1 Cc 43 ± 17
Bb

34.81 ±
1.27 Cc

8.53 ±
0.08 Aa

3.34 ±
0.03 Dd

short
awn 0

D4286 72.88 ±
4.58 Bc 10 ± 2 Bb 9.69 ±

0.72 Cc 71 ± 6 Cd 24 ± 1 Bb 47 ± 13
Bb

57.01 ±
1.58 Aa

8.08 ±
0.05 Cc

3.56 ±
0.02 Bb

long
awn 1

7182 83.15 ±
5.75 ABab 16 ± 4 Aa 11.08 ±

1.04 Bb 109 ± 7 Bb 24 ± 1 Bb 65 ± 11
Aa

30.53 ±
1.34 Dd

6.45 ±
0.06 Dd

3.44 ±
0.01 Cc

long
awn 3

17DM48 78.55 ±
7.07 Bb 9 ± 3 Bb 19.05 ±

1.34 Aa
203 ± 34

Aa 28 ± 2 Aa 8 ± 4 Cc 54.95 ±
1.08 Bb

8.31 ±
0.01 Bb

3.69 ±
0.01 Aa

short
awn 1

Huixianhong 4

Capital and small letters indicate significant differences at p < 0.01 and p < 0.05, respectively. IT, infection type.
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Huixianhong. (1) T. aestivum cv. 7182. (2) octoploid Tritileymus M842. (3) T. durum D4286. (4) disomic 
substitution line 17DM48. Asterisks indicate the symptoms and types of stripe rust reaction. 

Figure 5. Stripe rust disease reaction of 17DM48 and its parents. (CK) Triticum aestivum Huixianhong.
(1) T. aestivum cv. 7182. (2) octoploid Tritileymus M842. (3) T. durum D4286. (4) disomic substitution
line 17DM48. Asterisks indicate the symptoms and types of stripe rust reaction.

2.6. Molecular Marker Development

A total of 6,643,408 reads were obtained from 17DM48, with the average GC percentage
and Q30 percentage of 47.40% and 94.22% respectively. 466,330 SLAF numbers were
predicted according to the enzyme digestion program. By using BWA and Local BLAST+
tools for analysis, 658 sequences were acquired with 0% similarity to the reference genome
of CS (IWGSC-RefSeqv1.0) and 100% similarity to the simplified genome of L. mollis
(unpublished data), which were considered to be specific sequences of L. mollis.

As expected, 80 primer pairs were designed based on these specific fragments and used
for amplifying SLAF sequences from line 7182, D4286, L. mollis and 17DM48. Among them,
13 primers amplified specific bands between L. mollis and 17DM48 with a development
success rate up to 16.25% (Figure 7, Table 2). These specific markers can be applied
to quickly detect the genetic materials carrying 2Ns chromatin in wheat background,
which was the first and successful case in developing efficient markers for detecting alien
chromatin in L. mollis.
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Figure 6. Analysis of agronomic traits of line 7182 and its parents. (a) plant height. (b) tiller number.
(c) spike length. (d) florets per spike. (e) spikelets per spike. (f) kernels per spike. (g) thousand kernel
weight. (h) kernel length. (i) kernel width. Capital and small letters indicate significant differences at
p < 0.01 and p < 0.05, respectively.
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Figure 7. Molecular marker development and PCR amplification of wheat-Leymus mollis disomic
substitution line 17DM48. The red arrows indicate the L. mollis specific bands. (M). DNA marker
DL2000. (1) 7182. (2) D4286. (3) L. mollis. (4) 17DM48. (a) LM19474. (b) LM19428. (c) LM13006.
(d) LM17228. (e) LM25058. (f) LM152390. (g) LM65677. (h) LM224473. (i) LM33865.

Table 2. Specific molecular markers developed for 17DM48 based on SLAF-seq.

