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Many subproblems in automated skin lesion diagnosis (ASLD) can be unified under a single generalization of assigning a label,
from an predefined set, to each pixel in an image. We first formalize this generalization and then present two probabilistic models
capable of solving it. The first model is based on independent pixel labeling using maximum a-posteriori (MAP) estimation.
The second model is based on conditional random fields (CRFs), where dependencies between pixels are defined using a graph
structure. Furthermore, we demonstrate how supervised learning and an appropriate training set can be used to automatically
determine all model parameters. We evaluate both models’ ability to segment a challenging dataset consisting of 116 images and
compare our results to 5 previously published methods.

1. Introduction

Incidence rates of melanoma are increasing rapidly in the
western world, growing faster than any other cancer [1].
Since there is no effective therapy for patients with advanced
melanoma [2], educational campaigns attempt to encourage
high-risk individuals to undergo routine screening so that
melanomas can be identified early while they are still easily
treatable [3]. While worthwhile, these educational campaigns
generate a large amount of referrals to dermatologists, whose
services are already undersupplied [4].

Automated skin lesion diagnosis (ASLD) is expected to
alleviate some of this burden. By acting as a screening tool,
ASLD can reject obviously benign lesions, while referring
more suspicious ones to an expert for further scrutiny. Most
ASLD methods adopt the standard computer-aided diagno-
sis (CAD) pipeline illustrated in Figure 1. First an image
is acquired with a digital dermoscope. Next, undesirable
artifacts (such as hair or oil bubbles) are identified and, if
necessary, replaced with an estimate of the underlying skin

color. After this, the lesion is segmented, and discriminative
features are then extracted. Finally, supervised learning is
used to classify previously unseen images.

Our previous work demonstrated how the use of super-
vised learning, under the proper generalization (of assigning
labels to pixels), was able to solve several tasks in this pipeline
including detecting occluding hair, segmenting the lesions,
and detecting the dermoscopic structure pigment network
[5]. Our method was relatively simple; it labeled pixels
in an image independently using modest features, linear
discriminant analysis (LDA) for supervised dimensionality
reduction, and maximum a-posteriori (MAP) estimation.
Nevertheless, in spite of its simplicity, our model was
able to perform comparably to other previously published,
nongeneral methods for lesion segmentation [6–10] and hair
detection [11].

In this paper, we seek to expand on this generalization by
replacing the per-pixel (PP) estimation model with a condi-
tional random field (CRF) model. The largest criticism levied
at the PP approach is that pixels are labeled independently,
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Figure 1: Typical computer aided diagnosis (CAD) pipeline usually
adopted for automated skin lesion diagnosis (ASLD). Our goal is
to (1) generalize the artifact detection, segmentation as well as a
portion of the feature extraction stage into a single mathematical
framework and (2) propose and evaluate probabilistic models
which employ supervised learning to quickly and automatically
“learn” to perform these tasks.

regardless of the label assigned to their neighbors. This
assumption of independence is clearly not valid, as there is
a high degree of correlation between neighboring pixels in
any image (any image other than pure noise, i.e.). CRF-based
models attempt to relax this assumption of independence by
creating a graphical model which defines the dependencies
between pixels.

In order to apply a CRF model, a parameter vector
specifying the relative contribution of the input features is
required. Often, these parameters are determined in an ad
hoc fashion via trial and error. Since our goal is a general
method, easily applicable to a variety of problems, it is
crucial that these parameters be determined automatically
based on observations. We, therefore, apply the maximum
likelihood estimator for the parameter vector and describe
a gradient-based method for its computation. We also
address many practical considerations encountered during
the implementation.

The paper is organized as follows: in Section 2, we
briefly review previous work. In Section 3, we formulate the
generalization in Section 3.1, review our previous PP model
[5] in Section 3.2, and present our CRF model in Section 3.3.
In Section 4, we present results. Finally, we conclude in
Section 5.

2. Previous Work

Our original PP model was based on the work by Debeir et
al. [12] who also attempts to generalize many tasks in ASLD.
Our model was found to perform comparably to many pub-
lished lesion segmentation algorithms including K-means++
(KPP) [6], J-image segmentation (JSEG) [7], dermatologist-
like tumor area extraction algorithm (DTEA) [8], statistical
region merging (SRM) [9], and threshold fusion (FSN) [10].
It also performed comparably to DullRazor [11] for detecting
occluding hair and was able to identify the dermoscopic
structure pigment network. Our PP model is briefly reviewed
in Section 3.2; however, we refer readers to our previous
study for further details, as well as a more comprehensive
review of previous work in ASLD, including the methods
against which we compare [5].