Marker Tm (◦C) Primer (5′-3′)

LM19474 52
F: TCGTCTGGGTTTGCTTAT

R: CACCGATTTCCAAGTTTC

LM19428 56
F: CGTCATCCTCCACCACCT
R: ACGCAATCTGCTCAACCC

LM13006 56
F: TGCGGTTGCGTCTATTGG

R: TGCTGGTGCATCATCATCG

LM17228 56
F: GCTCCTTTCTCGCTTGCT

R: TGGACCGCTACGTTTGAC

LM25058 54
F: AGGAAGGGTCGGAAACTC
R: AACACCACGGAATGAAGC

LM152390 52
F: TTTCTAGCCGCTAAAGGT
R: TTTCCAAGCCTACTCCTG

LM65677 54
F: CAGAGCATAACCCAGGAG
R: CCATAGGAACAAGCCAGA

LM224473 54
F: GGACGGTGAGCAAGAAGG
R: CGTAATGCCCACGAAACA

LM33865 52
F: GCTAGTAAATCGGAGGAC
R: TAGCCATAACACCAATCC

LM7529 52
F: AGGTTTCCAAATAAGGGAT
R: CGGACCGTGAATACTCTG

LM12508 54
F: TCACGGCATACAACAAGG
R: TATCCACCGACCACTCAA

LM23891 56
F: TGGGCAACCGATGCTCTA
R: ACTGGCACGAATCCGTCT

LM51499 56
F: CAGCAGTGGCTTCTGTTCC
R: TGTATGTGCGGGAGTGGA
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3. Discussion

Chromosome engineering plays an important role in developing novel germplasm and
broadening the genetic base of wheat [15–18]. L. mollis is a beneficial resource for wheat im-
provement, with resistance genes against multiple fungal diseases and yield improvement
potential [19]. The precondition of further utilization of derived lines from chromosome
engineering is that alien chromosomes can be stably inherited to the progeny [20]. It is
necessary to ensure the chromosome constitution as well as the genetic stability through
cytogenetic observation of RTCs and PMCs during mitosis and meiosis, respectively. In
this study, a novel wheat-L. mollis 2Ns (2D) substitution line was identified by GISH, FISH,
55K SNP array and molecular marker analysis. The cytology results indicated that 17DM48
had 42 chromosomes, with 21 bivalents in meiosis prophase I and without lagging chromo-
somes during the chromosome segregation in meiosis anaphase I, and then supported the
genetic stability of 17DM48.

Due to the visualized features, GISH and FISH are usually the preferred methods for
analyzing germplasm derived from chromosome engineering, and many derived lines, such
as addition lines, substitution lines and translocation lines have been successfully identified
using these molecular cytogenetic techniques [21–25]. In the study, GISH analysis indicated
that a pair of Ns chromosomes from L. mollis were introduced into wheat background
(Figure 2a,b). FISH revealed that 17DM48 possessed all chromosomes of common wheat
expect two 2D chromosomes. But two chromosomes with unknown karyotype appeared
in 17DM48, which were eventually demonstrated to be Ns chromosomes from L. mollis
through a sequential FISH–GISH analysis on the same slide. The two alien chromosomes
showed large clusters of red fluorescent signals at both ends of the chromosome arms and
partially dispersive red signals in the middle (Figure 2c). Above-mentioned karyotype of
2Ns was firstly demonstrated to facilitate the subsequent material identification.

With the development of high-density loci arrays, SNP genotyping has gradually been
widely used in gene localization and the determination of alien chromosomes introduced
from wheat relatives [26,27]. A wheat-Thinopyrum ponticum 1Js (1D) disomic substitution
line, and a wheat–Psathyrostachys huashanica Keng 5Ns (5D) substitution Line were ana-
lyzed respectively using wheat SNP arrays [12,28]. In the present study, wheat 55K SNP
arrays were employed to determine the chromosome constitution of 17DM48. The results
showed that in 17DM48, the same SNPs as its parent 7182 were deleted by 87.63% on
chromosome 2D. On the contrary, compared with P. huashanica, the Ns subgenomic donor
of L. mollis, 17DM48 had the highest proportion of the same SNP on chromosome 2D as the
second homoeologous group chromosomes of P. huashanica, which indicated that a pair
of 2Ns chromosomes originated from L. mollis substituted for wheat 2D chromosomes in
17DM48. Meanwhile, 3 EST-STS markers and 3 PLUG markers distributed in the second
homoeologous group of wheat amplified target bands in 17DM48 and L. mollis, while no
unique bands appeared in all other parents. These results confirmed that 17DM48 was a
wheat–L. mollis 2NS (2D) substitution line, similarly supported by the results of FISH, GISH
and SNP arrays.

The SLAF-seq technique, based on next-generation sequencing, has been applied to
construct high-density genetic map, develop FISH probes, conduct polymorphism analysis
and provide an efficient and convenient method for developing specific PCR-based markers
for plants without a reference genome [29]. The increasing SLAF-based markers have been
applied in chromosome engineering for rapidly tracing alien fragments. In the study,
thirteen specific SLAF markers amplified specific bands in 17DM48 and L. mollis different
from those in line 7182 and D4286, which contributes to tracing 2Ns chromosomes and
further mapping of beneficial genes from wheat relatives.

Chromosome rearrangements during evolution widely existed in wheat relatives,
including rye, barley, Aegilops, Leymus and other Triticeae species [30–33]. The evolutionary
translocations broke down the collinearity between the homoeologous wheat and alien
chromosomes, which may lead to the incomplete compensation [34]. In the study, SNP
array indicated that chromosome 2Ns was homoeologous to wheat group 2 and possibly
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showed partial homoeology to three other groups (1, 5, 6). Previous studies reported
that, rye chromosome arms 2RS, 3RL, 4RL, 5RL, 6RS, 6RL, 7RS and 7RL were involved
in evolutionary translocations, which paired with wheat chromosomes from a different
homoeologous group [32,35]. The reciprocal translocation between 4NsL and 5NsL had
also been proved to occur in Leymus [36]. In this study, through karyotype comparison
combined with the results of SNP array, chromosome arm 2NsS was found to show partial
homoeology to 6DS, which was possibly caused by the reciprocal translocations between
2NsS and 6NsS in the process of evolution. As a likely consequence of the structural
differences hence uneven gene dosages and incomplete compensation, it may explain the
changes of spike morphology, low seed set and associated changes of kernel size of 17DM48.
It was worth mentioning that 17DM48 possessed longer spike than all the parents, with
an increased percentage of up to 71.93% compared to wheat line 7182. Further mining of
corresponding genes contained in 17DM48 would contribute to the genetic improvement
of wheat.

Stripe rust is a devastating wheat fungal disease around the world, which causes
severe reduction in wheat production in a pandemic year. At present, more than 80 stripe
rust resistance genes and related QTLs have been permanently designated in wheat and
its relatives [37]. In previous study, several wheat-L. mollis derivatives from different
homoeologous groups showed high resistance to stripe rust, involving 5Ns, 6Ns and
7Ns chromosomes [38,39]. Significantly, in wheat-L.mollis derived lines, both the double
monosomic addition line (2n = 44 = 42T.a + L.m2 + L.m3) [40] and double substitution
line (2n = 42 = 38T.a + 2L.m2 + 2L.m3) [41] were highly resistant to stripe rust, whereas
the 3Ns(3D) substitution line lacked the stripe rust resistance instead with a leaf rust
resistance [42]. It can be inferred that desirable resistant genes against stripe rust probably
exist in 2Ns chromosomes of L. mollis. And more research is needed to isolate the potential
resistance genes. Breeders prefer translocation lines with smaller alien fragments and less
linkage drag, methodology is available to induce chromosome variation [24,43–46]. Finally,
it is necessary to develop fine translocation lines involving small L. mollis fragments with
desirable agronomic traits for further utilization in wheat improvement programs.

4. Materials and Methods
4.1. Plant Materials

The plant materials in the present study included bread wheat 7182 (2n = 6x = 42,
AABBDD) and Huixianhong (HXH), Leymus mollis (2n = 4x = 28, NsNsXmXm), Psathy-
rostachys huashanica (2n = 2x =14, NsNs), octoploid Tritileymus line M842 (2n = 8x = 56,
AABBDDNsNs), durum wheat line D4286 (2n = 4x = 28, AABB), and one wheat-L. mollis
disomic substitution line 17DM48. The wheat line 7182 was employed as a control in the
evaluation of agronomic characters, as well as in molecular marker analysis. The wheat
cultivar HXH was used as a susceptible control in stripe rust evaluation. All the materials
mentioned above were deposited in the College of Agronomy, Northwest A&F University
(Yangling, China).