We defer the review of the CRF model until Section 3.3,
where we examine it in detail.

3. Method

This section is divided into 3 parts. We begin in Section 3.1
by formalizing the generalization that is capable of perform-
ing a variety of tasks in ASLD. In Section 3.2, we briefly
review our previous PP model [5]. Finally, in Section 3.3, we
outline our CRF model.

3.1. The Generalization. We are given a set of observa-
tions {xm, ym}, consisting of images (x) and corresponding
ground truths labeling (y). Using the notation of Szummer
et al. [13], the superscript xm or ym indexes a specific
image/labeling in the set and the subscript xi or yi indexes
a specific pixel. Let NI represent the number of images, and
Nm

P represents the number of pixels in image xm. An imageset
can contain any number of channels (or features), which we
denote by NC . Valid values for each entry in the label field
(yi) are defined by the label set L = {l1, . . . , lNL}, where NL is
the number of possible labels.

Given our training set {xm, ym}, we use supervised
learning to predict the label fields for previously unseen
images.

Formally, we are given

{
xm, ym

}
; m = 1, . . . ,NI ; i.i.d,

L = {li}; i = 1, . . . ,NL; li ∈ N,

xm ∈ RNm
P ×Nc ,

ym ∈ LN
m
P .

(1)

And our task is to use the information in {xm, ym} to
infer the function f : x → y that produces the best possible
label field.

3.2. The PP Model. In this section, we briefly review our per-
pixel (PP) estimation model [5]. An overview of the training
and testing phases of the model is illustrated in Figures 2
and 3, respectively. Under this model, we assign the most
probable label to each pixel independently

y∗i = arg max
l j

[
P
(
yi = l j | xi

)]
; i = 1, . . . ,NP , (2)

Applying Bayes’ rule and simplifying, we arrive at the
standard maximum likelihood formulation

y∗i = arg max
l j

[
P
(
xi | yi = l j

)
P
(
yi
)]

; i = 1, . . . ,NP. (3)

We model the posterior P(x | y = l) as a set of NL

multivariate normal distributions P(x | y = l j) = N(μlj ,Σl j ),
whose parameters (μlj ,Σl j ) are estimated using the training
set {xm, ym}. We model P(y) as a discrete distribution. Let
NYi represent the number of elements in ym that assume the
value li, then

P
(
yi
) = NYi

ΣNL
j=1NY j

. (4)
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Figure 2: The training phase of our per-pixel (PP) model. Features are first computed, then the dimensionality of the featurespace is reduced
using LDA. Posterior probabilities in this subspace are then estimated.
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Figure 3: The testing phase of our per-pixel (PP) model. Features are computed as in the training phase. The projection Q is used to
transform the features into the subspace determined in the training phase. Maximum a-posteriori estimation, using the posteriors estimated
in the training phase, is then used to generate the label.

We also normalize the probabilities across the label set,
which are later used as features in the CRF model. The
normalized likelihood that a pixel i is associated with the
label l j is

Li, j =
P
(
xi | yi = l j

)

∑NL

k=1 P
(
xi | yi = lk

) . (5)

In order to examine the model’s performance across
the entire sensitivity/specificity range, we consider many
thresholds T on Li, j over the range [0, 1] and label pixels
accordingly.

As the number of channels (NC) in the images grows,
we perform supervised dimensionality reduction on the
observations x to focus the predictive power of our dataset
onto a smaller subset of parameters. Linear discriminant
analysis (LDA) is used to determine the subspace of x which
best separates the labels [14].

LDA performs an eigenvalue decomposition of a scatter
matrix representing the ratio of between-class covariance to
within-class covariance. It returns a matrix of eigenvectors
Q ∈ RNc×NL−1 which projects observations (x) from NC

dimensions to NL − 1

Q = eig
(
S−1
w Sb

)
,

Sw =
NL∑

i=1

Σli ,

Sb =
NL∑

i=1

(
μli − μ

)(
μli − μ

)T ,

(6)

where μ is the overall mean of x across all images and
classes. Once the projection Q is determined, the posteriors

are estimated, likelihoods are computed, and inference is
performed in this subspace (xQ)

P
(
xQ | y = l j

)
= N

(
μQlj ,Σ

Q
lj

)
; j = 1, . . . ,NL,

y∗i = arg max
l j

[
P
(
xiQ | yi = l j

)
P
(
yi
)]

; i = 1, . . . ,NP ,

(7)

Li, j =
P
(
xiQ | yi = l j

)

∑NL

k=1 P
(
xiQ | yi = lk

) , (8)

where the superscript Q (μQlj ,Σ
Q
lj

) is used to differentiate the
label means/covariances in this subspace from the original
space in which the observations were performed (μlj ,Σl j ).

3.3. The CRF Model. In this section, we seek to improve upon
the PP model developed in previous work [5] and described
in Section 3.2. We present an overview of conditional
random fields (CRFs) in Section 3.3.1. In Section 3.3.2, we
describe how the CRF parameters can be determined empir-
ically using maximum likelihood estimation (MLE) [15]. In
Section 3.3.3, we discuss practical considerations for finding
these parameters, including how to estimate the partition
function [16] and how to regularize the likelihood expression
[15]. In Section 3.3.4, we solve the MLE formulation via
gradient-based methods. An overview of the training and
testing phases of our CRF model is illustrated in Figures 4
and 5, respectively.

3.3.1. Overview. The CRF model is an undirected graphical
model that is naturally suited to represent and exploit the
dependencies between observations, such as neighboring
pixels in an image [15]. The probability that a label field y
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Figure 4: The training phase of our CRF model. We follow the same procedure as in our PP model up until the posteriors are estimated. We
then calculate pixel likelihoods and use these as node features in our CRF model. We infer CRF parameters using gradient descent.
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Figure 5: The testing phase of our CRF model. After the likelihoods are computed, we use the CRF parameters from the training phase, and
the software FastPD to generate label fields.

is associated with the image x under model parameters w is
given by

P
(
y | x;w

) = 1
Z(x,w)

exp
(−E(y, x;w

))
, (9)

where the function Z(x,w), known as the partition function,
is used to normalize the probabilities for given values of x
and w

Z(x,w) =
∑

y

exp
(−E(y, x;w

))
. (10)

The energy function E represents the linear of combina-
tion of features employed by the model and is parameterized
by the weight vector w

E
(
y, x;w

) =
NW∑

k=1

wkΦk
(
y, x
)
. (11)

Given an undirected graph G = (V, E), where V
represents the nodes (i.e., pixels) of an observation, E
represents the dependencies between nodes (throughout this
document, E is the 4-connected set of neighboring pixels),
and the energy function E is the weighted sum of features
Φi(y, x). Features can either operate over the nodes of the
graph (ΦV ), or over its edges (ΦE)

ΦV
(
y, x
) =

∑

i∈V

φ
(
yi, xi

)
,

ΦE
(
y, x
) =

∑

(i, j)∈E

φ
(
yi, yj , xi, xj

)
,

(12)

In order for the model to be tractable, edge features
ΦE

i (y, x), and their corresponding weights must adhere to

certain constraints. Let E represent the set of edge features.
The following constraints must be satisfied [17]

wi > 0 ∀i ∈ E,

φE
(
yi, yj , xi, xj

)
= 0 ∀

(
yi, yj

)
s.t. yi = yj .

(13)

Strictly speaking, the second constraint can be replaced
with the more general constraint that edge feature functions
be submodular [18]. However, throughout this document, we
will impose this stricter constraint which can be interpreted
as “an edge cost is only incurred across nodes with differing
labels.”

A CRF solver is one that, given observations x and
parameters w, can find the most likely labeling y∗

y∗ ←− arg max
y

P
(
y | x;w

)
. (14)

We use the software FastPD [19, 20], which can exactly
solve (14), under the constraints imposed above.

3.3.2. Determining MLE Parameters. Since the emphasis of
our work is on a general model capable of performing a
variety of tasks, it is crucial that model parameters (w) be
determined automatically from training data via empirical
means. In this section, we derive the partial derivatives of
the likelihood function which can be used by gradient-based
methods to compute w.