4.2. Cytological Observation

The seeds were germinated on moist filter paper in a Petri dish to obtain root tips
at a suitable growth period. After nitrous oxide treatment, the root tips were fixed in
90% acetic acid for 10 min, which subsequently were stored in 70% ethanol at –20 ◦C for
later use. By means of enzymatic hydrolysis with cellulase (R-10, Yakult Japan, Tokyo,
Japan) and pectinase (Y-23, Yakult Japan, Tokyo, Japan) at 37 ◦C for 1 h, the root tips
were made into suspension for sample making, using a production process described
by Han et al. [47]. Young panicles at the appropriate stage were sampled, which later
were processed with ethanol–chloroform–acetic acid mixture (6:3:1, v/v/v) for one week
at 25–30 ◦C. Then, anthers were pinched out and crushed on a slide in 1% acetocarmine.
Root tip chromosome number and pollen mother cells chromosome configuration were
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observed and photographed with an Olympus BX-43 microscope (Olympus Optical Co.,
Ltd., Tokyo, Japan) equipped with a Photometrics SenSys CCD camera DP80.

4.3. GISH, FISH and Sequential FISH–GISH

Before in situ hybridization, chromosomes were fixed for 60 s at an ultraviolet intensity
of 125,000 mJ/cm2 by UV irradiation (Spectrolinker™ XL-1500, Long Island, NY, USA).
The total genomic DNA of L. mollis and P. huashanica were used as probe for GISH anal-
ysis, which were labeled with Alexa Fluor 488-5-dUTP (Invitrogen, Carlsbad, CA, USA).
The CTAB method [48] was performed to acquire highly purified DNA followed by a
purification step employing a mixture of 25:24:1 phenol/chloroform/isoamyl alcohol. The
GISH hybridization solution consisted of 0.3 L labelled probe DNA and 8.7 L GISH buffer
(2 × SSC/1 × TE). After the hybridization droplets were added to the slides containing
the cell split phase, the chromosomes were denatured along with the probe at 100 ◦C for
4 min, and finally renatured at 42 ◦C for more than 16 h [47]. The oligonucleotide probes
Oligo-pSc119.2 (green) and Oligo-pTa535 (red) (Shanghai Invitrogen Biotechnology Co.
Ltd., Shanghai, China) were used in combination for FISH and latter sequential FISH–GISH
analysis [14]. After exposure treatment, GISH analysis was conducted on the same split
phase as described earlier. Before microscopy, DAPI was employed to counterstain the
chromosomes. Eventually, fluorescent signals were observed and photographed with an
Olympus BX-53 microscope equipped with a Photometrics DP80 camera.

4.4. Wheat SNP Array Analysis

Genomic DNA of 17DM48 and its parents was hybridized to wheat 55K SNP genotyp-
ing arrays, and Illumina Bead Array technology was used for scanning in China Golden
Marker Biotechnology Company (Beijing, China). The wheat 55K SNP array contained
49,078 SNPs distributing across 21 pairs of wheat chromosomes. The percentage between
two lines containing the same genotype on each chromosome was calculated. Data analysis
and graphing were performed to analyze polymorphic markers using Origin V9.1 (Origin-
Lab Corporation, Northampton, MA, USA) and MapChart V2.32 (Wageningen University &
Research, Wageningen, The Netherlands).

4.5. Molecular Markers Analysis

Expressed sequence tag–sequence-tagged site (EST–STS) markers (http://wheat.pw.
usda.gov/SNP/new/pcr_primers.shtml, accessed on 23 December 2021) and PCR-based
Landmark Unique Gene (PLUG) markers [49,50] distributed in homoeologous groups 1
to 7 of wheat chromosomes were synthesized by AuGCT DNA-SYN Biotechnology Co.,
Ltd. (Beijing, China). To confirm homoeologous group relationships of the introduced
alien chromosomes in the wheat–L. mollis disomic substitution line 17DM48, all these
molecular markers were employed for polymerase chain reaction (PCR) assays between
7182, D4286, L. mollis and 17DM48. The PCR procedures were carried out as described
previously [51]. The PCR products were separated by 8% non-deformable polyacrylamide
gel electrophoresis and visualized after silver staining [52]. The PCR products of PLUG
markers were digested with HaeIII (37 ◦C) for 3 h or TaqI (65 ◦C) for 2 h to increase the
polymorphism level. Subsequently, the digested products were separated by 2% agarose gel
electrophoresis. The reagent for the PCR reaction was purchased from Takara Biomedical
Technology (Beijing) Co., Ltd. (Beijing, China).