Since the observations {xm, ym} are assumed to be
independent. The likelihood of the data, given the set of
parameters, is equal to the product of the probabilities in the
observed set, under those parameters

�(w) =
NI∏

m=1

P
(
ym | xm;w

)
. (15)
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The maximum likelihood estimator is then

w∗ = arg max
w

NI∏

m=1

P
(
ym | xm;w

)
. (16)

If we can find the partial derivatives ∂�/∂wi, we can
optimize w using gradient-based methods. We begin by
expressing the likelihood function �(w) in terms of w

w∗ = arg max
w

NI∏

m=1

P
(
ym | xm;w

)

= arg max
w

NI∑

m=1

ln
(
P
(
ym | xm;w

))

= arg max
w

NI∑

m=1

(−E(ym, xm,w
)− ln(Z(x,w))

)

= arg min
w

NI∑

m=1

⎛

⎝
NW∑

k=1

wkΦk
(
ym, xm

)

+ ln

⎡

⎣
∑

y

exp

⎛

⎝−
NW∑

k=1

wkΦk
(
y, xm

)
⎞

⎠

⎤

⎦

⎞

⎠.

(17)

Solving for the partial derivatives, we get the following
expression for the gradients of the likelihood function:

∂�

∂wi
=

NI∑

m=1

⎛

⎝Φi
(
ym, xm

)

+

∑
y −Φi

(
y, xm

)
exp
(
−∑Nw

k=1 wkΦk
(
y, xm

))

∑
y exp

(
−∑Nw

k=1 wkΦk
(
y, xm

))

⎞

⎠.

(18)

However, we now come to an impasse. The second term of
(18) would have us iterating over all possible label fields y.
For a binary classification task over a modestly sized image of
256 × 128, this would require a summation over 2256×128 ≈
2 × 109000 labelings. Clearly this is intractable, and we must
resort to estimating this second term.

3.3.3. Practical Considerations. In order to derive CRF
parameters with grid-structured models for even modestly
sized images, a method to estimate the partition function is
required. Inspired by [21], we employ one of the simplest
estimation methods and approximate the partition function
using saddle-point approximation (SPA) [16]

∑

y

Φ
(
y, x
) ≈ Φ

(
y∗, x

)
,

y∗ ←− arg max
y

P
(
y | x;w

)
.

(19)

We also introduce an additional practical consideration.
Since gradient-based methods will be used to determine w,

we regularize the likelihood function (�(w)) by the squared
L2 norm of the parameters [15] to penalize large weight
vectors (since scalar multiples of a weight vector produce
identical results). This makes the resulting likelihood func-
tion strictly convex. The regularized likelihood is then

�(w) =
NI∑

m=1

⎛

⎝
NW∑

k=1

wkΦk
(
ym, xm

)− ln
∑

y

exp
NW∑

k=1

wkΦk
(
y, xm

)
⎞

⎠.

− ‖w‖
2

2σ2

(20)

And the gradients become

∂�

∂wi
=

NI∑

m=1

⎛

⎝Φi
(
ym, xm

)

+

∑
y−Φi

(
y, xm

)
exp
(
−∑Nw

k=1 wkΦk
(
y, xm

))

∑
y exp

(
−∑Nw

k=1 wkΦk
(
y, xm

))

⎞

⎠−wi

σ2
.

(21)

Which under SPA becomes

∂�

∂wi
≈

NI∑

m=1

(
Φi
(
ym, xm

)−Φi
(
y∗, xm

))− wi

σ2
. (22)

3.3.4. Implementation. We are now ready to implement a
gradient-based method to estimate the CRF parameter vector
w. Given an initial weight vector w0, the gradients of the
likelihood function are estimated as per (22). These gradients
are used to update the weight vector, which in turn is used to
estimate a new set of gradients. This process is repeated until
convergence.

We have observed (as does [21]) that gradient meth-
ods using saddle point approximation lead to oscillating
behavior. Therefore, we keep a record of the best empirical
set of parameters found, rather than the parameters of the
final iteration. We also enforce the constraint from (13) that
weights for edge-based features must remain positive.

In addition to the training set ({x, y}), the algorithm
also requires an initial weight vector (w0), a regularization
factor (σ2 ), a step size (γ), and termination conditions
(convergence criteria: ε; maximum number of iterations:
Nitr). The algorithm has been found to be robust to these
additional parameters. Pseudocode of our implementation is
presented in Algorithm 1.

4. Results

Previous work has demonstrated our model’s ability to
generalize to many applications [5]. Here, we focus on a
single application (lesion segmentation) and present results
for our two models. We also compare our results to 5
previously published methods (KPP [6], JSEG [7], DTEA [8],
SRM [9], and FSN [10]).
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Figure 6: The effect of L∗ normalization on the segmentation likelihoods. left column: original dermoscopic image; middle: segmentation
likelihoods (Li,lesion) before L∗ normalization; right: after L∗ normalization.

Require: x, y,w0, σ2 > 0, γ < 0, ε > 0, Nitr > 0
max ← 0
for i← 1 to Nitr do
gi ← 0
a← 0
for m← 1 to NI do
y∗ ← arg maxy P(y | xm;wi−1)
a← a + accuracy(y∗, ym)/NI

gi ← gi + Φ(ym, xm)−Φ(y∗, xm)−wi−1/(NIσ2)
end for
if a > max then

max ← a
w∗ ← wi−1

end if
wi ← wi−1 + γgi

for all j ∈ E do
if wi

j < 0 then
wi

j ← 0
end if

end for
if ‖wi −wi−1‖ < ε then

break
end if

end for
return w∗

Algorithm 1: Calculating the CRF parameter vector w using
gradient descent and saddle-point approximation.

The dataset consists of 116 images from dermoscopy
atlases [22, 23], which were acquired by a several dermatol-
ogists in separate practices using differing equipment. The
images have not been properly color calibrated. Since the
goal was to create a difficult dataset, 100 of the 116 lesions

were selected to be particularly challenging to segmentation
algorithms [7]. We intentionally chose a simplistic featureset
to emphasize the power of the models under consideration.

The features employed were 5 Gaussian, and 5 Lapla-
cian of Gaussian filters applied a various scales (σ =
[1.25, 2.5, 5, 10, 20]) in each channel of the image in CIE
L∗a∗b∗ space. The responses of these filters represent the
observations x (where NC = 30). Each image was expertly
segmented by a dermatologist. These ground truth labelings
are denoted as y.

For all experiments, 10-fold cross-validation was
employed. The dataset was randomly divided into 10 groups,
and label fields for each group of images were determined
using model parameters which were estimated from the
observations in the 9 other groups. In both the PP and CRF
models, all steps after the computation of features (refer to
Figures 2 and 4) were included within the cross-validation
loop including determining the projection Q, estimating the
prior/posteriors, determining CRF parameter vector w, and
so forth.

4.1. The PP Model. We begin by summarizing previous
results on how our PP model faired on this dataset. A more
detailed analysis, including the relative contribution of vari-
ous aspects of the model (including features, dimensionality
reduction, and classification method), can be found in our
previous work [5].

Since that time, we have discovered that we can partially
compensate for the lack of color calibration by subtracting
the mean of the L∗ channel before computing features. While
not as desirable as full color and lighting calibration [24], this
procedure at least compensates for various camera exposure
levels, as can be seen in the resulting PP likelihood maps
in Figure 6 (as calculated by (8)). Figure 7 illustrates a ROC
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Table 1: Comparison of our PP model’s ability to segment lesions to our CRF model and 5 previously published methods.

Performance

Method PP (nearest pt.)

Method n Sens Spec Sens Spec

CRF 116 0.845 0.924 0.843 0.921

KPP [6] 116 0.765 0.770 0.941 0.763

JSEG [7] 91 0.627 0.987 0.677 0.980

DTEA [8] 116 0.597 0.986 0.638 0.985

SRM [9] 112 0.790 0.946 0.773 0.957

FSN [10] 116 0.808 0.934 0.814 0.939
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Figure 7: ROC curve comparing our PP model before normaliza-
tion (red line) and after normalization (blue line) to 5 previously
published methods.

curve comparing the performance of our PP model (before
and after normalization) to the segmentation algorithms
KPP [6], JSEG [7], DTEA [8], SRM [9], and FSN [10].
Our method performs comparably to JSEG, DTEA, SRM,
and FSN and outperforms KPP although only KPP, DTEA,
and FSN algorithms were able to generate results for all 116
images. Table 1 summarizes the results.