4.6. Molecular Marker Development

SLAF-seq of 17DM48 was performed by the Beijing Biomarker Technologies Corpo-
ration (Beijing, China). Qualified sample DNA was digested by the restriction enzyme
HaeIII. The libraries were sequenced by the Illumina HiSeq platform after passing quality
inspection. The data filtering steps are as follows: (1) remove reads with adapter sequences,
(2) remove reads with more than 10% N content, (3) remove reads in which more than

http://wheat.pw.usda.gov/SNP/new/pcr_primers.shtml
http://wheat.pw.usda.gov/SNP/new/pcr_primers.shtml
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50% of the bases had quality scores less than 10. Sequence quality and data volume were
evaluated after filtering sequence readings [53].

Sequences specific to 2Ns of L. mollis were obtained by Burrows-Wheeler-Alignment
V0.1.17 (BWA) [54] and Basic Local Alignment Search Tool V2.10.1 (ftp://ftp.ncbi.nlm.nih.
gov/blast/executables/blast+/LATEST/, accessed on 13 August 2021). Sequences with 0%
similarity to CS (IWGSC-RefSeq-v1.0) and 100% similarity to L. mollis (unpublished data)
were selected for molecular markers development. The primers for these sequences were
developed using Primer Premier V5.0 (PREMIER Biosoft, Palo Alto, CA, USA). After PCR,
specific bands were detected on a 1% agarose gel.

4.7. Morphological Traits Evaluation

All materials were planted in the experimental field of Northwest A&F University,
including 17DM48, parents M842 and D4286, as well as its previous ancestor 7182. At the
physiological maturity stage, morphological traits of these lines were evaluated in 2020
and 2021. For each material, ten randomly selected plants were used for the evaluation
of agronomic traits, including plant height, tillering, spike length, number of spikelets
per spike, number of florets per spikelet, number of kernels per spike, thousand-kernel
weight, and awnedness. In addition, each sample is measured for kernel traits through
scanning 50 randomly selected kernels. Significant analysis between different materials
were conducted using the SPSS Statistics 26 software program (IBM Corp., Armonk, NY,
USA). Comparison and graphing of agronomic traits were performed using GraphPad
Prism V8.0.1 (GraphPad Software, San Diego, CA, USA).

4.8. Disease Reaction Evaluation

7182, D4286, M842, 17DM48, HXH were evaluated for disease reaction to the fungal
diseases stripe rust at adult stage. Mixed races of stripe rust fungus (CYR32, CYR33) were
used for artificial inoculation. When stripe rust susceptible control variety HXH was fully
infected, the response type was surveyed according to the previous standards [55]. The
infection type (IT) standards of wheat stripe rust at adult stage were assessed on a 0–4 scale
as follows: 0, immune; 0, nearly immune; 1, highly resistant; 2, moderately resistant; 3 and
4 as moderately susceptible and highly susceptible, respectively.

5. Conclusions

In this study, a novel wheat-L. mollis 2Ns (2D) disomic substitution line was identified
using cytology methods, DNA markers, SNP array detection, GISH and FISH analysis. The
developed line 17DM48 showed a high level of stripe resistance and longer spike. Based on
SLAF-seq, thirteen specific markers were developed to identify and trace chromosome 2Ns
of L. mollis in wheat background, thereby further promoting the process of fine mapping of
stripe rust resistance genes and molecular marker-assisted breeding. In conclusion, this
line has great potential in improving the stripe rust resistance of wheat. It could provide a
novel germplasm to transfer stripe rust resistance genes for wheat breeding.
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