4.2. The CRF Model. As described in Section 3.3, the CRF
model operates over an undirected graph G = (V, E)
and consists of node features (ΦV (y, x)) and edge fea-
tures (ΦE(y, x)). The graph structure employed was the 4-
connected set of neighboring pixels. Our featureset contains
2 features: one over the nodes and one over the edges. The

node features are the likelihoods as computed by (8) of the
PP model as in Section 4.1, and the edge features are set to
the CIE L∗ intensity difference between neighboring pixels,
if the labels of said pixels differ

ΦV
1

(
y, x
) =

∑

i∈V

P
(
xiQ | yi

)

∑NL
j=1 P

(
xiQ | yi = l j

) ,

ΦE
2

(
y, x
) =

∑

(i, j)∈E

∣
∣
∣L∗(xi)− L∗

(
xj
)∣∣
∣1yi /= yj ,

(23)

where we use 1yi /= yj to denote the indicator function (i.e.,
1yi /= yj evaluates to 1 if yi /= yj ; 0 otherwise)

While the method described in Section 3.3 is general
enough to handle an arbitrary number of node and edge
features, there are 2 reasons why we chose only one of each.
To begin, we seek to make the comparison between the PP
model and the CRF model as meaningful as possible. Using
the likelihoods from the PP model as the node feature is
an elegant way to evaluate the improvements realized by the
CRF model. Note that with this choice of features, the CRF
model with weight vector w = [1, 0] gives identical results
to the PP model. Additionally, the saddle-point method for
approximating the partition function seems to degrade as the
number of features increases. We note, however, that even in
studies where the partition function can be computed exactly
(because the CRF graph contains no loops), the loss incurred
by such piecewise training methods is negligible [25].

Figure 8 compares some segmentations produced by
the PP and CRF model. By relaxing the assumption of
independence in the PP model, the CRF model is able to
smooth over small areas of discontinuity, filling in “gaps” in
segmentations, and removing noise. In Figures 8(a) and 8(c),
the “holes” in the resulting PP segmentations do not manifest
in the CRF segmentations (Figures 8(b) and 8(d)) due to the
model’s holistic search for the best label field, rather than best
individual label. Additionally, while the PP model is already
fairly robust to occluding hair (Figure 8(e)), the CRF model
is even more robust, able to smooth over misclassifications
due to artifacts.

We also tested the stability of the CRF model with respect
to regularization and the hyperparameter σ2. Varying σ2 (to
assume values in the range [10−6, Inf]) had little effect on
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Figure 8: Comparing segmentations from our PP model (left) and CRF model (right). Since the CRF model relaxes the assumption of pixel
independence in the PP model, it is able to smooth over local discontinuities. The result is better segmentations which fill in “holes” and
remove “noise.”

performance of the model on this particular dataset. In spite
of the seemingly ineffectual nature of this parameter, we do
not remove it from the model since the emphasis of this work
is on general models for ASLD. The effect of σ2 in general
(over many tasks in ASLD) has yet to be determined.

While subjectively, the CRF model offers substantial
improvements; objectively, the CRF model is a marginal
improvement over the PP model. Figure 9 shows an ROC
curve comparing the CRF’s performance to that of the
PP model and previously published methods, and Table 1
summarizes the results.

5. Conclusions

In this paper, we have generalized several common problems
in ASLD into a single formulation. We also presented 2
probabilistic models capable of solving the formulation,
and described how supervised learning can be used to

determine all model parameters. Since the parameters for
the resulting models can all be determined automatically
from training data, it is hoped that these models can be
applied quickly and effectively to a variety of relevant tasks in
ASLD.

While both methods perform comparably to previously
published methods, the qualitative improvements realized by
CRF model aren’t reflected in the quantitative score. Unlike
the PP model, the CRF model does not assign labels to pixels
independently. Rather, the CRF model selects the best label
field to assign to an image. This allows the CRF model to
fill in “holes” and smooth out noise that would otherwise
appear.

The discrepancy between the objective and subjective
performance of the CRF model implies that our evaluation
metric (pixel-wise sensitivity and specificity) may be less
than ideal. Therefore, future work will explore the use of
alternate evaluation metrics [26, 27].
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Figure 9: ROC curve comparing our CRF model (diamond) to our
PP model (line) and 5 previously published methods.

Even though the models presented are competitive, there
are many potential directions in which they can be improved
upon even further. In our grid-structured CRF model, we
must resort to approximating the partition function due
to the computational complexity of calculating it exactly.
Imposing a tree-based structure over the image [25] would
enable the exact computation of the partition function via
dynamic programming and should lead to more reliable CRF
parameters. Replacing our gradient-based method for deter-
mining CRF parameters with a max-margin formulation
[13] is another possible way to increase the reliability of the
resulting parameters. We can also induce non-linearities into
the model by replacing the linear dimensionality reduction
step (LDA) with its nonlinear counterparts (i.e., KLDA [28]).
Finally, the use of semi-supervised learning techniques may
be used to decrease the cost of acquiring expertly annotated
datasets [29].
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